Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Ионизирующее излучение есть поток. Радиация: виды, источники, влияние радиации на человека. К чему может привести воздействие радиации на человека

Ионизирующее излучение - это совокупность различных видов микрочастиц и физических полей, обладающих способностью ионизировать вещество, то есть образовывать в нем электрически заряженные частицы - ионы.

РАЗДЕЛ III. УПРАВЛЕНИЕ БЕЗОПАСНОСТЬЮ ЖИЗНЕДЕЯТЕЛЬНОСТИ И ЭКОНОМИЧЕСКИЕ МЕХАНИЗМЫ ЕГО ОБЕСПЕЧЕНИЯ

Различают несколько видов ионизирующих излучений: альфа-, бета-, гамма-излучение, а также нейтронное излучение.

Альфа-излучение

В формировании положительно заряженных альфа-частиц принимают участие 2 протона и 2 нейтрона, входящих в состав ядер гелия. Альфа-частицы образуются при распаде ядра атома и могут иметь начальную кинетическую энергию от 1,8 до 15 МэВ. Характерными особенностями альфа-излучения являются высокая ионизирующая и малая проникающая способности. При движении альфа-частицы очень быстро теряют свою энергию, и это обуславливает тот факт, что ее не хватает даже для преодоления тонких пластмассовых поверхностей. В целом, внешнее облучение альфа-частицами, если не брать в расчет высокоэнергичные альфа-частицы, полученные с помощью ускорителя, не несет в себе никакого вреда для человека, а вот проникновение частиц внутрь организма может быть опасно для здоровья., поскольку альфа-радионуклиды отличаются большим периодом полураспада и обладают сильной ионизацией. В случае попадания внутрь организма альфа-частицы часто могут быть даже опаснее, чем бета- и гамма-излучение.

Бета-излучение

Заряженные бета-частицы, скорость которых близка к скорости света, образуются в результате бета-распада. Бета-лучи обладают большей проникающей способностью, чем альфа-лучи - они могут вызывать химические реакции, люминесценцию, ионизировать газы, оказывать эффект на фотопластинки. В качестве защиты от потока заряженных бета-частиц (энергией не более 1МэВ) достаточно будет использовать обычную алюминиевую пластину толщиной 3-5 мм.

Фотонное излучение: гамма-излучение и рентгеновское излучение

Фотонное излучение включает в себя два вида излучений: рентгеновское (может быть тормозным и характеристическим) и гамма-излучение.

Наиболее распространенным видом фотонного излучения являются обладающие очень высокой энергией при ультракороткой длине волны гамма-частицы, которые представляют собой поток высокоэнергичных, не обладающих зарядом фотонов. В отличие от альфа- и бета-лучей гамма-частицы не отклоняются магнитными и электрическими полями и обладают значительно большей проникающей способностью. В определенных количествах и при определенной продолжительности воздействия гамма-излучение может вызвать лучевую болезнь, привести к возникновению различных онкологических заболеваний. Препятствовать распространению потока гамма-частиц могут только такие тяжелые химические элементы, как, например, свинец, обедненный уран и вольфрам.

Нейтронное излучение

Источником возникновения нейтронного излучения могут быть ядерные взрывы, ядерные реакторы, лабораторные и промышленные установки.

Сами нейтроны представляют собой электрически нейтральные, нестабильные (период полураспада свободного нейтрона составляет около 10 минут) частицы, которые благодаря тому, что у них отсутствует заряд, отличаются большой проникающей способностью при слабой степени взаимодействия с веществом. Нейтронное излучение очень опасно, поэтому для защиты от него используют ряд специальных, в основном водородосодержащих, материалов. Лучше всего нейтронное излучение поглощается обычной водой, полиэтиленом, парафином, а также растворами гидроксидов тяжелых металлов.

Как ионизирующие излучения воздействуют на вещества?

Все виды ионизирующих излучений в той или иной степени оказывают воздействие на различные вещества, но сильнее всего оно выражено у гамма-частиц и у нейтронов. Так, при длительном воздействии они могут существенно изменить свойства различных материалов, изменить химический состав веществ, ионизировать диэлектрики и оказывать разрушительный эффект на биологические ткани. Естественный радиационный фон не принесет человеку особого вреда, однако при обращении с искусственными источниками ионизирующих излучений стоит быть очень осторожными и предпринимать все необходимые меры, чтобы до минимума снизить уровень воздействия излучения на организм.

Виды ионизирующих излучений и их свойства

Ионизирующим излучением называют потоки частиц и электромагнитных квантов, в результате воздействия которых на среду образуются разнозаряженные ионы.

Различные виды излучений сопровождаются высвобождением определенного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на организм. Наибольшую опасность для человека представляют радиоактивные излучения, такие как у-, рентгеновское, нейтронное, а- и в-излучения.

Рентгеновское и у-излучения представляют собой потоки квантовой энергии. Гамма-излучение обладает более короткими длинами волн по сравнению с рентгеновским. По своей природе и свойствам эти излучения мало отличаются друг от друга, обладают большой проникающей способностью, прямолинейностью распространения и свойством создавать вторичное и рассеянное излучение в средах, через которые проходят. Однако если рентгеновские лучи обычно получают с помощью электронного аппарата, то у-лучи испускаются нестабильными или радиоактивными изотопами.

Остальные типы ионизирующего излучения представляют собой быстродвижущиеся частицы вещества (атома), одни из которых несут электрический заряд, другие — нет.

Нейтроны — единственные незаряженные частицы, образующиеся при любом радиоактивном преобразовании, с массой, равной массе протона. Поскольку эти частицы электронейтральны, они глубоко проникают в любое вещество, включая и живые ткани. Нейтроны представляют собой основные частицы, из которых построены ядра атомов.

При прохождении через вещество они взаимодействуют только с ядрами атомов, передают им часть своей энергии, а сами изменяют направление своего движения. Ядра атомов "выскакивают" из электронной оболочки и, проходя через вещество, производят ионизацию.

Электроны — легкие отрицательно заряженные частицы, существующие во всех стабильных атомах. Электроны очень часто используются во время радиоактивного распада вещества, и тогда их называют в-частицами. Их можно получать и в лабораторных условиях. Энергия, теряемая электронами при прохождении через вещество, расходуется на возбуждение и ионизацию, а также на образование тормозного излучения.

Альфа-частицы — ядра атомов гелия, лишенные орбитальных электронов и состоящие из двух протонов и двух нейтронов, сцепленных вместе. Имеют положительный заряд, относительно тяжелы, по мере прохождения через вещество производят ионизацию вещества большой плотности.

Обычно а-частицы испускаются при радиоактивном распаде естественных тяжелых элементов (радий, торий, уран, полоний и др.).

