Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Классическая формула сложения вероятностей. Теорема сложения вероятностей совместных событий. Проверить решение упражнений

Теорема сложения

Вероятность наступления одного из нескольких несовместных событий равна сумме вероятностей этих событий.

В случае двух несовместных событий А и В имеем:

Р(А+В) = Р(А) + Р(В) (7)

Событие, противоположное событию А обозначают . Объединение событий А и даёт событие достоверное, а поскольку события А и несовместны, то

Р(А) +Р() = 1 (8)

Вероятность события А, вычисленная в предположении, что событие В наступило, называется условной вероятностью события А и обозначается символом Р В (А).

Если события А и В независимые, то Р(В) = Р А (В).

События А, В, С, … называются независимыми в совокупности , если вероятность каждого из них не меняется в связи с наступлением или ненаступлением других событий по отдельности или в любой комбинации их и в любом числе.

Теорема умножения

Вероятность того, что произойдут события и А, и В, и С, … равна произведению их вероятностей, вычисленных в предположении, что все предшествующие каждому из них события имели место, т. е.

Р(АВ) = Р(А)Р А (В) (9)

Запись Р А (В) обозначает вероятность события В в предположении, что событие А уже имело место.

Если события А, В, С, … независимы в совокупности, то вероятность того, что произойдут все они, равна произведению их вероятностей:

Р(АВС) = Р(А)Р(В)Р(С) (10)

Пример 3.1. В мешке лежат шары: 10 белых, 15 чёрных, 20 голубых и 25 красных. Вынули один шар. Найти вероятность того, что вынутый шар окажется белым? чёрным? И ещё: белый или чёрный?

Решение.

Число всех возможных испытаний n = 10 + 15 + 20 + 25 = 70;

Вероятность Р(б) = 10/70 = 1/7, Р(ч) = 15/70 = 3/14.

Применяем теорему сложения вероятностей:

Р(б + ч) = Р(б) + Р(ч) = 1/7 + 3/14 = 5/14.

Примечание: заглавные буквы в скобках соответственно обозначают цвет каждого шара согласно условию задачи.

Пример 3.2 В первом ящике два белых и десять чёрных шаров. Во втором ящике восемь белых и четыре чёрных шара. Из каждого ящика вынули по шару. Определить вероятность того, что оба шара окажутся белыми.

Решение.

Событие А – появление белого шара из первого ящика. Событие В – появление белого шара из второго ящика. События А и В – независимые.

Вероятности Р(А) = 2/12 = 1/6, Р(В) = 8/12 = 2/3.

Применяем теорему умножения вероятностей:

Р(АВ) = Р(А)Р(В) = 2/18 = 1/9.

Вопросы для повторения

1 Что называется факториалом?

2 Перечислите основные задачи комбинаторики.

3 Что называется перестановками?

4 Что называется перемещениями?

5 Что называется сочетаниями?

6 Какие события называются достоверными?

7 Какие события называются несовместными?

8 Что называется вероятностью события?

9 Что называется условной вероятностью?

10 Сформулируйте теоремы сложения и умножения вероятностей.

11 пр .Размещением из п элементов по к (к ≤ п ) называется любое множество, состоящее из к элементов, взятых в определенном порядке из данных п элементов.

Таким образом, два размещения из п элементов по к считаются различными, если они различаются самими элементами или порядком их расположения Число размещений из п элементов по к обозначают А п к и вычисляют по формуле

А п к =

Если размещения из п элементов по п отличаются друг от друга только порядком элементов, то они представляют собой перестановки из п элементов

Пример1 . Учащиеся второго класса изучают 9 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета

Решение: Любое расписание на один день, составленное из 4 различных предметов, отличается от другого либо набором предметов, либо порядком их следования. Значит, в этом примере речь идет о размещениях из 9 элементов по 4. Имеем

А 9 4 = = 6 ∙ 7 ∙ 8 ∙ 9 = 3024

Расписание можно составить 3024 способами

Пример2. Сколько трехзначных чисел (без повторения цифр в записи числа) можно составить из цифр 0,1,2,3,4,5,6 ?

Решение Если среди семи цифр нет нуля, то число трехзначных чисел (без повторения цифр), которые можно составить из этих цифр, равно числу размещений

22

из 7 элементов по 3. Однако среди данных цифр есть цифра 0, с которой не может начинаться трехзначное число. Поэтом из размещений из 7 элементов по3 надо исключить те, у которых первым элементом является 0. Их число равно числу размещений их 6 элементов по 2. =

Значит искомое число трехзначных чисел равно

А 7 3 - А 6 2 = - = 5 ∙ 6 ∙ 7 - 5 ∙ 6 = 180.

