Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Импульсные зарядные устройства для мобильных. Ремонт зарядного для литиевых аккумуляторов. Простая электронная схема

Зарядное устройство (ЗУ) типа BML 162089 R1A южно азиатского производства предназначено для зарядки аккумуляторов мобильных телефонов LG и имеет следующие характеристики: Uвход ~100…250 B, Iвход~160 мA, Uвых=8,5 В, Iвых=750 мA. Его внешний вид показан на рис.1.

Все радиоэлементы смонтированы на стекло пластиковом шасси НТ608 размерами 64×33 мм методом навесного монтажа без применения чип-элементов. Шасси размещено внутри пластмассового корпуса. По монтажной схеме шасси автором составлена принципиальная схема, показанная на рис.2.

Основой ЗУ является импульсный преобразователь. Принцип работы подобных импульсных источников питания прост: вначале переменное напряжение сети выпрямляется до постоянного напряжения 300 В, а далее с помощью генератора с мощным электронным ключом преобразуется в импульсы, которые через обмотки импульсного трансформатора наводятся во вторичной цепи, где выпрямляются до заданной величины (в зависимости от количества витков вторичной обмотки).

Импульсный преобразователь данного ЗУ состоит из однотактного преобразователя авто генераторного типа (транзистор VТ1),
подключенного к первичной сети. Переменное напряжение сети выпрямляется диодом VD4 (рис.2), сглаживается электролитическим конденсатором С1 и через обмотку 1-2трансформатора Т1 прикладывается к коллектору транзистора VТ1. Это же напряжение через резистор R2 подается на базу транзистора VT1, создавая положительное смещение.
Транзистор открывается, через первичную обмотку Т1 протекает ток, который наводит ЭДС в двух других обмотках трансформатора. Через обмотку положительной обратной связи 3-4 заряжается конденсатор С2, этот ток запирает транзистор VТ1. В его закрытом состоянии накопленная в трансформаторе энергия передается во вторичную цепь. В момент запирания транзистора VТ1 приложенное к нему напряжение может превышать напряжение сети в 3–4раза. Для уменьшения этого перенапряжения параллельно обмотке 1-2 включен резистор R1, выполняющий функцию демпфирующего элемента.
Более эффективно эту функцию могла бы выполнять цепочка, состоящая из последовательно соединенных резистора, конденсатора и диода, что сделало бы ЗУ более надежным. Цепь демпфирования в цепи базы транзистора выполнена на элементах VТ2, VD7, ZD5, R3, C2.
Вторичную цепь трансформатора образуют: обмотка 5-6, элементы VD8, C4, R8, R9 и транзистор VT3 с элементами обвязки (рис.2). Звено на транзисторе VТ3 с двухцветным светодиодом LED1 является особенностью этого ЗУ. Зеленое свечение светодиода
сигнализирует о том, что идет процесс зарядки аккумулятора, красное свечение обозначает конец зарядки.

Принцип работы этого звена следующий.

