Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Новые виды синтетических волокон. Синтетическое волокно Текстильные химические волокна

это химические волокна, получаемые из синтетических полимеров. Синтетические волокна формуют либо из расплава полимера (полиамида, полиэфира, полиолефина), либо из раствора полимера (полиакрилонитрила, поливинилхлорида, поливинилового спирта) по сухому или мокрому методу.

Их выпускают в виде текстильных и кордных нитей, моноволокна, а также штапельного волокна. Разнообразие свойств исходных синтетических полимеров позволяет получать синтетические волокна с различными свойствами, тогда как возможности варьировать свойства искусственных волокон очень ограничены, поскольку их формуют практически из одного полимера (целлюлозы или её производных). Синтетические волокна характеризуются высокой прочностью, водостойкостью, износостойкостью, эластичностью и устойчивостью к действию химических реагентов.

Производство синтетических волокон развивается более быстрыми темпами, чем производство искусственных волокон. Это объясняется доступностью исходного сырья и быстрым развитием сырьевой базы, меньшей трудоёмкостью производственных процессов и особенно разнообразием свойств и высоким качеством синтетических волокон. Поэтому синтетические волокна постепенно вытесняют не только натуральные, но и искусственные волокна в производстве некоторых товаров народного потребления и технических изделий.

Лит.: Технология производства химических волокон. М., 1965.

Важнейшими группами синтетических волокон, встречающихся в текстильной промышленности, являются полиамиды, полиэфиры, полиакрилы, полипропены и хлористые волокна. Общими для синтетических волокон свойствами являются легкость, прочность, износостойкость. Их можно под действием тепла курчавить, сжимать и придавать им нужную устойчивую форму. Синтетические волокна очень мало впитывают влаги или вообще не впитывают, поэтому изделия из них легко стираются и быстро сохнут. Из-за плохой способности впитывать влагу они не так удобны при носки на теле, как натуральные волокна.

Прототипом процесса получения химических нитей послужил процесс образования шелкопрядом нити при завивке кокона. Существовавшая в 80-х 19 столетия гипотеза о том, что шелкопряд выдавливает волокнообразующую жидкость через шелкоотделительные железы и таким образом прядет нить, легла в основу технологических процессов формирования химических нитей.

Литературные источники этой статьи:
Большая Советская Энциклопедия;
Калмыкова Е.А., Лобацкая О.В. Материаловедение швейного производства: Учеб. Пособие,Мн.: Выш. шк., 2001412с.
Мальцева Е.П., Материаловедение швейного производства, - 2-е изд., перераб. и доп.М.: Легкая и пищевая промышленность, 1983,232.
Бузов Б.А., Модестова Т.А., Алыменкова Н.Д. Материаловедение швейного производства: Учеб. для вузов,4-е изд., перераб и доп.,М., Легпромбытиздат, 1986 – 424.

Из истории синтетики

Производство синтетических волокон началось с выпуска в 1932 году поливинилхлоридного волокна (Германия). В 1940 году в промышленном масштабе выпущено наиболее известное синтетическое волокно – полиамидное (США). Производство в промышленном масштабе полиэфирных, полиакрилонитрильных и полиолефиновых синтетических волокон осуществлено в 1954-60 годах.

С 1931 года кроме бутадиенового каучука, синтетических волокон и полимеров еще не было, а для изготовления волокон использовались единственно известные тогда материалы на основе природного полимера - целлюлозы.

Революционные изменения наступили в начале 60-х годов, когда после объявления известной программы химизации народного хозяйства промышленность нашей страны начала осваивать производство волокон на основе поликапроамида, полиэфиров, полиэтилена, полиакрилонитрила, полипропилена и других полимеров.

В то время полимеры считали лишь дешевыми заменителями дефицитного природного сырья - хлопка, шелка, шерсти. Но вскоре пришло понимание того, что полимеры и волокна на их основе подчас лучше традиционно используемых природных материалов - они легче, прочнее, более жаростойки, способны работать в агрессивных средах. Поэтому все свои усилия химики и технологи направили на создание новых полимеров, обладающих высокими эксплуатационными характеристиками, и методов их переработки. И достигли в этом деле результатов, порой превосходящих результаты аналогичной деятельности известных зарубежных фирм.

В начале 70-х за рубежом появились поражающие воображение своей прочностью волокна кевлар (США), несколько позже - тварон (Нидерланды), технора (Япония) и другие, изготовленные из полимеров ароматического ряда, получивших собирательное название арамидов. На основе таких волокон были созданы различные композиционные материалы, которые стали успешно применять для изготовления ответственных деталей самолетов и ракет, а также шинного корда, бронежилетов, огнезащитной одежды, канатов, приводных ремней, транспортерных лент и множества других изделий.

Современная синтетика

Полиамид

Старейшим синтетическим волокном является нейлон, метод получения которого был запатентован в 1938 году в США. Благодаря прочности и стойкости к трению полиамид применяется для получения таких ниток, которые нужны, например, для штопки. Полиамид обычно используется в смеси с шерстью или полиакрилом, и его доля примерно 20-30%. В этом случае износостойкость изделия, связанного из такой смеси, в четыре раза выше, чем изделия, связанного из 100-процентной шерсти.

Торговые наименования: Nylon, Antron, Enkalon.

Полиэстер

Прочное, немнущееся, светостойкое волокно, используется главным образом при изготовления готовой одежды, драпировочных тканей и искусственной ваты.

Торговые наименования: Dacron, Diolen, Crimplene, Terylene, Trevira.

Полиакрил

Мягкое, легкое, теплое волокно, которое имеет большое значение при изготовлении пряжи для рукоделия. Изделия из полиакрила отличаются мягкостью и кажутся «шерстяными». Они теплые, поскольку пушистый материал способен связывать много воздуха. Полиакриловые волокна относительно дешевые, поэтому их много используют вместе с шерстью.