Заряженные частицы (электроны и ядра атомов гелия), проходя через вещество, взаимодействуют с электронами атомов, теряя при этом 35 и 34 эВ соответственно. При этом одна половина энергии расходуется на ионизацию (отрыв электрона от атома), а другая — на возбуждение атомов и молекул среды (перевод электрона на более удаленную от ядра оболочку).

Число ионизированных и возбужденных атомов, образуемых а-частицей на единице длины пути в среде, в сотни раз больше, чем у р-частицы (табл. 5.1).

Таблица 5.1. Пробег а- и в-частиц различной энергии в мышечной ткани

Энергия частиц, МэВ

Пробег, мкм

Энергия частиц, МэВ

Пробег, мкм

Энергия частиц, МэВ

Пробег, мкм

Это обусловлено тем, что масса а-частицы примерно в 7000 раз больше массы в-частицы, следовательно, при одной и той же энергии ее скорость значительно меньше, чем у в-частицы.

Испускаемые при радиоактивном распаде а-частицы обладают скоростью примерно 20 тыс. км/с, в то время как скорость в-частиц близка к скорости света и составляет 200…270 тыс. км/с. Очевидно, что чем меньше скорость частицы, тем больше вероятность ее взаимодействия с атомами среды, а следовательно, больше и потери энергии на единице пути в среде — значит, меньше пробег. Из табл. 5.1 следует, что пробег а-частиц в мышечной ткани в 1000 раз меньше пробега в-частиц той же энергии.

Когда ионизирующее излучение проходит сквозь живые организмы, оно передает свою энергию биологическим тканям и клеткам неравномерно. В результате, несмотря на небольшое количество поглощенной тканями энергии, некоторые клетки живой материи будут значительно повреждены. Суммарный эффект ионизирующего излучения, локализованного в клетках и тканях, представлен в табл. 5.2.

Таблица 5.2. Биологическое действие ионизирующего излучения

Характер воздей­ствия

Стадии воздействия

Эффект воздействия

Непосредственное действие излуче­ний

10 -24 … 10 -4 с 10 16 …10 8 с

Поглощение энергии. Началь­ные взаимодействия. Рентгенов­ское и у-излучение, нейтроны Электроны, протоны, а-частицы

10 -12 … 10 -8 с

Физико-химическая стадия. Пе­ренос энергии в виде ионизации на первичной траектории. Ионизованные и электронно-возбужденные молекулы

10 7 …10 5 с, несколько часов

Химические повреждения. При мое действие. Косвенное дей­ствие. Свободные радикалы, образующиеся из воды. Возбужде­ние молекулы до тепловою рав­новесия

Косвенное дей­ствие излучений

Микросе­кунды, се­кунды, ми­нуты, нес­колько часов

Биомолекулярные повреждении. Изменения молекул белков, нуклеиновых кислот под влиянием процессов обмена

Минуты, часы, недели

Ранние биологические и физио­логические эффекты. Биохими­ческие повреждения. Гибель клеток, гибель отдельных жи­вотных

Годы, столе­тия

Отдаленные биологические эф­фекты Стойкое нарушение фун­кций.

Ионизирующее излучение

Генетические мутации, действие на потомство. Со­матические эффекты: рак, лей коз, сокращение продолжительности жизни, гибель организма

В основе первичных радиационно-химических изменений молекул могут лежать два механизма: 1) прямое действие, когда данная молекула испытывает изменения (ионизацию, возбуждение) непосредственно при взаимодействии с излучением; 2) косвенное действие, когда молекула непосредственно не поглощает энергию ионизирующего излучения, а получает ее путем передачи от другой молекулы.

Известно, что в биологической ткани 60…70% массы составляет вода. Поэтому рассмотрим различие между прямым и косвенным действием излучения на примере облучения воды.

Допустим, что молекула воды ионизируется заряженной частицей, в результате чего она теряет электрон:

Н2О -> Н20+е — .

Ионизированная молекула воды реагирует с другой нейтральной молекулой воды, в результате чего образуется высокореактивный радикал гидроксила ОН":

Н2О+Н2О -> Н3О+ + ОН*.

Вырванный электрон также очень быстро передает энергию окружающим молекулам воды, при этом возникает сильно возбужденная молекула воды Н2О*, которая диссоциирует с обра зованием двух радикалов, Н* и ОН*:

Н2О+е- -> Н2О*Н’ + ОН’.

Свободные радикалы содержат неспаренные электроны и отличаются чрезвычайно высокой реакционной способностью. Время их жизни в воде не более 10-5 с. За это время они либо рекомбинируют друг с другом, либо реагируют с растворенным субстратом.

В присутствии растворенного в воде кислорода образуются и другие продукты радиолиза: свободный радикал гидропероксида НО2, пероксид водорода Н2О2 и атомный кислород:

Н*+ О2 -> НО2 ;
НО*2 + НО2 -> Н2О2 +20.

В клетке живого организма ситуация значительно более сложная, чем при облучении воды, особенно в том случае, если поглощающим веществом являются крупные и многокомпонентные биологические молекулы. В этом случае образуются органические радикалы D*, также отличающиеся крайне высокой реакционноспособностью. Располагая большим количеством энергии, они легко могут привести к разрыву химических связей. Именно этот процесс и происходит чаще всего в промежутке между образованием ионных пар и формированием конечных химических продуктов.

Кроме того, биологическое действие усиливается за счет влияния кислорода. Образующийся в результате взаимодействия свободного радикала с кислородом также высокореакционный продукт DО2* (D* + О2 -> DО2*) приводит к образованию новых молекул в облучаемой системе.

Получающиеся в процессе радиолиза воды свободные радикалы и молекулы окислителя, обладая высокой химической активностью, вступают в химические реакции с молекулами белка, ферментов и других структурных элементов биологической ткани, что приводит к изменению биологических процессов в организме. В результате нарушаются обменные процессы, подавляется активность ферментных систем, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму, — токсины. Это приводит к нарушению жизнедеятельности отдельных систем или организма в целом.

Индуцированные свободными радикалами химические реакции вовлекают в этот процесс многие сотни и тысячи молекул, не затронутых излучением. В этом состоит специфика действия ионизирующего излучения на биологические объекты. Никакой другой вид энергии (тепловой, электрической и др.), поглощенной биологическим объектом в том же количестве, не приводит к таким изменениям, какие вызывает ионизирующее излучение.

Нежелательные радиационные эффекты воздействия облучения на организм человека условно делятся на соматические (soma — по-гречески "тело") и генетические (наследственные).

Соматические эффекты проявляются непосредственно у самого облученного, а генетические — у его потомства.