Светодиод LЕD1 включен в одну из диагоналей моста, плечи которого составляют резисторы R5, R6, R7 (все по 410 Ом) и сопротивление участка коллектор0эмиттер транзистора VT3 (рис.2). Последнее плечо является регулирующим элементом моста. Ко второй диагонали этого моста приложено напряжение вторичной цепи ЗУ. При равенстве сопротивлений всех четырех плеч (в данном случае 410 Ом) потенциалы точек «а” и «б” равны. Если же сопротивления плеч различаются, потенциалы точек «а” и «б” неодинаковы, и через светодиод протекает ток, вызывающий его свечение, цвет которого зависит от полярности приложенного напряжения.
В начале заряда разряженного аккумулятора ток заряда наибольший, падение напряжения на резисторе R8 максимально, pnp транзистор VТ3 открыт, в результате чего плюсовой потенциал точки «б” диагонали моста выше потенциала точки «а” (рис.2). При такой полярности напряжения светодиод светится красным цветом.
По мере заряда аккумулятора его напряжение постепенно повышается, ток через резистор R8 уменьшается, и сопротивление коллектор0эмиттер VТ3 увеличивается, что приводит к уменьшению разности потенциалов точек «а” и «б” и, следовательно, к уменьшению яркости свечения светодиода. Когда сопротивления VТ3 сравняется с сопротивлением резистора R6 (410 Ом), мост станет уравновешенным, потенциалы точек «а” и «б” станут одинаковыми, и светодиод перестанет
светиться.
При дальнейшей зарядке аккумулятора сопротивление участка коллектор-эмиттер VТ3 превысит 410 Ом, полярность напряжений в точках «а” и «б” диагонали моста поменяется, и светодиод станет светиться зеленым цветом, сигнализируя о том, что аккумулятор зарядился.
Если после включения в сеть на «холостом ходу” (при отсутствии аккумуляторов) светодиод вообще не светится (а должен светиться зеленым цветом), значит, ЗУ неисправно и требует ремонта. Для ремонта этого ЗУ Вам необходимо добраться до его шасси, «упрятанного” в пластмассовый корпус (рис.1). Обе (нижняя и верхняя) части этого корпуса «намертво” склеены между собой. Разъединить их можно, только разрезав ножовочным полотном пластмассовый корпус по линии склеивания (рис.1). Из разрезанного корпуса извлекают плату с навесными радиоэлементами.
Далее после осмотра обычным тестером проверяют исправность всех радиоэлементов
без их выпаивания. Один из транзисторов, VТ1 или VТ2, придется все0таки выпаять, поскольку при проверке тестером их проводимости они «мешают” друг другу. Выявленные неисправные элементы заменяют. Далее ЗУ включают в сеть и, если светодиод не светится зеленым цветом, замеряют напряжение +300 В на конденсаторе С1. При его отсутствии проверяют исправность резистора R сопротивлением 2,7 Ом. При этом необходимо строго соблюдать технику электробезопасности, так как высоковольтная часть ЗУ находится под фазным напряжением, которое опасно для жизни человека.
Транзистор VТ1 (6821) можно заменить транзисторами типов 2SC3457, 2SC4020, 2SC5027, а транзистор VТ2 (2SC9013) заменим 2SC1815. Недостатком этого ЗУ является разряд аккумулятора мобильного телефона через резистор R9 при пропадании сети во время зарядки (рис.2).
Данное зарядное устройство можно приспособить также для зарядки аналогичных аккумуляторов мобильных телефонов других фирм, для этого необходимо подобрать и запаять новый разъем, обеспечив правильную полярность.

Литература
Радiоаматор 2005_4

Всем известно, что существует такая операция как предпродажная подготовка товара. Простое, но очень необходимое действие. По аналогии с ней уже давно применяю предэксплуатационную подготовку всех покупаемых товаров китайского производства. Всегда в этих изделиях имеется возможность доработки, причём замечу реально необходимой, которая является следствием экономии производителя на качественном материале отдельных его элементов или не установки их вообще. Позволю себе быть мнительным и выскажу предположение, что всё это не случайно, а является составляющим элементом политики производителя направленной в конечном итоге на уменьшение срока службы производимого товара, следствием чего является увеличение продаж. Приняв решение об активном использовании миниатюрного электромассажёра (конечно же, китайского производства) сразу же обратил внимание на его блок питания внешне похожий на зарядное устройство мобильного телефона да ещё и с надписью COURIER CHARGER - мобильное зарядное устройство. Имеющее OUTPUT в 5 вольт и 500 мА. Даже не убеждаясь в его исправности, разобрал и посмотрел содержимое.

Установленные на плате электронные компоненты и особенно стабилитрон на выходе свидетельствовали, что это действительно блок питания. К слову, отсутствие диодного моста позитивным моментом не считаю.

Подключённая нагрузка, в виде двух лампочек по 2,5 В последовательно, с токопотреблением в 150 мА, обнаружила на выходе 5,76 В. Прибор рассчитан на питание тремя батарейками АА - 4,5 В, полагаю допустимым и 5 В от адаптера, но прочее, в данном конкретном случае, явно ни к чему.

Поискам схемы в интернете предпочёл отрисовать в , по сделанному предварительно фото, печатную плату с расположенными на ней электронными компонентами.

Схема адаптера и переделка

Изображение печатной платы дало возможность начертить существующую схему БП. Транзисторная оптопара CHY 1711, транзисторы С945, S13001 и другие компоненты не позволяли назвать схему примитивной, но с существующими номиналами одних компонентов и отсутствием других она меня не устраивала.

В новую схему был введён плавкий предохранитель на 160 мА, а вместо имеющегося выпрямителя диодный мост, состоящий из 4-х диодов 1N4007. Номинал стабилитрона VD3 управляющего оптроном изменён с 4V6 на 3V6, что должно снизить выходное напряжение до желаемого.

На плате имелось достаточное количество свободного места так, что осуществить планируемые изменения труда не составило. Вновь собранный блок питания имел на выходе напряжение практически 4,5 вольта.