Торговые наименования: Dralon, Courtelle, Orion, Acrilan.

Полипропилен

Прежде волокно использовалось только для получения драпировочных тканей, но в последние годы область применения распространилась на производство колготок и спортивной одежды, а также пряжи для рукоделия. Полипропеновое волокно износоустойчиво, за ним хорошо ухаживать, оно не впитывает влагу и направляет выделяемую теплом влагу в верхние слои одежды, оставляя постоянно ощущение сухости. Поэтому полипропен наилучшим образом подходит для изготовления спортивной одежды.

Торговое наименование: Meraklon.

Хлористые волокна

Хлористое волокно под действием тепла сильно стягивается. Это свойство используется при изготовлении пряжи для рукоделия. В пряжу добавляют 3-5% хлористого волокна, и после прядения, когда пряжу обрабатывают горячим паром, хлористое волокно стягивается больше, чем другие волокна, и стягивает пряжу, делая ее пушистой. Их хлористого волокна изготавливают т. н. белье против ревматизма, поскольку доказано, что статический заряд волокна оказывает болеутоляющее воздействие.

Торговые наименования: Rhovyl, Thermovyl.

Из растворов или расплавов полимеров формируют:

  • мононити - одиночные нити
  • комплексные нити, состоящие из ограниченного числа элементарных нитей (от 3 до 200), используются для выработки тканей и трикотажных изделий
  • жгуты, состоящие из очень большого количества элементарных нитей (сотни тысяч), используются для получения штапельных волокон определенной длины (от 30 до 200 мм), из которых вырабатывается пряжа
  • пленочные материалы
  • штампованные изделия (детали одежды, обуви)

Получение сырья для производства синтетики

Сырье для искусственных волокон получают путем выделения из веществ, образующихся в природе: (н-р: из древесины выделяют целлюлозу, из молока – казеин и т.п.). Предварительная обработка сырья состоит в его очистке от механических примесей и иногда в химической обработке для превращения природного полимера в новое полимерное соединение.

Для получения вискозного волокна на целлюлозно-бумажных комбинатах древесину измельчают и отваривают в щелочном растворе. В результате получается серая целлюлозная масса, которая отбеливается и прессуется в листы картона. Картон отправляют на предприятия химического волокна для дальнейшей переработки и получения волокон.

Сырье для синтетических волокон получают путем реакций синтеза (полимеризации и поликонденсации) полимеров из простых веществ (мономеров) на предприятиях химической промышленности. Предварительной обработки это сырье не требует.

Полимеризация - это процесс получения полимеров путём последовательного присоединения молекул низкомолекулярного вещества (мономера) к активному центру на конце растущей цепи. Молекула мономера, входя в состав цепи, образует её мономерное зерно. Число таких звеньев в макромолекуле называется степенью полимеризации.

Поликонденсация - это процесс получения полимеров из биили полифункциональных соединений (мономеров), сопровождающийся выделением побочного низкомолекулярного вещества (воды, спирта, галогеноводорода и др.).

Прядильный раствор

Раствор или расплав полимера, из которого формируются нити, называется прядильным раствором.

При изготовлении химических волокон необходимо из исходного твердого полимера получить длинные тонкие нити с продольной ориентацией макромолекул, т.е. нужно переориентировать макромолекулы полимера. Для этого переводят исходный полимер в вязкотекучее состояние (раствор или расплав). В жидком (раствор) или размягченном (расплав) состоянии нарушается межмолекулярное взаимодействие, увеличивается расстояние между молекулами и появляется возможность их свободного перемещения относительно друг друга.

Растворение полимера осуществляют для полимеров, имеющих дешевый и доступный растворитель. Растворы используются для искусственных и некоторых синтетических (полиакрилонитрильных, поливинилспиртовых, поливинилхлоридных) волокон.

Расплавление полимера применяют для полимеров с температурой плавления ниже температуры разложения. Расплавы готовят для полиамидных, полиэфирных и полиолефиновых волокон.

Для приготовления прядильного раствора также выполняютоперации:

    Смешивание полимеров из различных партий. Выполняют для повышения однородности раствора, чтобы получить волокна равномерные по своим свойствам на всем протяжении. Смешивание возможно как после получения раствора, так и в сухом виде до растворения (расплавления) полимера.

    Фильтрация раствора. Заключается в удалении механических примесей и нерастворившихся частиц полимера путем многократного прохождения раствора через фильтры. Фильтрация необходима для предотвращения засорения фильер и улучшения качества нитей.

    Обезвоздушивание раствора. Выполняется для удаления из пузырьков воздуха, которые, попадая в отверстия фильер, обрывают образующиеся волокна. Обезвоздушивание осуществляется путем выдерживания раствора в вакууме. Расплав обезвоздушиванию не подвергается, так как в расплавленной массе воздуха практически нет.

    Введение различных добавок. Добавление небольшого количества низкомолекулярных веществ, обладающих специфическими свойствами, позволяет изменить свойства получаемых волокон. Например, для повышения степени белизны вводится оптические отбеливатели, для приобретения матовости добавляют двуокись титана. Введение добавок можно придать волокнам бактерицидные, огнестойкие и другие свойства. Добавки, не вступая в химическое взаимодействие с полимером, располагаются между его молекулами.

Формование волокон

Процесс формования волокон состоит из следующих этапов:

  • продавливание прядильного раствора через отверстия фильер,
  • затвердевание вытекающих струек,
  • наматывание полученных нитей на приемные устройства.

Прядильный раствор подаётся на прядильную машину для формования волокон. Рабочими органами, непосредственно осуществляющими процесс формования химических волокон на прядильных машинах, являются фильеры. Изготавливаются фильеры из тугоплавких металлов – платины, нержавеющей стали и др. – в форме цилиндрического колпачка или диска с отверстиями.