За последние десятилетия человеком было создано большое количество искусственных радионуклидов, использование которых является дополнительной нагрузкой к естественному радиационному фону Земли и увеличивает дозу облучения людей. Но, направленные исключительно на использование в мирных целях, ионизирующие излучения полезны для человека, и сегодня трудно указать область знаний или народного хозяйства, не использующую радионуклиды или другие источники ионизирующих излучений. Уже к началу 21 века «мирный атом» нашел свое применение в медицине, промышленности, сельском хозяйстве, микробиологии, энергетике, освоении космоса и других сферах.

Виды излучения и взаимодействие ионизирующего излучения с веществом

Применение ядерной энергии стало жизненно важной необходимостью существования современной цивилизации и, в то же время, огромной ответственностью, поскольку использовать этот источник энергии необходимо максимально рационально и осторожно.

Полезная особенность радионуклидов

Благодаря радиоактивному распаду радионуклид «подает сигнал», определяя тем самым свое местоположение. Используя специальные приборы, фиксирующие сигнал от распада даже единичных атомов, ученые научились использовать эти вещества в качестве индикаторов, помогающих исследовать самые разные химические и биологические процессы, проходящие в тканях и клетках.

Виды техногенных источников ионизирующего излучения

Все техногенные источники ионизирующего излучения можно разделить на два вида.

  • Медицинские - используемые как для диагностики заболеваний (например, рентгеновский и флюорографический аппараты), так и для проведения радиотерапевтических процедур (например, радиотерапевтические установки для лечения рака). Также к медицинским источникам ИИ относятся радиофармацефтические препараты (радиоактивные изотопы или их соединения с различными неорганическими или органическими веществами), которые могут применяться как для диагностики заболеваний, так и для их лечения.
  • Промышленные - произведенные человеком радионуклиды и генераторы:
    • в энергетике (реакторы атомных электростанций);
    • в сельском хозяйстве (для селекционирования и исследования эффективности удобрений)
    • в оборонной сфере (топливо для атомоходов);
    • в строительстве (неразрушающий контроль металлоконструкций).

По статическим данным, объем производства радионуклидной продукции на мировом рынке в 2011 году составлял 12 млрд. долларов, а к 2030 году ожидается шестикратное увеличение этого показателя.

В повседневной жизни человека ионизирующие излучения встречаются постоянно. Мы их не ощущаем, но не можем отрицать их воздействия на живую и неживую природу. Не так давно люди научились использовать их как во благо, так и в качестве оружия массового истребления. При правильном использовании эти излучения способны изменить жизнь человечества в лучшую сторону.

Виды ионизирующих излучений

Чтобы разобраться с особенностями влияния на живые и неживые организмы, нужно выяснить, какими они бывают. Также важно знать их природу.

Ионизирующее излучение - это особенные волны, которые способны проникать через вещества и ткани, вызывая ионизацию атомов. Существует несколько его видов: альфа-излучение, бета-излучение, гамма-излучение. Все они имеют разный заряд и способности действовать на живые организмы.

Альфа-излучение самое заряженное из всех видов. Оно обладает огромной энергией, способной даже в малых дозах вызывать лучевую болезнь. Но при непосредственном облучении проникает только в верхние слои кожи человека. От альфа-лучей защищает даже тонкий лист бумаги. В то же время, попадая в организм с едой или со вдохом, источники этого излучения довольно быстро становятся причиной смерти.

Бета-лучи несут немного меньший заряд. Они способны проникать глубоко в организм. При длительном облучении становятся причиной смерти человека. Меньшие дозы вызывают изменение в клеточной структуре. Защитой может послужить тонкий лист алюминия. Излучение изнутри организма также смертельно.

Самым опасным считается гамма-излучение. Оно проникает насквозь организма. В больших дозах вызывает радиационный ожог, лучевую болезнь, смерть. Защитой от него может быть только свинец и толстый слой бетона.

Особенной разновидностью гамма-излучения считаются рентгеновские лучи, которые генерируются в рентгеновской трубке.

История исследований

Впервые об ионизирующих излучениях мир узнал 28 декабря 1895 года. Именно в этот день Вильгельм К. Рентген объявил, что открыл особый вид лучей, способных проходить через разные материалы и человеческий организм. С этого момента многие врачи и ученые начали активно работать с этим явлением.

Длительное время никто не знал о его влиянии на человеческий организм. Поэтому в истории известно немало случаев гибели от чрезмерного облучения.

Супруги Кюри подробно изучили источники и свойства, которые имеет ионизирующее излучение. Это дало возможность использовать его с максимальной пользой, избегая негативных последствий.

Естественные и искусственные источники излучений

Природа создала разнообразные источники ионизирующего излучения. В первую очередь это радиация солнечных лучей и космоса. Большая ее часть поглощается озоновым шаром, который находится высоко над нашей планетой. Но некоторая их часть достигает поверхности Земли.

На самой Земле, а точнее в ее глубинах, есть некоторые вещества, продуцирующие радиацию. Среди них - изотопы урана, стронция, радона, цезия и другие.

Искусственные источники ионизирующих излучений созданы человеком для разнообразных исследований и производства. При этом сила излучений может в разы превышать естественные показатели.

Даже в условиях защиты и соблюдения мер безопасности люди получают опасные для здоровья дозы облучения.

Единицы измерения и дозы

Ионизирующее излучение принято соотносить с его взаимодействием с человеческим организмом. Поэтому все единицы измерения так или иначе связаны со способностью человека поглощать и накапливать энергию ионизации.

В системе СИ дозы ионизирующего излучения измеряются единицей, именуемой грей (Гр). Она показывает количество энергии на единицу облучаемого вещества. Один Гр равен одному Дж/кг. Но для удобства чаще используется внесистемная единица рад. Она равна 100 Гр.

Радиационный фон на местности измеряется экспозиционными дозами. Одна доза равна Кл/кг. Эта единица используется в системе СИ. Внесистемная единица, соответствующая ей, называется рентген (Р). Чтобы получить поглощенную дозу 1 рад, нужно поддаться облучению экспозиционной дозой около 1 Р.

Поскольку разные виды ионизирующих излучений имеют разный заряд энергии, его измерение принято сравнивать с биологическим влиянием. В системе СИ единицей такого эквивалента выступает зиверт (Зв). Внесистемный его аналог - бэр.

Чем сильнее и дольше излучение, тем больше энергии поглощается организмом, тем опаснее его влияние. Чтобы узнать допустимое время пребывания человека в радиационном загрязнении, используются специальные приборы - дозиметры, осуществляющие измерение ионизирующего излучения. Это бывают как приборы индивидуального пользования, так и большие промышленные установки.