И токоотдачу до 300 мА включительно.

В результате некоторое количество дополнительных электронных компонентов и время, отданное интересной работе, дали мне возможность иметь приличный блок питания, который надеюсь, прослужит верой и правдой длительное время. Отладкой БП занимался Babay.

Постоянное обновление парка сотовых телефонов привело к бесполезному хранению и накоплению сетевых адаптеров, которые по параметрам и разъёму не могут использоваться на других моделях.

Возможно использование адаптеров сотовых телефонов для зарядки мощных автомобильных аккумуляторов.

Прямое подключение адаптера для зарядки автомобильных аккумуляторов невозможно - низкое выходное напряжение в пределах 4-8 вольт при токе заряда до 200 мА при необходимых параметрах 12 вольт 10 ампер. При рассмотрении схем обратноходовых импульсных источников питания, входящих в адаптеры, выявлено, что они содержат: сетевой выпрямитель с фильтром; блокинг-генератор с положительной обратной связью от отдельной обмотки; выходной низковольтный выпрямитель.

Стабилизация вторичного напряжения в некоторых адаптерах выполняется с помощью оптопары, включенной светодиодом к выходному напряжению выпрямителя, а фототранзистором в базовую цепь транзистора генератора преобразователя. Мощность адаптеров сотовых телефонов не превышает 3-5 ватт.

Для получения мощного зарядного устройства из адаптера сотового телефона достаточно схему выпрямителя дополнить усилителем мощности.

Удобство использования сотовых адаптеров заключается в отсутствии необходимости конструирования блокинг- генератора, намотки импульсного трансформатора, установки режима генерирования при значительных колебаниях сетевого напряжения. Компактные габариты печатной платы адаптера совместно с усилителем мощности и выходным выпрямителем занимают незначительное место, а по весу в15-20 раз меньше, чем зарядные устройства на силовых трансформаторах.
Практически такое устройство - карманного типа.

Основные технические характеристики:
Напряжение сети 165-265 Вольт.
Номинальное выходное напряжение 12 Вольт
Максимальный ток нагрузки 6 Ампер
Частота преобразования 50 -70 кГц
Вес 200 грамм
Максимальная выходная мощность 100 ватт

Резистор R1 защищает диодный мост VD1 от пробоя при бросках зарядного тока конденсатора С3.
Светодиод HL1 указывает на наличие сетевого питания.

Схема импульсного генератора на транзисторе VT1 с внешними RC цепями (помещённая в рамку) относится к адаптеру и может отличаться по компоновке, нумерация деталей адаптера условная.
Резистор R3 создаёт начальное смещение на базу транзистора VT1, для устойчивой генерации в указанном пределе напряжения сети.

Конденсатор С7 заряжается через диод VD3 до амплитуды напряжения обратного хода, которое больше напряжения стабилизации стабилитрона VD4, в результате чего стабилитрон открывается, напряжение на базе транзистора VT1 становится отрицательным и препятствует его открыванию с паузой больше времени импульса. Ток созданный резистором R4 протекает через открытый стабилитрон VD3 на конденсатор С5, разряжая его. Напряжение на этом конденсаторе уменьшается, на базе транзистора VT1 - растёт. При достижении достаточной величины (более 0,4 Вольта) транзистор VT1 откроется, пауза закончится, начнётся новый цикл генерации.

Напряжение положительной обратной связи с обмотки 3Т2 через конденсатор С4 и резистор R4 откроет транзистор VT1, ток через обмотку 1Т2 лавинно возрастёт и энергия накопленная трансформатором Т2 передастся в виде прямоугольного импульса в базовую цепь усилителя мощности на полевом транзисторе VT2.

Импульс напряжения с обмотки 2Т2 через конденсатор С7 и регулятор тока заряда - R8 поступит на базу транзистора VT2 усилителя мощности. Резистор R9 защищает затвор полевого транзистора от ёмкостных сверхтоков.

От перегрузки транзистора VT2 большими токами в цепи истока установлена схема защиты на параллельном стабилизаторе DA1. Повышение напряжение на резисторе R12 приводит к открытию таймера на микросхеме DA1 и шунтированию цепи затвора.

Ферритового трансформатор Т3, от блоков питания компьютеров типа АТ/ТХ или от мониторов используются в зарядном устройстве без переделок. Первичная обмотка (она имеет до трёх выводов) включается в цепь стока транзистора VT2, к ней параллельно подключена демпфирующая цепь C8,R10, VD6 - гашения импульсов тока обратного хода, которые могут пробить транзистор или привести к пробою в обмотках трансформатора T3.