В зависимости от назначения и свойств формуемого волокна количество отверстий в фильере, их диаметр и форма могут быть различными (круглые, квадратные, в виде звездочек, треугольников и т.п.). При использовании фильер с отверстиями фигурного сечения получают профилированные нити с различной конфигурацией поперечного сечения или же с внутренними каналами. Для формирования бикомпонентных (из двух и более полимеров) нитей отверстия фильер разделены перегородкой на несколько (две или более) частей, к каждой из которых подаётся свой прядильный раствор.

При формировании комплексных нитей используют фильеры с небольшим числом отверстий: от 12 до 100. Сформованные из одной фильеры элементарные нити соединяются в одну комплексную (филаментную) нить и наматываются на бобину. При получении штапельных волокон применяют фильеры с количеством отверстий в несколько десятков тысяч. Собранные вместе с нескольких фильер нити образуют жгут, который затем разрезается на штапельные волокна определенной длины.

Прядильный раствор дозировано продавливается через отверстия фильер. Вытекающие струйки попадают в среду, вызывающую затвердевание полимера в виде тонких волокон. В зависимости от среды, в которой происходит затвердевание полимера, различают мокрый и сухой способы формования.

При формовании волокон из раствора полимера в нелетучем растворителе (например, вискозных, медно-аммиачных, поливинилспиртовых волокон) нити затвердевают, попадая в осадительную ванну, где происходит их химическое или физико-химическое взаимодействие со специальным раствором, содержащим различные реагенты. Это «мокрый» способ формования (Рис 2а).

Если формование проводят из раствора полимера в летучем растворителе (например, для ацетатных и триацетатных волокон), средой затвердевания является горячий воздух, в котором растворитель испаряется. Это «сухой» способ формования (Рис 2б).

При формовании из расплава полимера (например, полиамидных, полиэфирных, полиолефиновых волокон) средой, вызывающей затвердевание полимера, служит холодный воздух или инертный газ (Рис 2в).

Скорость формования зависит от толщины и назначения волокон, а также от метода формования.

Прядильный раствор в процессе превращения струек вязкой жидкости в тонкие волокна одновременно вытягивается, этот процесс называется фильерная вытяжка.

Химические волокна и нити непосредственно после формования не могут быть использованы для производства текстильных материалов. Они требуют дополнительной обработки.

В процессе формования образуется первичная структура нити. В растворе или расплаве макромолекулы имеют сильно изогнутую форму. Так как при формовании степень вытягивания нити невелика, то макромолекулы в нити расположены с малой долью распрямленности и ориентации вдоль оси нити. Для распрямления и переориентации макромолекул в осевом направлении нити выполняется пластификационная вытяжка, в результате которой ослабляются межмолекулярные связи, и образуется более упорядоченная структура нити. Вытягивание приводит к увеличению прочности и улучшению текстильных свойств нити.

Но в результате большой распрямленности макромолекул нити становятся менее растяжимыми. Такие волокна и изделия из них подвержены последующей усадке во время сухих и мокрых обработок при повышенных температурах. Поэтому возникает необходимость подвергнуть нити термофиксации тепловой обработке в натянутом состоянии. В результате термофиксации происходит частичная усадка нитей из-за приобретения макромолекулами изогнутой формы при сохранении их ориентации. Форма пряжи стабилизируется, последующая усадка, как самих волокон, так и изделий из них во время ВТО снижается.

Отделка волокон

Характер отделки зависит от условий формования и вида волокна.

  • Удаление примесей и загрязнений необходимо при получении нитей мокрым способом. Операция осуществляется путем промывки нитей в воде или различных растворах.
  • Беление нитей или волокон проводится путем обработки оптическими отбеливателями* для последующего окрашивания волокон в светлые и яркие цвета.
  • Поверхностная обработка (авиваж, аппретирование, замасливание) необходима для придания нитям способности к последующим текстильным переработкам. При такой обработке повышаются скольжение и мягкость, поверхностной склеивание элементарных нитей и уменьшается их обрывистость, снижается электризуемость и т.п.
  • Сушка нитей после мокрого формования и обработки различными жидкостями выполняется в специальных сушилках.
  • Текстильная переработка включает в себя следующие процессы:
    Скручивание и фиксация крутки - для соединения нитей и повышения их прочности.
    Перематывания – для увеличения объема паковок нитей.
    Сортировка – для оценки качества нитей.

Оптические отбеливатели

Отбеливатели оптические - это флуоресцентные отбеливатели, бесцветные или слабоокрашенные органические соединения, способные поглощать ультрафиолетовые лучи в области 300-400 ммк и преобразовывать их в синий или фиолетовый свет с длиной волны 400-500 ммк, который компенсирует недостаток синих лучей в отражаемом материалом свете. Бесцветные материалы приобретают при этом высокую степень белизны, а окрашенные - яркость и контрастность.

Синтетические ткани – гости из будущего

Легкие, прочные, долговечные и красивые синтетические материалы занимают все более прочные позиции на современном текстильном рынке. За высокие эксплуатационные характеристики и низкую себестоимость синтетические ткани называют материей будущего.

В сознании многих людей четко отложилась аксиома «Натуральные ткани – это хорошо, а синтетика – плохо». При этом большинство именует синтетикой все материалы, кроме хлопка, льна, шелка и шерсти.

Важно знать! Все ненатуральные ткани подразделяются на две большие группы – искусственные и синтетические. Первые производятся из природных компонентов – целлюлозы, белков, стекла. В основе синтетических материалов – только полимеры, не существующие в природе.

Синтетические волокна получают в процессе синтеза этилена, бензола или фенола, вырабатываемых из природного газа, нефти и каменного угля .

История синтетических тканей началась чуть больше полувека назад, когда незадолго до Второй мировой войны ведущим химиком американской фабрики «Дюпон» Уоллесом Карозерсом был синтезирован новый материал, получивший наименование «нейлон».