Влияние на организм

Вопреки бытующему мнению, не всегда опасно и смертельно любое ионизирующее излучение. Это можно увидеть на примере с ультрафиолетовыми лучами. В малых дозах они стимулируют генерацию витамина D в человеческом организме, регенерацию клеток и увеличение пигмента меланина, дающего красивый загар. Но длительное облучение вызывает сильные ожоги и может стать причиной развития рака кожи.

В последние годы активно изучается воздействие ионизирующего излучения на человеческий организм и его практическое применение.

В небольших дозах излучения не причиняют никакого вреда организму. До 200 милирентген могут снизить количество белых кровяных клеток. Симптомом такого облучения будут тошнота и головокружение. Около 10% людей гибнут, получив такую дозу.

Большие дозы вызывают расстройство пищеварительной системы, выпадение волос, ожоги кожи, изменения клеточной структуры организма, развитие раковых клеток и смерть.

Лучевая болезнь

Длительное действие ионизирующего излучения на организм и получение им большой дозы облучения могут стать причиной лучевой болезни. Больше половины случаев этого заболевания ведут к летальному исходу. Остальные становятся причиной целого ряда генетических и соматических заболеваний.

На генетическом уровне происходят мутации в половых клетках. Их изменения становятся очевидными в следующих поколениях.

Соматические болезни выражаются канцерогенезом, необратимыми изменениями в разных органах. Лечение этих заболеваний длительное и довольно трудное.

Лечение лучевых поражений

В результате патогенного воздействия радиации на организм возникают различные поражения органов человека. В зависимости от дозы облучения проводят разные методы терапии.

В первую очередь больного помещают в стерильную палату, чтобы избежать возможности инфицирования открытых пораженных участков кожи. Далее проводят специальные процедуры, способствующие скорому выведению из организма радионуклидов.

При сильных поражениях может понадобиться пересадка костного мозга. От радиации он теряет способность воспроизводить красные кровяные клетки.

Но в большинстве случаев лечение легких поражений сводится к обезболиванию пораженных участков, стимулированию регенерации клеток. Большое внимание уделяется реабилитации.

Влияние ионизирующего излучения на старение и рак

В связи с влиянием ионизирующих лучей на организм человека ученые проводили разные эксперименты, доказывающие зависимость процессов старения и канцерогенеза от дозы облучения.

В лабораторных условиях подвергались облучениям группы клеточных культур. Вследствие этого удалось доказать, что даже незначительное облучение способствует ускорению старения клеток. При этом чем старше культура, тем больше она подвержена этому процессу.

Длительное же облучение приводит к гибели клеток или аномальному и быстрому их делению и росту. Этот факт свидетельствует о том, что ионизирующее излучение на организм человека оказывает канцерогенное действие.

В то же время воздействие волн на пораженные раковые клетки приводило к их полной гибели или остановке процессов их деления. Это открытие помогло разработать методику лечения раковых опухолей человека.

Практическое применение радиации

Впервые излучения начали использовать в медицинской практике. С помощью рентгеновских лучей врачам удалось заглянуть внутрь человеческого организма. При этом вреда ему практически не наносилось.

Далее с помощью облучения начали лечить раковые заболевания. В большинстве случаев этот метод оказывает положительное влияние, невзирая на то что весь организм подвергается сильному воздействию излучения, влекущему за собой ряд симптомов лучевой болезни.

Кроме медицины, ионизирующие лучи используются и в других отраслях. Геодезисты с помощью радиации могут изучить особенности строения земной коры на ее отдельных участках.

Способность некоторых ископаемых выделять большое количество энергии человечество научилось использовать в собственных целях.

Атомная энергетика

Именно за атомной энергией будущее всего населения Земли. Атомные электростанции выступают источниками сравнительно недорогого электричества. При условии их правильной эксплуатации такие электростанции намного безопаснее, чем ТЭС и ГЭС. От атомных электростанций намного меньше загрязнения окружающей среды как лишним теплом, так и отходами производства.

В то же время на основании атомной энергии ученые разработали оружие массового поражения. На данный момент на планете атомных бомб столько, что запуск незначительного их количества может стать причиной ядерной зимы, вследствие которой погибнут практически все живые организмы, населяющие ее.

Средства и способы защиты

Использование в повседневной жизни радиации требует серьезных мер предосторожности. Защита от ионизирующих излучений делится на четыре типа: временем, расстоянием, количеством и экранированием источников.

Даже в среде с сильным радиационным фоном человек может находиться некоторое время без вреда для своего здоровья. Именно этот момент определяет защиту временем.

Чем больше расстояние до источника излучения, тем меньше доза поглощаемой энергии. Поэтому стоит избегать близкого контакта с местами, где есть ионизирующее излучение. Это гарантированно убережет от нежелательных последствий.

Если есть возможность использовать источники с минимальным излучением, им в первую очередь отдается предпочтение. Это и есть защита количеством.

Экранирование же означает создание барьеров, через которые не проникают вредоносные лучи. Примером тому служат свинцовые ширмы в рентгеновских кабинетах.

Бытовая защита

В случае объявления радиационной катастрофы следует немедленно закрыть все окна и двери, постараться запастись водой из закрытых источников. Еда должна быть только консервированной. При перемещении на открытой местности максимально закрыть тело одеждой, а лицо - респиратором или влажной марлей. Стараться не заносить в дом верхнюю одежду и обувь.

Необходимо также приготовиться к возможной эвакуации: собрать документы, запас одежды, воды и еды на 2-3 суток.

Ионизирующие излучения как экологический фактор

На планете Земля довольно много загрязненных радиацией участков. Причиной тому служат как естественные процессы, так и техногенные катастрофы. Самые известные из них - авария на ЧАЭС и атомные бомбы над городами Хиросима и Нагасаки.

В таких местах человек не может находиться без вреда для собственного здоровья. В то же время не всегда есть возможность узнать заранее о радиационном загрязнении. Порой даже некритический радиационный фон может стать причиной катастрофы.

Причиной тому служит способность живых организмов поглощать и накапливать радиацию. При этом они сами превращаются в источники ионизирующего излучения. Всем известные «черные» анекдоты о чернобыльских грибах основаны именно на этом свойстве.

В таких случаях защита от ионизирующих излучений сводится к тому, что все потребительские продукты поддаются тщательному радиологическому изучению. В то же время на стихийных рынках всегда есть шанс купить именно знаменитые «чернобыльские грибы». Поэтому стоит воздержаться от покупок у непроверенных продавцов.

Человеческий организм склонен накапливать опасные вещества, вследствие чего происходит постепенное отравление изнутри. Неизвестно, когда именно дадут о себе знать последствия влияния этих ядов: через день, год или через поколение.