Дополнительная цепь защиты на диоде VD7 установлена параллельно транзистору VT2.
Усилитель мощности на полевом транзисторе VT2 через трансформатор T3 передаёт в нагрузку усиленный высокочастотный сигнал, который после выпрямления лавинными диодами сборки VD8 питает зарядным током кислотный аккумулятор GB1. Амперметр РА1 позволяет визуально установить зарядный ток аккумулятора регулятором тока – R8. Светодиод HL2 контролирует полярность подключения аккумулятора GB1 в зарядную цепь и наличие напряжения на выходе устройства.

В импульсных преобразователях применяются полевые транзисторы с индуцированным п- каналом на напряжение 600-800 Вольт и током более трёх ампер с усилением более 1000мА/В. При нулевом напряжении на затворе транзистор закрыт и открывается положительным напряжением прямоугольной формы. Выбор в усилителе мощности полевого транзистора вместо биполярного выгоден по высокой скорости закрывания, что приводит к снижению потерь на нагрев. Зарядное устройство собрано на монтажной плате, плата адаптера установлена на дополнительных стойках.

Большая часть радиодеталей в зарядном устройстве используется от разобранных блоков питания компьютеров и мониторов.

Резисторы типа Р2-23. Транзистор VT1 - бюджетный на напряжение 400 Вольт и ток до одного ампера с хорошим усилением более 200.

Полевой транзистор VT2 с крутизной более 1000 мА/В при напряжении более 600 Вольт и токе 3-6 Ампер серий 2СК 1317-1460 или IRF 740-840.
Трансформаторы: Т1- EE-25-01, 3PMCOTC210001. T2 - HI- POT. T3 - HI-POT TNE 9945, ВСК – 01С, АТЕ133N02, R320.
Оксидный конденсатор C4 фирмы «Nichicon» или HP3.
Все диоды импульсные с высоким быстродействием. Диоды выпрямителя VD6 заменимы на КД213Б.

Примерные значения обмоток трансформаторов:
Т1- сердечник 3*3 2*30 витков 0,6мм
Т2- сердечник 3*3. 1-360 витков 0,1мм. 2- 20 витков 0,2. 3- 36 витков 0,1.
Т3- сердечник 12*12. 1- 42 витка 0,6. 2,3 - 2*6 витков 1,6мм.

Полевой транзистор VT2 крепится на радиатор размерами 40*30*30. Клеммы ХТ3, ХТ4 подключаются к аккумулятору многожильным медным проводом в виниловой изоляции сечением 4мм. На концах устанавливаются зажимы типа «Крокодил».

Наладку устройства начинают с проверки работоспособности платы адаптера. Диод и конденсатор выпрямителя адаптера в схеме не используется, сигнал на усилитель мощности берётся непосредственно с обмотки трансформатора 2Т2,через разделительный конденсатор C7. Резистор R7 создаёт начальное смещение на затворе транзистора VT2.

При подключенном аккумуляторе резистором R8 выставляется зарядный ток в 0,05 С, где С - ёмкость аккумулятора. Время заряда определяется техническим состоянием аккумулятора и как правило не превышает 5-7 часов. При обильном кипении (электролизе) ток заряда следует понизить. Более подробно о заряде и восстановлении аккумуляторов можно прочитать в указанной ниже литературе или дополнительно обратится к авторам статьи.

Литература:
1. В. Коновалов, А.Разгильдеев. Восстановление аккумуляторов. Радиомир 2005 №3 с.7.
2. В.Коновалов. А.Вантеев. Технология гальванопластики.Радиолюбитель №9.2008.
3. В.Коновалов. Пульсирующее зарядно-восстановительное устройство Радиолюбитель № 5 /2007г. стр.30.
4. В.Коновалов. Ключевое зарядное устройство. Радиомир №9/2007 с.13.
5. Д.А.Хрусталёв. Аккумуляторы.г. Москва. Изумруд.2003 г.
6. В.Коновалов «Измерение R-вн АБ».«Радиомир» №8 2004 г. стр.14.
7. В.Коновалов «Эффект памяти снимает вольтдобавка.» «Радиомир» №10.2005 г. стр. 13.
8. В.Коновалов «Зарядно –восстановительное устройство для NI-Cd аккумуляторов.». «Радио» №3 2006 г. стр.53
9. В.Коновалов. «Регенератор АКБ». Радиомир 6/2008 стр14.
10. В.Коновалов. «Импульсная диагностика аккумулятора». Радиомир №7 2008г. стр.15.
11. В.Коновалов. «Диагностика аккумулятора сотовых телефонов». Радиомир 3/2009 11стр.
12. В.Коновалов. «Восстановление аккумуляторов переменным током» Радиолюбитель 07/2007 стр 42.
13. В.Коновалов.ЗУ для «мобильника» с цифровым таймером. Радиомир 4/2009 стр.13.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