Это приятное на ощупь блестящее гладкое полотно тут же оказалось востребованным для производства дамских чулок. В годы войны нейлон шел на нужды армии, из него делали ткань для парашютов и маскировочную сетку.

Уже в конце 40-х – начале 50-х годов ХХ века началась эра синтетики – на текстильном рынке появились капрон, нитрон, анид, полиэстер и другие волокна.

Химическая промышленность не стоит на месте, и сейчас количество наименований синтетических тканей перевалило за сотню. Современные технологии позволяют получать материалы с уже заранее заданными свойствами.

Классификация синтетических волокон

Ткани из синтетических волокон различаются в зависимости от используемого при изготовлении сырья. Все современные материалы можно подразделить на несколько видов.

Полиамидные волокна

К этой группе относятся нейлон, капрон, анид и другие. Чаще всего используются для производства бытовых и технических изделий.

Отличаются высокой прочностью на растяжение и разрыв: капроновая нить в 3–4 раза прочнее, чем хлопковая. Стойки к истиранию, воздействию грибков и микробов.

Основные недостатки – низкая гигроскопичность, высокая электризуемость, устойчивость к солнечному свету. При длительном сроке службы желтеют и становятся ломкими.

Полиэфирные волокна

Самым ярким представителем этой группы синтетических материалов является лавсан, напоминающий по внешнему виду тонкую шерсть. В некоторых странах лавсан известен под названием терилен или дакрон.

Лавсановые волокна, добавленные к шерстяным, обеспечивают изделиям прочность и уменьшают их сминаемость.

Недостатком лавсана является его низкая гигроскопичность и относительная жесткость. К тому же ткань сильно электризуется.

Применяется для пошива костюмов, платьев, юбок, а также для производства искусственного меха.

Полиуретановые волокна

Главное достоинство этих волокон – эластичность и большая прочность на разрыв. Некоторые из них могут растягиваться, увеличиваясь в 5–7 раз.

Ткани, производимые из полиуретана – спандекс, лайкра, – прочные, упругие, не мнутся и прекрасно облегают тело.

Отрицательные стороны: плохо пропускают воздух, негигроскопичны, имеют низкую теплостойкость. Используются при производстве трикотажных полотен для пошива верхней одежды, спортивных костюмов, чулочно-носочных изделий.

Полиолефиновые волокна

Эти самые дешевые синтетические нити получают из полиэтилена и полипропилена. Основное использование – производство ковровых изделий, технических материалов.

Ткани, в состав которых входят полиолефиновые волокна, обладают повышенной прочностью, износостойкостью, не портятся при воздействии плесени или различных микроорганизмов.

Недостатками можно назвать значительную усадку при стирке, а также неустойчивость к высоким температурам.

Интересный факт! Не так давно было обнаружено основное достоинство полиолефиновых волокон – их способность отталкивать воду, оставаясь сухими. Благодаря этому волокна используются при производстве водоотталкивающих изделий – палаток, плащевой ткани и т. п.

Синтетический – не значит плохой

При всей своей «ненатуральности» синтетические ткани обладают рядом существенных плюсов:

  1. Долговечность. В отличие от «натуралов», синтетика абсолютно не подвержена гниению, воздействию плесени, грибков или различных вредителей.
  2. Стойкость цвета. Благодаря особой технологии, при которой ткань вначале отбеливается, а затем окрашивается, синтетика сохраняет устойчивость красок на долгие годы.
  3. Легкость и воздушность. Синтетические ткани весят в несколько раз меньше, чем их натуральные собратья.
  4. Несминаемость. Изделия из химических волокон не мнутся при носке и превосходно сохраняют форму. Синтетическую одежду можно развешивать на плечиках, не опасаясь вытягивания.
  5. Низкая себестоимость. Поскольку в основе производства данных тканей лежит недорогое сырье, то изделия из них доступны любым категориям покупателей.

К тому же большое многообразие синтетических тканей позволяет каждому выбрать материал исходя из своих требований и вкуса.

Без недостатков не обойтись

Хотя современная химическая промышленность и развивается семимильными шагами, пытаясь улучшать свойства синтетических материалов, все же пока от некоторых негативных сторон избавиться не удается.

Список основных недостатков синтетики:

  1. Пониженная гигроскопичность. Одежда из синтетики плохо впитывает влагу, нарушается теплообмен, тело человека потеет.
  2. Впитывание запахов. Некоторые виды тканей способны накапливать в себе неприятные запахи и распространять их вплоть до следующей стирки.
  3. Вероятность возникновения аллергии. У людей со склонностью к аллергическим реакциям после контакта с синтетикой может появиться раздражение на коже.
  4. Токсичность. К сожалению, дешевые синтетические материалы не всегда безопасны для здоровья. Не рекомендуется покупать такую одежду, в особенности для маленьких детей.

Если одежда из 100% синтетики может вызвать у покупателей вполне понятные опасения, то добавление химических волокон в натуральные ткани только улучшает их свойства, делая более безопасными и экологичными.

Важно! Материалы из смешанных волокон эластичные, не мнутся при носке, не требуют глажки, не вызывают аллергию у людей с чувствительной кожей.

Коротко о наиболее известных синтетических тканях

К самым распространенным синтетическим материям можно отнести:

  • Акрил. Сырье для этой ткани получают из природного газа. По своим свойствам акрил близок к натуральной шерсти. Хорошо сохраняет тепло, поэтому из него часто шьют верхнюю одежду. Не боится моли, не выгорает на солнце и долго сохраняет яркость цвета.

Основной недостаток акрила – образование катышков при длительной носке.

  • . Промышленный выпуск этой ткани был налажен в 80-х годах прошлого столетия. По мягкости и удобству в носке флис сравним с натуральной шерстью или мехом.

Ткань очень легкая, эластичная, воздухопроницаемая, прекрасно сохраняет тепло. Флис неприхотлив в уходе: его можно стирать в машинке и не нужно гладить. Одежда из флиса великолепно подходит для прогулок, активного отдыха, в качестве материалов для домашних халатов и пижам.