Ранее люди, чтобы объяснить то, что они не понимают, придумывали различные фантастические вещи - мифы, богов, религию, волшебных существ. И хотя в эти суеверия всё ещё верит большое количество людей, сейчас нам известно, что у всего есть своё объяснение. Одной из наиболее интересных, таинственных и удивительных тем является излучение. Что оно собой представляет? Какие его виды существуют? Что такое излучение в физике? Как оно поглощается? Можно ли защититься от излучения?

Общая информация

Итак, выделяют следующие виды излучений: волновое движение среды, корпускулярное и электромагнитное. Наибольшее внимание будет уделено последнему. Относительно волнового движения среды можно сказать, что оно возникает как результат механического движения определённого объекта, что вызывает последовательное разрежение или сжатие среды. В качестве примера можно привести инфразвук или ультразвук. Корпускулярное излучение - это поток атомных частиц, таких как электроны, позитроны, протоны, нейтроны, альфа, что сопровождается естественным и искусственным распадом ядер. Об этих двух пока и поговорим.

Влияние

Рассмотрим солнечное излучение. Это мощный оздоровительный и профилактический фактор. Совокупность сопутствующих физиологических и биохимических реакций, что протекают при участии света, назвали фотобиологическими процессами. Они берут участие в синтезе биологически важных соединений, служат для получения информации и ориентации в пространстве (зрение), а также могут вызывать вредные последствия, как то появление вредных мутаций, разрушение витаминов, ферментов, белков.

Об электромагнитном излучении

В дальнейшем статья будет посвящена исключительно нему. Что такое излучение в физике делает, как влияет на нас? ЭМИ представляет собой электромагнитные волны, что испускаются заряженными молекулами, атомами, частицами. В качестве крупных источников могут выступать антенны или другие излучающие системы. Длина волны излучения (частота колебания) вместе с источников оказывает решающее значение. Так, в зависимости от этих параметров выделяют гамма, рентгеновское, оптическое излучение. Последнее делится на целый ряд других подвидов. Так, это инфракрасное, ультрафиолетовое, радиоизлучение, а также свет. Диапазон находится в пределах до 10 -13 . Гамма-излучение генерируют возбуждённые атомные ядра. Рентгеновские лучи можно получить при торможении ускоренных электронов, а также при их переходе не свободные уровни. Радиоволны оставляют свой след во время движения по проводникам излучающих систем (например, антенн) переменных электрических токов.

Об ультрафиолетовом излучении

В биологическом отношении наиболее активными являются УФ-лучи. При попадании на кожу они могут вызывать местные изменения тканевых и клеточных белков. Кроме этого, фиксируется воздействие на рецепторы кожи. Оно рефлекторным путём влияет на целый организм. Поскольку это неспецифический стимулятор физиологических функций, то он оказывает благоприятное влияние на иммунную систему организма, а также на минеральный, белковый, углеводный и жировой обмен. Всё это проявляется в виде общеоздоровительного, тонизирующего и профилактического действия солнечного излучения. Следует упомянуть и об отдельных специфических свойствах, что есть у определённого диапазона волн. Так, влияние излучений на человека при длине от 320 до 400 нанометров способствует эритемно-загарному действию. При диапазоне от 275 до 320 нм фиксируются слабо бактерицидный и антирахитический эффекты. А вот ультрафиолетовое излучение от 180 до 275 нм повреждает биологическую ткань. Поэтому, следует соблюдать осторожность. Длительное прямое солнечное излучение даже в безопасном спектре может привести к выраженной эритеме с отеками кожного покрова и существенному ухудшению состояния здоровья. Вплоть до повышения вероятности развития рака кожи.

Реакция на солнечный свет

В первую очередь следует упомянуть инфракрасное излучение. На организм оно оказывает тепловое воздействие, что зависит от степени поглощения лучей кожей. Для характеристики его влияния используется слово «ожог». Видимый спектр влияет на зрительный анализатор и функциональное состояние центральной нервной системы. А посредством ЦНС и на все системы и органы человека. Следует отметить, что на нас оказывает влияние не только степень освещенности, но и цветовая гамма солнечного света, то есть, весь спектр излучения. Так, от длины волны зависит цветоощущение и оказывается влияние на нашу эмоциональную деятельность, а также функционирование различных систем организма.

Красный цвет возбуждает психику, усиливает эмоции и дарит ощущение тепла. Но он быстро утомляет, способствует напряжению мускулатуры, учащению дыхания и повышению артериального давления. Оранжевый цвет вызывает ощущение благополучия и веселья, желтый поднимает настроение и стимулирует нервную систему и зрение. Зелёный успокаивает, полезен во время бессонницы, при переутомлении, повышает общий тонус организма. Фиолетовый цвет оказывает расслабляющее влияние на психику. Голубой успокаивает нервную систему и поддерживает мышцы в тонусе.

Небольшое отступление

Почему рассматривая, что такое излучение в физике, мы говорим в большей степени про ЭМИ? Дело в том, что именно его в большинстве случаев и подразумевают, когда обращаются к теме. То же корпускулярное излучение и волновое движение среды является на порядок менее масштабным и известным. Очень часто, когда говорят про виды излучений, то подразумевают исключительно те, на которые делится ЭМИ, что в корне не верно. Ведь говоря о том, что такое излучение в физике, следует уделять внимание всем аспектам. Но одновременно делается упор именно на наиболее важных моментах.

Об источниках излучения

Продолжаем рассматривать электромагнитное излучение. Мы знаем, что оно собой представляет волны, что возникают при возмущении электрического или магнитного поля. Этот процесс современной физикой трактуется с точки зрения теории корпускулярно-волнового дуализма. Так признаётся, что минимальная порция ЭМИ - это квант. Но вместе с этим считается, что у него есть и частотно-волновые свойства, от которых зависят основные характеристики. Для улучшения возможностей классификации источников выделяют разные спектры излучения частот ЭМИ. Так это:

  1. Жесткое излучение (ионизированное);
  2. Оптическое (видимое глазом);
  3. Тепловое (оно же инфракрасное);
  4. Радиочастотное.

Часть из них уже была рассмотрена. Каждый спектр излучения обладает своими уникальными характеристиками.

Природа источников

Зависимо от своего происхождения, электромагнитные волны могут возникать в двух случаях:

  1. Когда наблюдается возмущение искусственного происхождения.
  2. Регистрация излучения, идущего от естественного источника.

Что можно сказать о первых? Искусственные источники чаще всего представляют собой побочное явление, что возникает вследствие работы различных электрических приборов и механизмов. Излучение естественного происхождения генерирует магнитное поле Земли, электропроцессы в атмосфере планеты, ядерный синтез в недрах солнца. От уровня мощности источника зависит степень напряженности электромагнитного поля. Условно, излучение, что регистрируется, разделяют на низкоуровневое и высокоуровневое. В качестве первых можно привести:

  1. Практически все устройства, оборудованные ЭЛТ дисплеем (как, пример, компьютер).
  2. Различная бытовая техника, начиная от климатических систем и заканчивая утюгами;
  3. Инженерные системы, что обеспечивают подачу электроэнергии к разным объектам. В качестве примера можно привести кабель электропередач, розетки, электросчетчики.