MJE13001

1 В блокнот
VT2 MOSFET-транзистор

2SK727

1 В блокнот
VD1 Диодный мост

RS407L

1 В блокнот
VD2 Выпрямительный диод

1N4001

1 В блокнот
VD3 Стабилитрон КС175С 1 В блокнот
VD4 Выпрямительный диод

1N4005

1 В блокнот
VD5 Выпрямительный диод

1N4007

1 В блокнот
VD6 Диод S30D40C 1 В блокнот
VS1 Тиристор MSR106-6 1 В блокнот
С1-С3 Конденсатор 0.01 мкФ 400 В 3 В блокнот
С4 10 мкФ 50 В 1 В блокнот
С5 Электролитический конденсатор 83 мкФ 400 В 1 В блокнот
С6, С11 Конденсатор 220 пФ 2 В блокнот
С7 Конденсатор 10 мкФ 10 В 1 В блокнот
С8 Конденсатор 4700 пФ 1 В блокнот
С9 Электролитический конденсатор 10 мкФ 1 В блокнот
С10 Конденсатор 0.1 мкФ 1 В блокнот
С12 Электролитический конденсатор 470 мкФ 25 В 1 В блокнот
R1 Резистор

100 Ом

1 1 Вт В блокнот
R2 Резистор

220 кОм

1 В блокнот
R3 Резистор

3.3 кОм

1 В блокнот
R4 Резистор

180 кОм

1 подбор В блокнот
R5, R9 Резистор

56 Ом

2 В блокнот
R6 Резистор

96 кОм

1 В блокнот
R7 Резистор

10 кОм

1 В блокнот
R7 Резистор

100 кОм

1 подбор В блокнот
R8 Переменный резистор 470 Ом 1 В блокнот
R10 Резистор

20 кОм

1 В блокнот
R11 Резистор

2.2 Ом

1 5 Вт В блокнот
R12 Резистор

36 Ом

1

Сейчас уже все производители сотовых телефонов договорились и все, что есть в магазинах, заряжается через USB-разъем. Это очень хорошо, потому что зарядные устройства стали универсальными. В принципе, зарядное устройство для сотового телефона таковым не является.

Это только импульсный источник постоянного тока напряжением 5V, а собственно зарядное устройство, то есть, схема следящая за зарядом аккумулятора, и обеспечивающая его заряд, находится в самом сотовом телефоне. Но, суть не в этом, а в том, что эти «зарядные устройства» сейчас продаются повсеместно и стоят уже так дешево, что вопрос с ремонтом отпадает как-то сам собой.

Например, в магазине «зарядка» стоит от 200 рублей, а на известном Алиекспресс есть предложения и от 60 рублей (с учетом доставки).

Принципиальная схема

Схема типовой китайской зарядки, срисованная с платы, показана на рис. 1. Может быть и вариант с перестановкой диодов VD1, VD3 и стабилитрона VD4 на отрицательную цепь - рис.2.

А у более «продвинутых» вариантов могут быть выпрямительные мосты на входе и выходе. Могут быть и отличия в номиналах деталей. Кстати, нумерация на схемах дана произвольно. Но сути дела это не меняет.

Рис. 1. Типовая схема китайского сетевого зарядного устройства для сотового телефона.

Несмотря на простоту, это все же неплохой импульсный блок питания, и даже стабилизированный, который вполне сгодится и для питания чего-то другого, кроме зарядного устройства сотового телефона.

Рис. 2. Схема сетевого зарядного устройства для сотового телефона с измененным положением диода и стабилитрона.

Схема сделана на основе высоковольтного блокинг-генератора, широта импульсов генерации которого регулируется при помощи оптопары, светодиод которой получает напряжение от вторичного выпрямителя. Оптопара понижает напряжение смещения на базе ключевого транзистора VТ1, которое задается резисторами R1 и R2.