Единственным недостатком данного материала является его способность электризоваться.

  • Полиэстер. Сами по себе полиэстеровые волокна жесткие и плохо поддаются окраске. Однако в сочетании с хлопком или льном они приобретают совсем иные качества: мягкость, эластичность, устойчивость к влаге и высоким температурам.

Благодаря этим качествам полиэстеровые ткани – лучший материал для пошива штор, занавесок, домашнего текстиля – скатертей, покрывал, салфеток.

Кроме того, гладкость и шелковистость полиэстера используется при изготовлении женского нижнего белья.

  • . Ткань была разработана в Японии и впервые увидела свет в 1975 году. Волокно настолько тонкое, что моток пряжи длиной в 100 километров весит всего пять грамм.

Микрофибра хорошо стирается, быстро сохнет, долго держит форму и сохраняет цвет. Отлично впитывает влагу, поэтому чаще всего из нее делают товары для дома: салфетки, тряпочки, полотенца и т. п.

С каждым годом ассортимент синтетических тканей растет, они приобретают новые все более совершенные характеристики, стремясь удовлетворить запросы самых требовательных покупателей.

Время чтения: 4 минуты

Некоторые натуральные целлюлозные волокна обрабатываются и перерабатываются для конкретных целей. Известные волокна, такие как вискоза, ацетат и т. д., получают путем переработки различных природных полимеров.

Первые искусственные волокна, которые были разработаны и изготовлены, использовали полимеры природного происхождения, точнее целлюлозу, которая является сырьем, доступным в больших количествах в растительном мире.

Целлюлоза — это натуральный полимер, который составляет живые клетки всей растительности. Это материал в центре углеродного цикла, а также самый распространенный и возобновляемый биополимер на планете.

Хлопчатобумажные листы и древесная масса, вискоза, медноаммиачный шелк, целлюлозный ацетат (вторичный и триацетат), полиноза, волокно с высоким модулем во влажном состоянии (ВВМ).

  • Целлюлоза является одним из многих полимеров, найденных в природе.
  • Дерево, бумага и хлопок содержат целлюлозу. Целлюлоза — отличное волокно.
  • Целлюлоза состоит из повторяющихся звеньев мономерной глюкозы.
  • Три типа регенерированных целлюлозных волокон представляют собой вискозу, ацетат и триацетат, которые получены из клеточных стенок коротких хлопковых волокон, называемых линтами.
  • Бумага, например, представляет собой почти чистую целлюлозу

Вискоза

Первоначально слово «вискоза» применялось к любому волокну, изготовленному на основе целлюлозы и, следовательно, содержало целлюлозные ацетатные волокна. Тем не менее, определение вискозы было описано в 1951 году и теперь включает в себя текстильные волокна и волокна, состоящие из регенерированной целлюлозы, за исключением ацетата.

  • Вискоза представляет собой регенерированное целлюлозное волокно.
  • Это первое изготовленное человеком волокно.
  • Она имеет зазубренную круглую форму с гладкой поверхностью.
  • При намокании вискоза теряет 30-50% своей силы.
  • Вискоза образуется из естественных полимеров, и поэтому является не синтетическим волокном, а искусственным регенерированным целлюлозным волокном.
  • Волокно продается как искусственный шелк.
  • Существует две основных разновидности вискозного волокна, а именно вискозное и медноаммиачное.

Ацетат

Производное волокно, в котором волокнообразующим веществом является ацетат целлюлозы. Ацетат получают из целлюлозы путем реакции очищения целлюлозы из древесной целлюлозы с уксусной кислотой и уксусным ангидридом в присутствии серной кислоты.

Характеристики ацетатного волокна:

  • Роскошное на ощупь и внешний вид
  • Широкий спектр цветов и блесков
  • Отличная драпируемость и мягкость
  • Относительно быстрое высыхание
  • Устойчивость к усадке, моли и мучнистой росе

Для ацетата разработаны специальные красители, так как он не принимает красители, обычно используемые для хлопка и вискозы.

Ацетатные волокна представляют собой изготовленные волокна, в которых волокнообразующим веществом является ацетат целлюлозы. Эфиры целлюлозы триацетат и ацетат образуются путем ацетилирования хлопковых линтов или древесной целлюлозы с использованием уксусного ангидрида и кислотного катализатора в уксусной кислоте.

Ацетатные и триацетатные волокна очень похожи по внешнему виду на вискозу с постоянной прочностью. Элементы и триацетаты представляют собой умеренно жесткие волокна и обладают хорошей эластичностью при изгибе и деформации, особенно после термообработки.

Устойчивость к абразивному износу ацетата и триацетата невелика, и эти волокна не могут использоваться в применениях, требующих высокой стойкости к истиранию и носке; однако устойчивость этих волокон к трению превосходна. Хотя ацетат и триацетат являются умеренно абсорбирующими, их абсорбция не может сравниться с чистыми целлюлозными волокнами. На ощупь ацетатные ткани несколько более мягкие и более гибкие, чем триацетат. Ткани обоих волокон обладают отличными характеристиками драпировки. Ткани ацетата и триацетата имеют приятный внешний вид и высокую степень блеска, но блеск этих тканей можно модифицировать путем добавления матирующего средства.

Как ацетат, так и триацетат восприимчив к атакам ряда бытовых химикатов. Ацетат и триацетат подвергаются воздействию сильных кислот и оснований и окисляющих отбеливателей. Ацетат обладает только небольшой устойчивостью к солнечному свету, тогда как солнечная устойчивость триацетата выше. Оба волокна имеют хорошую термостойкость ниже их точек плавления.

Ацетат и триацетат не могут быть окрашены красителями, используемыми для целлюлозных волокон. Эти волокна могут быть удовлетворительно окрашены дисперсными красителями при умеренных и высоких температурах, что дает четкие, яркие оттенки. Ацетат и триацетат быстро высушиваются, и их можно подвергать сухой чистке.