Высокоуровневым электромагнитным излучением обладают:

  1. Линии электропередачи.
  2. Весь электротранспорт и его инфраструктура.
  3. Радио- и телевышки, а также станции мобильной и передвижной связи.
  4. Лифты и иное подъемное оборудование, где применяются электромеханические силовые установки.
  5. Приборы преобразования напряжения в сети (волны, исходящие от распределяющей подстанции или трансформатора).

Отдельно выделяют специальное оборудование, что используется в медицине и испускает жесткое излучение. В качестве примера можно привести МРТ, рентгеновские аппараты и тому подобное.

Влияние электромагнитного излучения на человека

В ходе многочисленных исследований ученые пришли к печальному выводу - длительное влияние ЭМИ способствует настоящему взрыву болезней. При этом многие нарушение происходят на генетическом уровне. Поэтому актуальной является защита от электромагнитного излучения. Это происходит из-за того, что ЭМИ обладает высоким уровнем биологической активности. При этом результат влияния зависит от:

  1. Характера излучения.
  2. Продолжительности и интенсивности влияния.

Специфические моменты влияния

Всё зависит от локализации. Поглощение излучения может быть местным или общим. В качестве примера второго случая можно привести эффект, что оказывают линии электропередачи. В качестве примера местного воздействия можно привести электромагнитные волны, что испускают электронные часы или мобильный телефон. Следует упомянуть и о термальном воздействии. За счет вибрации молекул энергия поля преобразуется в тепло. По этому принципу работают СВЧ излучатели, что используются для нагревания различных веществ. Следует отметить, что при влиянии на человека, термальный эффект всегда является негативным, и даже пагубным. Следует отметить, что мы постоянно облучаемся. На производстве, дома, перемещаясь по городу. Со временем негативный эффект только усиливается. Поэтому, все актуальнее становится защита от электромагнитного излучения.

Как же можно обезопасить себя?

Первоначально необходимо знать, с чем приходится иметь дело. В этом поможет специальный прибор для измерения излучения. Он позволит оценить ситуацию с безопасностью. На производстве для защиты используются поглощающие экраны. Но, увы, на использование в домашних условиях они не рассчитаны. В качестве начала можно соблюдать три рекомендации:

  1. Следует пребывать на безопасном расстоянии от устройств. Для ЛЭП, теле- и радиовышек это как минимум 25 метров. С ЭЛТ мониторами и телевизорами достаточно тридцати сантиметров. Электронные часы должны быть не ближе 5 см. А радио и сотовые телефоны не рекомендуется подносить ближе, чем на 2,5 сантиметра. Подобрать место можно с помощью специального прибора - флюксметра. Допустимая доза излучения, фиксируемая ним, не должна превышать 0,2мкТл.
  2. Старайтесь сократить время, когда приходится облучаться.
  3. Всегда следует выключать неиспользуемые электроприборы. Ведь даже будучи неактивными, они продолжают испускать ЭМИ.

О тихом убийце

И завершим статью важной, хотя и довольно слабо известной в широких кругах темой - радиационным излучением. На протяжении всей своей жизни, развития и существования, человек облучался естественным природным фоном. Естественное радиационное излучение может быть условно поделено на внешнее и внутреннее облучение. К первому относятся космическое излучение, солнечная радиация, влияние земной коры и воздуха. Даже строительные материалы, из которых создаются дома и сооружения, генерируют определённый фон.

Радиационное излучение обладает значительной проникающей силой, поэтому остановить его проблематично. Так, чтобы полностью изолировать лучи, необходимо укрыться за стеной из свинца, толщиной в 80 сантиметров. Внутреннее облучение возникает в тех случаях, когда естественные радиоактивные вещества попадают внутрь организма вместе с продуктами питания, воздухом, водой. В земных недрах можно найти радон, торон, уран, торий, рубидий, радий. Все они поглощаются растениями, могут быть в воде - и при употреблении пищевых продуктов попадают в наш организм.

Радиация – это невидимое человеческому глазу излучение, которое тем не менее оказывает мощнейшее влияние на организм. К сожалению, последствия облучения для человека исключительно негативные.

Изначально излучение влияет на организм извне. Оно исходит от естественных радиоактивных элементов, которые находятся в земле, а также попадает на планету из космоса. Также внешнее облучение исходит в микродозах от стройматериалов, медицинских рентгеновских аппаратов. Большие дозы облучения можно обнаружить на ядерных электростанциях, специальных физических лабораториях и урановых рудниках. Также крайне опасны полигоны испытания ядерного оружия и места захоронения радиационных отходов.

В определенной степени наша кожа, одежда и даже дома защищают от вышеперечисленных источников излучения. Но главная опасность радиации заключается в том, что облучение может быть не только внешним, но и внутренним.

Радиоактивные элементы могут проникать с воздухом и водой, через порезы в коже и даже сквозь ткани организма. В этом случае источник облучения действует намного дольше – пока он не будет выведен из тела человека. От него не защититься свинцовой плитой и невозможно уехать подальше, что делает ситуацию еще опаснее.

Дозировка облучения

Для того чтобы определить мощность облучения и степень воздействия радиации на живые организмы было придумано несколько шкал измерения. В первую очередь измеряется мощность источника излучения в Греях и Радах. Здесь все достаточно просто. 1 Гр=100Р. Именно так определяется уровень облучения с помощью счетчика Гейгера. Также используется шкала Рентген.

Но не стоит считать, что данные показания достоверно указывают на степень опасности для здоровья. Недостаточно знать мощность излучения. Влияние радиации на организм человека меняется также в зависимости от типа излучения. Всего их 3:

  1. Альфа. Это тяжелые радиоактивные частицы – нейтроны и протоны, которые несут наибольший вред для человека. Но они обладают малой пробивной силой и не способны проникнуть даже сквозь верхние слои кожи. Но при наличии ран или взвеси частиц в воздухе,
  2. Бета. Это радиоактивные электроны. Их пробивная способность – 2 см. кожи.
  3. Гамма. Это фотоны. Они свободно пронизывают тело человека, и защититься возможно только с помощью свинца или толстого слоя бетона.

Радиационное воздействие происходит на молекулярном уровне. Облучение приводит к образованию в клетках тела свободных радикалов, которые начинают разрушать окружающие вещества. Но, учитывая уникальность каждого организма и неравномерную чувствительность органов к действию радиации на человека, ученым пришлось ввести понятие эквивалентной дозы.