3. Закрепление полученных знаний в процессе решения задач

754 . Сколькими способами может разместиться семья из трех человек в четырехместном купе, если других пассажиров в купе нет?

Решение. Число способов равно А 4 3 = = 1∙ 2 ∙ 3 ∙ 4 = 24

755. Из 30 участников собрания надо выбрать председателя и секретаря. Сколькими способами это можно сделать?

Решение. Т.к.любой из участников может быть как секретарем, так и председателем, то число способов их избрания равно

А 30 2 = = = 29 ∙ 30 = 870

762 Сколько четырехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр: а) 1,3,5,7,9. б) 0,2,4,6,8?

Решение а) А 5 4 = = 1∙ 2 ∙ 3 ∙ 4 ∙ 5 = 120

б)) А 5 4 - А 4 3 = 5! – 4! = 120 – 24= 96

Домашнее задание № 756, №757, № 758, №759.

6урок Тема: « Сочетания»

Цель: Дать понятие о сочетаниях, познакомить с формулой для вычисления сочетаний, научить применять эту формулу для подсчета числа сочетаний.

1 Проверка домашнего задания.

756 . На станции 7 запасных путей. Сколькими способами можно расставить на них 4 поезда?

23

Решение: А 7 4 = = 4 ∙ 5 ∙ 6 ∙ 7 = 20 ∙ 42 = 840 способов

757 Сколькими способами тренер может определить, кто из 12 спортсменок, готовых к участию в эстафете 4х100м, побежит на первом, втором, третьем и четвертом этапах?

Решение: А 12 4 = = 9 ∙ 10 ∙ 11 ∙12 = 90 ∙132 = 11 880

758. В круговой диаграмме круг разбит на 5 секторов. Секторы решили закрасить разными красками, взятыми из набора, содержащего 10 красок. Сколькими способами это можно сделать?

Решение: А 10 5 = = 6 ∙ 7 ∙ 8 ∙ 9∙ 10 = 30 240

759. Сколькими способами 6 студентов, сдающих экзамен, могут занять места в аудитории, в которой 20 одноместных столов?

Решение: А 20 6 = = 15∙ 16 ∙17∙ 18∙19 ∙20 = 27 907 200

Организовать проверку домашнего задания можно разными способами: устно проверить решение домашних упражнений, решения некоторых из них записать на доске, а пока идет запись решений провести опрос уч-ся по вопросам:

1. Что означает запись п!

2.Что называется перестановкой из п элементов?

3.По какой формуле считают число перестановок?

4. Что называют размещением из п элементов по к?

5. п элементов по к?

2 Объяснение нового материала

Пусть имеются 5 гвоздик разного цвета. Обозначим их буквами а, в, с, д, е. Требуется составить букет из трех гвоздик. Выясним, какие букеты могут быть составлены.

Если в букет входит гвоздика а , то можно составить такие букеты:

авс, авд, аве, асд, асе, аде.

Если в букет не входит гвоздика а, но входит гвоздика в , то можно получить такие букеты:

всд, все, вде.

Наконец, если в букет не входит ни гвоздика а, ни гвоздика в, то возможен только один вариант составления букета:

сде.

24

Мы указали все возможные способы составления букетов, в которых по – разному сочетаются три гвоздики из 5. Говорят, что мы составили все возможные сочетания из 5 элементов по 3, мы нашли, что С 5 3 = 10.

Выведем формулу числа сочетаний из п элементов по к, где к ≤ п.

Выясним сначала, как С 5 3 выражается через А 5 3 и Р 3 . Мы нашли, что их 5 элементов можно составить следующие сочетания по 3 элемента:

авс, авд, аве, асд, асе, аде, всд, все, вде, сде.

В каждом сочетании выполним все перестановки. Число перестановок из 3 элементов равно Р 3 . В результате получим все возможные комбинации из 5 элементов по 3, которые различаится либо самими элементами, либо порядком элементов, т.е. все размещения из 5 элементов по 3. Всего мы получим А 5 3 размещений.

Значит , С 5 3 ∙ Р 3 = А 5 3 , отсюда С 5 3 = А 5 3: Р 3

Рассуждая в общем случае получим С п к = А п к: Р к,

Пользуясь тем, что А п к = , где к ≤ п., получим С п к = .

Это формула для вычисления числа сочетаний из п элементов по к при любом

к ≤ п.

Пример1 . Из набора, состоящего из 15 красок, надо выбрать3 краски для окрашивания шкатулки. Сколькими способами можно сделать этот выбор?