Волокна, из которых изготавливаются ткани, подразделяются на натуральные и искусственные. Существует три вида природных, натуральных волокон: 1) волокна растительного происхождения (хлопок и лен), 2)волокна животного происхождения (шерсть и шелк), 3)волокна, имеющие минеральное происхождение (асбест).

Достоинством материалов, полученных из натуральных, природных волокон является их высокая экологичность. Поскольку эти волокна имеют природное происхождение, то они, если можно так выразиться, прекрасно совместимы с человеческим телом, удобны в применении и гигиеничны.

Хлопок

Это волокно получают из хлопчатника.

Достоинством хлопчатобумажных тканей является их высокая гигиеничность. Они прекрасно пропускают воздух, позволяя коже дышать. Именно поэтому летняя одежда из хлопка очень практична. Хлопок чаще всего используется для изготовления детской одежды и белья, а также спортивной одежды.

Недостатком хлопка является то, что он мнется и довольно быстро изнашивается. Кроме того, он не слишком хорошо держит краску (линяет).

Льняное волокно получают из льна-долгунца.

Лен так же, как и хлопок, обладает высокими гигроскопическими свойствами. Льняное волокно обладает большей прочностью по сравнению с хлопковым, поэтому оно часто используется для изготовления постельного белья, полотенец и т. п. Кроме того, лен имеет способность охлаждать температуру тела, благодаря этому он незаменим для летней одежды.

Льняное волокно очень хорошо держит форму. В настоящее время его нередко смешивают с синтетическим, и из полученных тканей шьют элегантные женские и мужские летние костюмы, пиджаки, брюки и т. п.

Шелк

Шелковое волокно вырабатывают бабочки-шелкопряды, которые живут на шелковице (называемой также тутовым деревом), и питаются ее листьями. Эти бабочки, находясь на стадии гусениц, выделяют из своих желез волокно, необходимое им для окукливания. Это нежное, мягкое волокно и есть шелк.

Шелк-сырец получают при совместной размотке нескольких коконов. Затем из него вырабатывают крученый шелк, который используется в трикотажном производстве, а также для получения швейных ниток. Отходы шелка-сырца перерабатываются в пряжу. Впоследствии из этой пряжи изготавливается крепдешин, парашютный шелк и пр.

Натуральный шелк имеет прекрасные гигиенические свойства. Он пропускает воздух и великолепно впитывает влагу. Летом он приятно холодит кожу. Недостатками натурального шелка являются, во-первых, то, что он довольно сильно мнется, и, во-вторых, то, что от действия влаги (например, в результате потовых выделений или дождя) на нем появляются некрасивые пятна. Кроме того, натуральный шелк очень сильно садится после стирки. Поэтому его рекомендуется перед шитьем декатировать (намочить и высушить) или же не стирать готовые вещи, а подвергать их химической чистке.

Шерсть

Шерстяную пряжу вырабатывают из шерсти животных: овец, коз, верблюдов и т. д. Наиболее ценное сырье получают из пуха (подшерстка), дающего тонкое, мягкое, извитое шерстяное волокно.

К достоинствам шерсти относятся ее великолепные теплоизоляционные свойства, поэтому шерстяные материалы применяются, в основном, для зимней одежды. Недостатком шерсти является то, что она мнется и довольно быстро изнашивается.

Вещи, сшитые из чистой шерсти, выглядят весьма благородно и элегантно. Но в наше время из-за соображений практичности шерстяные волокна чаще всего смешиваются с синтетическими.

Искусственные материалы

Волокна, не принадлежащие к миру природы, делятся на искусственные и синтетические. Искусственные волокна получают из продуктов химической переработки природных полимеров (например, белков, нуклеиновых кислот, каучука). Синтетические же волокна получают из полимеров, не имеющихся в природе, то есть, синтезированных химическим путем.

Синтетические волокна быстро завоевали популярность во всем мире благодаря быстроте и дешевизне своего изготовления, а также тому, что они позволяют сберегать природные ресурс

Вискоза

Это волокно, полученное искусственным путем из целлюлозы. Целлюлоза содержится, в частности, в стволовой древесине, а также в коробочках хлопчатника и в лубяных волокнах. Производство вискозы считается выгодным благодаря доступности исходного сырья.

К несомненным достоинствам вискозного волокна относится то, что оно прекрасно впитывает влагу, легко окрашивается и хорошо утюжится. Вискоза очень хороша для изготовления летних вещей.

Недостатком вискозы является то, что она довольно быстро изнашивается, мнется, и легко рвется в мокром состоянии (что особенно неудобно при стирке). В настоящее время эти недостатки частично устраняются путем изготовления так называемой модифицированной вискозы.

Ацетат

Это искусственное волокно, формуемое из целлюлозы. Ацетат не является синтетикой, так как он вырабатывается хотя и искусственным путем, но из натурального сырья.

Достоинствами ацетатного волокна являются, прежде всего, его эластичность и мягкость. Оно мало мнется и хорошо пропускает ультрафиолетовые лучи. Недостатками ацетата являются следующие свойства: он непрочен, быстро изнашивается, неустойчив к воздействиям высокой температуры (например, довольно сильно деформируется в горячей воде и при глажении). Кроме того, ацетат достаточно сильно электризуется.

Ацетат применяется главным образом в производстве белья, преимущественно, женского. В настоящее время для улучшения качества изделий ацетат чаще всего смешивают с синтетическими или натуральными волокнами.

Полиэстер

Полиэстер является на сегодняшний день одним из самых распространенных синтетических волокон. К его достоинствам относится, во-первых, очень большая прочность (он фактически не изнашивается). Во-вторых, полиэстер практически не мнется (или моментально восстанавливается после смятия). Он не теряет своих качеств на свету или под воздействием разнообразных погодных явлений, он также стоек к органическим растворителям.