Для определения, чем опасна радиация в той или иной дозе, мощность излучения в Радах, Рентгенах и Греях умножается на коэффициент качества.

Для Альфа-излучения он равен 20, а для Бета и Гамма – 1. Рентгеновские лучи также имеют коэффициент 1. Полученный результат измеряется в Бэрах и Зивертах. При коэффициенте равном единице, 1 Бэр равен одному Раду или Рентгену, а 1 Зиверт равен одному Грею или 100 Бэрам.

Чтобы определить степень воздействия эквивалентной дозы на организм человека пришлось ввести еще один коэффициент риска. Для каждого органа он отличается, в зависимости от того как влияет радиация на отдельные ткани тела. Для организма в целом он равен единице. Благодаря этому получилось составить шкалу опасности радиации и ее влияния на человека при однократном воздействии:

  • 100 Зиверт. Это быстрая смерть. Через несколько часов, а в лучшем случае дней нервная система организма прекращает свою деятельность.
  • 10-50 – это смертельная доза, в результате которой человек умрет от многочисленных внутренних кровоизлияний спустя несколько недель мучений.
  • 4-5 Зиверт – -смертность составляет около 50%. Из-за поражения костного мозга и нарушения процесса кроветворения организм погибает спустя пару месяцев или меньше.
  • 1 Зиверт. Именно с этой дозы начинается лучевая болезнь.
  • 0,75 Зиверта. Кратковременные изменения в составе крови.
  • 0,5 – эта доза считается достаточной, чтобы стать причиной развития онкозаболеваний. Но других симптомов обычно не бывает.
  • 0,3 Зиверта. Это мощность аппарата при получении рентгеновского снимка желудка.
  • 0,2 Зиверта. Это безопасный уровень излучения, допустимого при работе с радиоактивными материалами.
  • 0,1 – при данном радиационном фоне добывается уран.
  • 0,05 Зиверта. Норма фонового облучения медицинской аппаратурой.
  • 0,005 Зиверта. Допустимый уровень радиации возле АЭС. Также это годовая норма облучения для гражданского населения.

Последствия радиационного облучения

Опасное влияние радиации на организм человека обуславливается воздействием свободных радикалов. Они образуются на химическом уровне из-за воздействия облучения и поражают в первую очередь быстро делящиеся клетки. Соответственно в большей мере от радиации страдают органы кроветворения и половая система.

Но на этом радиационные эффекты облучения человека не ограничиваются. В случае с нежными тканями слизистых и нервных клеток, происходит их разрушение. Из-за этого могут развиваться разнообразные нарушения психической деятельности.

Часто из-за действия радиации на организм человека страдает зрение. При большой дозе радиации может наступить слепота вследствие лучевой катаракты.

Другие ткани тела претерпевают качественные изменения, что не менее опасно. Именно из-за этого многократно увеличивается риск онкологических заболеваний. Во-первых, меняется структура тканей. А во-вторых, свободные радикалы повреждают молекулу ДНК. Благодаря этому развиваются мутации клеток, что и приводит к раку и опухолям в различных органах тела.

Самое опасное, что данные изменения могут сохраняться и у потомков, из-за повреждения генетического материала половых клеток. С другой стороны, возможно и обратно воздействие радиации на человека – бесплодие. Также во всех без исключения случаях, радиационное облучение приводит к быстрому износу клеток, что ускоряет старение организма.

Мутации

Сюжет многих фантастических историй начинается с того, как радиация приводит к мутации человека или животного. Обычно мутагенный фактор дает главному герою разнообразные сверхспособности. В реальности радиация влияет немного иначе – в первую очередь генетические последствия радиации сказываются на будущих поколениях.

Из-за нарушений в цепочке молекулы ДНК, вызванных свободными радикалами, у плода могут развиваться различные отклонения, связанные с проблемами внутренних органов, внешними уродствами или нарушениями психики. При этом данное нарушение может распространяться и на будущие поколения.

Молекула ДНК участвует не только в размножении человека. Каждая клетка тела делится согласно программе, заложенной в генах. Если данная информация повреждается, клетки начинают делиться неправильно. Это приводит к образованию опухолей. Обычно оно сдерживается за счет иммунной системы, которая пытается ограничить поврежденный участок тканей, а в идеале и избавиться от него. Но из-за иммунодепрессии, вызванной радиацией, мутации могут распространяться бесконтрольно. Из-за этого опухоли начинают пускать метастазы, превращаясь в рак, или разрастаются и давят на внутренние органы, например мозг.

Лейкоз и другие виды рака

Из-за того, что влияние радиации на здоровье человека в первую очередь распространяется на кроветворные органы и кровеносную систему, наиболее частым следствием лучевой болезни является лейкоз. Его еще называют «раком крови». Его проявления затрагивают весь организм:

  1. Человек теряет в весе, при этом отсутствует аппетит. Его постоянно сопровождает слабость в мышцах и хроническая усталость.
  2. Появляются боли в суставах, они начинают сильнее реагировать на окружающие условия.
  3. Воспаляются лимфатические узлы.
  4. Увеличиваются печень и селезенка.
  5. Затрудняется дыхание.
  6. На коже обнаруживаются пурпурные высыпания. Человек часто и обильно потеет, могут открываться кровотечения.
  7. Проявляется иммунодефицит. Инфекции свободно проникают в тело, из-за чего часто поднимается температура.

До событий в Хиросиме и Нагасаки, врачи не считали лейкоз болезнью от радиации. Но 109 тысяч обследованных японцев подтвердили связь радиации и онкологических заболеваний. Также выяснилась вероятность поражения тех или иных органов. На первом месте оказался лейкоз.

Затем радиационные эффекты облучения людей чаще всего приводят к:

  1. Рак молочной железы. Поражается каждая сотая женщина, пережившая сильное радиационное облучение.
  2. Рак щитовидной железы. Им также страдает 1% облученных.
  3. Рак легких. Эта разновидность сильнее всего проявляет себя у облучаемых шахтеров урановых рудников.

К счастью, современная медицина вполне может справиться с онкологическими заболеваниями на ранних стадиях, если влияние радиации на здоровье человека было кратковременным и достаточно слабым.

Что влияет на последствия облучения

Влияние радиации на живые организмы сильно различается от мощности и типа излучения: альфа, бета или Гамма. В зависимости от этого одна и та же доза радиации может оказаться практически безопасной или привести к скоропостижной смерти.

Также важно понимать, что воздействие радиации на организм человека редко бывает одновременным. Получить дозу в 0.5 Зиверта за один раз – это опасно, а 5-6 – смертельно. Но сделав несколько рентгеновских снимков по 0,3 Зиверта в течение определенного времени, человек дает возможность организму очиститься. Поэтому негативные последствия радиационного облучения просто не проявляются, так как при суммарной дозе в несколько Зиверт, единовременно на тело будет действовать лишь малая часть облучения.