Нагрузкой транзистора VТ1 служит первичная обмотка трансформатора Т1. Вторичной, понижающей, является обмотка 2, с которой снимается выходное напряжение. Еще есть обмотка 3, она служит и для создания положительной обратной связи для генерации, и как для источника отрицательного напряжения, который выполнен на диоде VD2 и конденсаторе С3.

Этот источник отрицательного напряжения нужен для снижения напряжения на базе транзистора VТ1, когда оптопара U1 открывается. Элементом стабилизации, определяющим выходное напряжение, является стабилитрон VD4.

Его напряжение стабилизации таково, что в сумме с прямым напряжением ИК-светодиода оптопары U1 дает именно те самые необходимые 5V, которые и требуются. Как только напряжение на С4 превышает 5V, стабилитрон VD4 открывается и через него проходит ток на светодиод оптопары.

И так, работа устройства вопросов не вызывает. Но что делать, если мне нужно не 5V, а, например, 9V или даже 12V? Вопрос такой возник вместе с желанием организовать сетевой блок питания для мультиметра. Как известно, популярные в радиолюбительских кругах, мультиметры питаются от «Кроны», - компактной батареи напряжением 9V.

И в «походнополевых» условиях это вполне удобно, но вот в домашних или лабораторных хотелось бы питания от электросети. По схеме, «зарядка» от сотового телефона в принципе подходит, в ней есть трансформатор, и вторичная цепь не контактирует с электросетью. Проблема только в напряжении питания, - «зарядка» выдает 5V, а мультиметру нужно 9V.

На самом деле, проблема с увеличением выходного напряжения решается очень просто. Нужно, всего лишь, заменить стабилитрон VD4. Чтобы получить напряжение, подходящее для питания мультиметра, нужно поставить стабилитрон на стандартное напряжение 7,5V или 8,2V. При этом, выходное напряжение будет, в первом случае, около 8,6V, а во втором около 9,ЗV, что, и то и другое, вполне годится для мультиметра. Стабилитрон, например, 1N4737 (это на 7,5V) или 1N4738 (это на 8,2V).

Впрочем, можно и другой маломощный стабилитрон на данное напряжение.

Испытания показали хорошую работу мультиметра при питании от такого источника питания. Кроме того, был попробован и старый карманный радиоприемник с питанием от «Кроны», -работал, только помехи от блока питания слегка мешали. Напряжением в 9V дело совсем не ограничивается.

Рис. 3. Узел регулировки напряжения для переделки китайского зарядного устройства.

Хотите 12V? - Не проблема! Ставим стабилитрон на 11V, например, 1N4741. Только нужно конденсатор С4 заменить более высоковольтным, хотя бы на 16V. Можно получить и еще большее напряжение. Если вообще удалить стабилитрон будет постоянное напряжение около 20V, но оно будет не стабилизированное.

Можно даже сделать регулируемый блок питания, если стабилитрон заменить регулируемым стабилитроном, таким как TL431 (рис. 3). Выходное напряжение можно регулировать, в этом случае, переменным резистором R4.

Каравкин В. РК-2017-05.

Интересно, из чего же состоит зарядное устройство (блок питания) Сименса и возможно ли его починить самостоятельно в случае поломки.

Для начала блок нужно разобрать. Судя по швам на корпусе этот блок не предназначен для разборки, следовательно вещь одноразовая и больших надежд в случае поломки можно не возлагать.

Мне пришлось в прямом смысле раскурочить корпус зарядного устройства, оно состоит из двух плотно склеенных частей.

Внутри примитивная плата и несколько деталей. Интересно то, что плата не припаяна к вилке 220в., а крепится к ней при помощи пары контактов. В редких случаях эти контакты могут окислиться и потерять контакт, а вы подумаете, что блок сломался. А вот толщина проводов, идущих к разъему на мобильный телефон, приятно порадовала, не часто встретишь в одноразовых приборах нормальный провод, обычно он такой тонкий, что даже дотрагиваться до него страшно).

На тыльной стороне платы оказалось несколько деталей, схема оказалась не такой простой, но все равно она не такая и сложная, чтобы не починить ее самостоятельно.

Ниже на фото контакты внутки корпуса.

В схеме зарядного устройства нет понижающего трансформатора, его роль играет обычный резистор. Далее как обычно парочка выпрямляющих диодов, пара конденсаторов для выпрямления тока, после идет дроссель и наконец стабилитрон с конденсатором завершают цепочку и выводят пониженное напряжение на провод с разъемом к мобильному телефону.

В разъеме всего два контакта.

Похожие публикации