Недостатками полиэстера являются: недостаточная воздухопроницаемость, довольно сильная электризуемость и некоторая жесткость. В настоящее время эти недочеты частично устраняются модифицированием. Надо отметить, что синтетические волокна нового поколения обладают лучшими гигиеническими качествами, чем прежде. Они более мягкие на ощупь, лучше пропускают воздух и меньше электризуются.

Акрил

Акрил (полиакрилнитрил) – синтетическое волокно, по многим свойствам близкое к шерсти. На этикетках вещей акрил иногда обозначается аббревиатурой PAN (по первым буквам слова “поли-акрил-нитрил”).

Акрил устойчив к действию света и разнообразных погодных условий. Он стойко переносит воздействия кислот, слабых щелочей и других органических растворителей. Проще говоря, он хорошо переносит химическую чистку.

Достоинствами акрила являются его легкость, мягкость, а также визуальное сходство с шерстью. Его недостатки: во-первых, он довольно сильно электризуется, во-вторых, нередко растягивается при стирке, и, в-третьих, имеет обыкновение покрываться “катышками”. Акрил нельзя подвергать действию высоких температур. Его надо стирать в воде комнатной температуры и гладить слабо нагретым утюгом.

Из акрила изготавливают преимущественно верхний и бельевой трикотаж, а также шарфы, ковры и ткани. Акрил из-за соображений практичности часто смешивают с натуральными или другими синтетическими волокнами.

Полиамид

Полиамид является синтетическим волокном. Раньше его называли капроном, нейлоном или перлоном.

Полиамид необыкновенно прочен и эластичен. Он весьма устойчив к действию разнообразных химикатов, поэтому его часто используют для изготовления одежды, предназначенной для работы в агрессивной среде.

Существенными недостатками полиамида являются следующие: он почти не впитывает влагу, сильно электризуется, теряет свою прочность на ярком свету или при сильной жаре. Полиамид, как и все синтетические материалы, нельзя подвергать действию высоких температур.

В настоящее время полиамид в чистом виде практически не используется для изготовления тканей. Его почти всегда смешивают в тех или иных пропорциях с другими волокнами для достижения лучших потребительских свойств.

Полиуретан

Полиуретан (спандекс, лайкра) – синтетическое волокно, по своим механическим свойствам сходное с резиновыми нитями.

Полиуретан более чем другие синтетические волокна устойчив к кожному жиру и поту, а также к органическим растворителям. К числу недостатков полиуретана относится то, что он практически не впитывает воду и очень плохо пропускает воздух. Кроме того, полиуретан теряет свою прочность на ярком свету и при воздействии высоких температур. Поэтому вещи с большим содержанием спандекса или лайкры не годятся для жаркой и солнечной летней погоды.

Полиуретан применяется в основном в производстве чулочно-носочных и корсетных изделий, а также спортивной одежды. Кроме того, полиуретановые волокна (поскольку они обладают сходством с резиновыми нитями) нередко добавляются в трикотажные полотна для придания им большей эластичности.

Синтетические волокна начали производиться промышленным способом в 1938 году. На данный момент их существует уже несколько десятков видов. Для всех них общим является то, что исходным веществом служат низкомолекулярные соединения, превращающиеся в полимеры посредством химического синтеза. Растворением или плавлением полученных полимеров осуществляется приготовление формовочного или прядильного раствора. Их формуют из раствора или расплава, а их уже потом подвергают отделке.

Разновидности

В зависимости от особенностей, которыми характеризуется строение макромолекул, синтетические волокна принято подразделять на гетероцепные и карбоцепные. К первым относят те, что получены из полимеров, в чьих макромолекулах, помимо углерода, присутствуют и иные элементы - азот, сера, кислород и другие. Сюда относят полиэфирные, полиуретановые, полиамидные и полимочевинные. Карбоцепные синтетические волокна характеризуются тем, что основная цепь у них выстроена из атомов углерода. К этой группе относят поливинилхлоридные, полиакрилнитрильные, полиолефиновые, поливинилспиртовые и фторосодержащие.

Полимеры, служащие основой для получения гетероцепных волокон, получаются посредством поликонденсации, а продукт формуется из расплавов. Карбоцепные получаются посредством цепной полимеризации, а формирование происходит обычно из растворов, в редких случаях из расплавов. Можно рассмотреть какое-то одно синтетическое полиамидное волокно, которое получило название сиблон.

Создание и применение

Такое слово, как сиблон, для многих оказывается совершенно незнакомым, однако раньше на ярлычках одежды можно было видеть аббревиатуру ВВМ, под которой скрывалось вискозное высокомодульное волокно. Тогда производителям казалось, что такое название будет выглядеть симпатичнее, чем сиблон, которое могло ассоциироваться с нейлоном и капроном. Производство синтетических волокон этого типа осуществляется из елки, как бы сказочно это не выглядело.

Особенности

Появился сиблон в начале 70-х годов прошлого века. Он представляет собой усовершенствованную вискозу. На первом этапе осуществляется получение из древесины целлюлозы, ее выделяют в чистом виде. Самое большое ее количество содержится в хлопке - около 98%, но из волокон хлопчатника и без этого получаются отличные нити. Поэтому для выработки целлюлозы чаще используется древесина, в частности хвойная, где ее содержится 40-50%, а остальное - это ненужные компоненты. От них требуется избавляться в синтетических волокон.

Процесс создания

Синтетически волокна производятся поэтапно. На первом этапе осуществляется процесс варки, во время которой из древесной стружки все лишние вещества перемещаются в раствор, а также производится разбивка длинных полимерных цепочек на отдельные фрагменты. Естественно, тут не обходится только горячей водой, производятся добавки различных реагентов: натронов и прочих. Только варка с добавлением сульфатов позволяет получить целлюлозу, которая пригодна для производства сиблона, так как в ней остается меньше примесей.