Кроме того, различные последствия действия радиации на человека сильно зависят от индивидуальных особенностей организма. Здоровое тело дольше сопротивляется разрушительному действию облучения. Но лучше всего для обеспечения безопасности радиации для человека, как можно меньше контактировать с излучением для минимизации ущерба.

В течение своей жизни и всего биологического развития человек облучался и в настоящее время продолжает подвергаться воздействию радиоактивного излучения от естественного природного фона. Это относится ко всему населению земного шара и речь идет о естественной радиоактивности.

Естественные источники излучения, производящие этот фон, разделяют на две категории: внешнего и внутреннего облучения. К внешним относятся космические (галактические) излучения, солнечная радиация, излучения от горных пород земной коры и воздуха. Облучают нас даже собственные стены, то есть стройматериалы, из которых изготовлены здания и сооружения.

Например, в Швеции был измерен фон излучения почти в тысяче квартир (677 домов из 13 городов), построенных из различных материалов: деревянные, кирпичные, бетонные и каменные. Все они были построены до 1946 года, то есть до начала крупных испытаний атомного оружия. Результаты измерений показали, что в деревянных строениях фоновые облучения человека примерно в два раза ниже, чем на открытой местности, в кирпичных - примерно такие же, бетонных - в два, а в гранитных примерно в четыре раза выше, чем на открытой местности.

Внутреннее облучение человека обусловлено теми естественными радиоактивными веществами, которые попадают внутрь организма с воздухом, водой, продуктами питания. Это радиоактивные газы, которые поступают из глубины земных недр (радон, торон и др.), а также радиоактивный калий, уран, торий, рубидий, радий, которые входят в состав пищевых продуктов, растений и воды.

Так, в пшеничном хлебе содержание урана в среднем составляет 41 . 10 -8 , гречневой крупе - 42 . 10 -8 , говядине - 1,4 . 10 -8 , рыбе - 1,1 . 10 -8 , молоке - 0,4 . 10 -8 . Радиоактивный калий в большей степени накапливается в бобовых растениях: горохе, бобах, фасоли, сое, что подтверждается данными, приведенными в табл. 1.

Табл. 1. Содержание природных радионуклидов в пищевых продуктах

Удельная радиоактивность,

Бк/кг *, по

Пшеница 148,0 0,074-0,096

Картофель

Говядина

-

Масло сливочное

Вода речная

* Бк/кг - единица удельной радиоактивности.

До недавнего времени среднегодовая доза облучения всего тела естественными источниками ионизирующих излучений примерно была равна 100 мбэр. Однако с учетом техногенно усиленного фона, по данным Научного комитета ООН по действию атомной радиации в 1982 г., значение эффективной дозы облучения увеличилось в два раза - 200 мбэр в год. Распределяется она от различных источников излучения следующим образом, мбэр/год:

Среднегодовые дозы облучения от естественных источников излучений с учетом техногенно усиленного фона, мбэр:

От внеземного:
внешнее 30
внутреннее 1
От земного:
внешнее
на улице 6
в доме 29
внутреннее (торий, калий, рубидий, уран)
ингаляция на улице 9
ингаляция в доме 94
поступление с пищей 16
другие поступления 19
Всего среднегодовая доза облучения: 204

В настоящее время от естественного фона жители крупных городов за год получают дозу в полтора-два раза большую, чем сельские, что объясняется урбанизацией общества и ростом промышленности в городах.

Так что же такое радиоактивность?

Радиоактивность - это природное явление, когда происходит самопроизвольный распад ядер атомов, при котором возникают излучения.

По своей физической природе это потоки элементарных, быстродвижущихся частиц, входящих в состав атомных ядер, а также их волновое электромагнитное излучение. Эти излучения имеют большую энергию. Их общим свойством является способность ионизировать вещество, среду, в которой они распространяются: воздух, воду, металлы, человеческий организм и т. д. При этом нейтральные атомы и молекулы вещества распадаются на пары положительно и отрицательно заряженных частиц - ионов.

Ионизация вещества всегда сопровождается изменением его основных физико-химических свойств, а для биологической ткани - нарушением ее жизнедеятельности. Поэтому радиоактивные излучения и оказывают на живой организм поражающее действие.

Для ионизации вещества требуется затрата определенной энергии внешних сил. Поэтому, проникая в вещество и ионизируя его, радиоактивное излучение постепенно теряет свою энергию.

Ионизирующая способность радиоактивного излучения зависит от его типа и энергии, а также свойства ионизирующего вещества и оценивается удельной ионизацией, которая измеряется количеством ионов этого вещества, создаваемых излучением на длине в 1 см.

Чем больше величина удельной ионизации, тем быстрее расходуется энергия излучений, т. е. тем меньший путь пройдет излучение в веществе до полной потери своей энергии. Поэтому чем больше ионизирующая способность излучения, тем меньше его проникающая способность, и наоборот.

Поражение человека радиоактивными излучениями возможно в результате как внешнего, так и внутреннего облучения. Внешнее облучение создается радиоактивными веществами, находящимися вне организма, а внутреннее - попавшими внутрь с воздухом, водой и пищей. Очевидно, что при внешнем облучении наиболее опасны излучения, имеющие высокую проникающую способность, а при внутреннем - ионизирующую.

Считают, что внутреннее облучение более опасно, чем внешнее, от которого нас защищают стены помещений, одежда, кожные покровы, специальные средства защиты и др.

Внутреннее же облучение воздействует на незащищенные ткани, органы, системы тела, причем на молекулярном, клеточном уровне. Поэтому внутреннее облучение поражает организм больше, чем такое же внешнее.

Основные типы радиоактивных излучений: альфа, бета, нейтронные (группа корпускулярных излучений), рентгеновские и гамма-излучения (группа волновых).

Вместе с тем наибольшее загрязнение окружающей среды все же создает сеть радиоизотопных лабораторий (которые имеются в очень многих странах мира), занимающихся использованием радионуклидов в открытом виде для научных и производственных целей. Сбросы радиоактивных отходов в сточные воды даже при концентрациях, меньше допустимых, с течением времени приведут к постепенному накоплению радионуклидов во внешней среде;

ядерные взрывы и возникающее после взрыва радиоактивное загрязнение местности (могут быть как локальные, так и глобальные выпадения радиоактивных осадков). Масштабы и уровни радиоактивных загрязнений при этом зависят от типа ядерных боеприпасов, вида взрывов, мощности заряда, топографических и метеорологических условий.

Похожие публикации