Когда целлюлоза уже выварена, ее отправляют на отбеливание, сушку и прессовку, а потом перемещают туда, где в ней есть необходимость - это производство бумаги, целлофана, картона и волокон, то есть Что же с ней дальше происходит?

Последующая обработка

Если требуется получить синтетические и то сначала нужно приготовить прядильный раствор. Целлюлоза представляет собой твердое вещество, которое непросто растворить. Поэтому обычно ее превращают в растворимый в воде эфир дитиоугольной кислоты. Процесс превращения в это вещество является довольно длительным. Сначала производится обработка целлюлозы горячей щелочью с последующим отжимом, в раствор при этом переходят ненужные элементы. После отжима масса измельчается, а потом помещается в специальные камеры, где начинается предсозревание - происходит укорочение молекул целлюлозы почти вдвое за счет окислительной деструкции. Далее происходит реакция щелочной целлюлозы с сероуглеродом, что позволяет получить ксантогенат. Это масса оранжевого цвета, похожая на тесто, эфир дитиоугольной кислоты и исходного вещества. Этот раствор за его вязкость получил название "вискоза".

Далее происходит фильтрование для удаления последних примесей. Выпускается растворенный воздух посредством «вскипания» эфира в вакууме. Все эти операции приводят к тому, что ксантогенат становится похож на молодой мед - желтый и тягучий. На этом прядильный раствор полностью готов.

Получение волокон

Раствор продавливается через фильеры. волокна не просто прядутся традиционным способом. Эту операцию сложно сравнить с простой текстильной, правильнее будет сказать, что это химической процесс, позволяющий миллионам струек жидкой вискозы стать твердыми волокнами. На территории России из целлюлозы получается вискоза и сиблон. Второй тип волокна в полтора раза прочнее первого, характеризуется большей устойчивостью к щелочам, ткани из него отличаются гигроскопичностью, меньшей степенью усадки и сминания. А различия в процессах производства вискозы и сиблона появляются в тот момент, когда в осадительной ванной после фильер оказываются только что "народившиеся" синтетические волокна.

Химия в помощь

Для получения вискозы в ванну наливается серная кислота. Она предназначена для разложения эфира, благодаря чему получаются чисто целлюлозные волокна. При необходимости получения сиблона в ванну добавляют частично оказывающий препятствие гидролизу эфира, поэтому в нитях будет содержаться остаточный ксантогенат. И что же это дает? Далее волокна подвергаются растягиванию и формовке. Когда в полимерных волокнах имеются остатки ксантогената, получается вытянуть полимерные целлюлозные цепочки вдоль оси волокна, а не расположить их хаотично, что характерно для обычной вискозы. После вытяжки жгут из волокон разрезают на шпательки длиной 2-10 миллиметров. После еще нескольких процедур осуществляется прессовка волокон в кипы. Тонны древесины достаточно для получения 500 килограмм целлюлозы, из которой будет выпущено 400 килограмм волокна сиблона. Прядение целлюлозы осуществляется примерно двое суток.

Что дальше делают с сиблоном?

В восьмидесятых годах эти синтетические волокна использовались в качестве добавок к хлопку, чтобы нити прялись лучше и не рвались. Из сиблона делали подложки под искусственную кожу, а также использовали его при производстве изделий из асбеста. Тогда технологи не были заинтересованы в создании чего-то нового, требовалось как можно больше волокна для реализации задуманного.

А на Западе в те времена высокомодульные вискозные волокна использовались для производства тканей, которые отличались дешевизной и прочностью в сравнении с хлопчатобумажными, но при этом хорошо впитывали влагу и дышали. Сейчас у России не осталось собственных хлопковых регионов, поэтому на сиблон возлагаются большие надежды. Только спрос на него пока не особо велик, так как ткани и одежду отечественного производства сейчас почти никто не покупает.

Полимерные волокна

Их принято подразделять на природные, синтетические и искусственные. Природные представляют собой те волокна, образование которых осуществляется в натуральных условиях. Их принято классифицировать по происхождению, которое определяет их химический состав, на животные и растительные. Первые состоят из белка, а именно каротина. Это шелк и шерсть. Вторые состоят из целлюлозы, лигнина и гемицеллюлозы.

Искусственные синтетические волокна получаются посредством химической переработки полимеров, существующих в природе. К ним принято относить ацетатные, вискозные, альгинатные и белковые волокна. В качестве сырья для их получения служат сульфатная или сульфитная древесная целлюлоза. Выпуск искусственных волокон производится в виде текстильных и кордных нитей, а также в виде штапельного волокна, которое перерабатывается вместе с иными волокнами в процессе производства разных тканей.

Синтетическое полиамидное волокно получается из полимеров, выведенных искусственно. В качестве исходного сырья в таком процессу используются полимерные волокна, сформированные из гибких макромолекул слаборазветвленной или линейной структуры, обладающие значительной массой - более 15 000 атомных единиц массы, а также очень узким молекулярно-массовым распределением. В зависимости от типа синтетические волокна способны обладать высокой степенью прочности, значительной величиной по отношению к удлинению, эластичностью, устойчивостью к множественным нагрузкам, малыми остаточными деформации и быстрым восстановлением после снятия нагрузки. Именно поэтому помимо использования в текстиле им нашли применение в качестве армирующих элементов во время изготовления композитов, и все это позволили сделать особые свойства синтетических волокон.

Заключение

В последние несколько лет можно наблюдать очень устойчивый рост количества достижений в сфере разработки новых полимерных волокон, в частности, пара-арамидных, полиэтиленовых, термостойких, комбинированных, структура которых - ядро-оболочка, гетероциклических полимеров, в которые включены различные частицы, к примеру, серебро или иные металлы. Теперь материал нейлон - это уже не верх инженерной мысли, так как сейчас существует огромное количество новых волокон.

Похожие публикации