Решение: Каждый выбор трех красок отличается от другого хотя бы одной краской. Значит, здесь речь идет о сочетаниях из 15 элементов по 3

С 15 3 = = (13∙ 14∙15) : (1∙ 2 ∙ 3) = 455

Приме2 В классе учатся 12 мальчиков и 10 девочек. Для уборки территории около школы требуется выделить трех мальчиков и двух девочек. Сколькими способами можно сделать этот выбор?

Решение: Выбрать 3 мальчиков из 12 можно С 12 3 , а двух девочек из 10 можно выбрать С 10 2 . Т. к. при каждом выборе мальчиков можно С 10 2 способами выбрать девочек, то сделать выбор учащихся, о котором говориться в задаче можно

С 12 3 ∙ С 10 2 = ∙ = 220 ∙ 45 = 9900

3) Закрепление нового материала, в процессе решения задач

25

Задача

У Саши в домашней библиотеке есть 8 исторических романов. Петя хочет взять у него 2 любых романа. Сколькими способами можно сделать этот выбор?

Решение: С 8 2 = = (7 ∙ 8) : ( 1∙ 2) = 56: 2 = 28

779 а

В шахматном кружке занимаются 16 человек. Сколькими способами тренер может выбрать из них для предстоящего турнира команду из 4 человек?

Решение: С 16 4 = = (13∙ 14∙15 ∙16) : (1∙ 2 ∙ 3 ∙ 4) = 13 ∙ 7 ∙5∙ 4 = 91 ∙20 = 1820

774 Бригада, занимающаяся ремонтом школы, состоит из 12 маляров и 5 плотников. Из них для ремонта спротзала надо выделить 4 маляров и 2 плотников. Сколькими способами можно это сделать?

С 12 4 ∙ С 5 2 = ∙ = 495 ∙ 10 = 4950

Домашняя работа №768, №769, № 770, № 775

7урок Тема: « Решение задач на применение формул для подсчета числа перемещений, размещений, сочетаний»

Цель: Закрепление знаний учащихся. Формирование навыков решения простейших комбинаторных задач

1 Проверка домашнего задания

768 В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Решение: С 7 2 = = (6∙ 7) : 2 = 21

769 В магазине « Филателия» продается 8 различных наборов марок, посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора?

Решение: С 8 3 = = (6 ∙ 7 ∙ 8) : (1∙ 2 ∙ 3) = 56

26

770 Учащимся дали список из 10 книг, которые рекомендуется прочитать во время каникул. Сколькими способами ученик может выбрать из них 6 книг?

Решение: С 10 6 = = (7 ∙ 8 ∙ 9∙ 10) : (1∙ 2 ∙ 3 ∙ 4) = 210

775 В библиотеке читателю предложили на выбор из новых поступлений 10 книг и 4 журнала. Сколькими способами он может выбрать из них 3 книги и 2 журнала?

Решение: С 10 3 ∙ С 4 2 = ∙ = 120 ∙ 6 = 720

Вопросы классу

1.Что называется перестановкой из п элементов?

2.По какой формуле считают число перестановок?

3. Что называют размещением из п элементов по к?

4. По какой формуле считают число размещений из п элементов по к?

5. Что называют сочетанием из п элементов по к?

6. По какой формуле считают число сочетаний из п элементов по к?

Задачи для совместного решения

При решении каждой задачи вначале идет обсуждение: какая из трех изученных формул поможет получить ответ и почему

1. Сколько четырехзначных чисел можно составить из цифр 4,6,8,9, при условии, что все цифры разные?

2. Из 15 человек в группе студентов надо выбрать старосту и его заместителя. Сколькими способами это можно сделать?

3. Из 10 лучших учащихся школы два человека надо послать на слет лидеров.

Сколькими способами это можно сделать?

Замечание: В задаче №3 не имеет значения кого выбрать: любых 2 человек из 10, поэтому здесь работает формула для подсчета числа сочетаний.

В задаче №2 выбирают упорядоченную пару,т.к. в выбранной паре,если фамилии поменять местами это будет уже другой выбор, поэтому здесь работает формула для подсчета числа размещений

Ответы к задачам для совместного решения:

№1 24 числа. №2 210 способов. №3 45 способов

Задачи для совместного обсуждения и самостоятельных вычислений

№1Встретились 6 друзей и каждый пожал руку каждому своему другу. Сколько было рукопожатий?

27

№2 Сколькими способами можно составить расписание для учащихся 1класса на один день, если у них 7 предметов, и в этот день должно быть 4 урока?

(Число размещений из 7 по 4)

№3 В семье 6 человек, а за столом в кухне 6 стульев. Было решено каждый вечер перед ужином рассаживаться на эти 6 стульев по- новому. Сколько дней члены семьи смогут делать это без повторений.

№4 К хозяину дома пришли гости А,В,С,Д. За круглым столом – пять разных стульев. Сколько существует способов рассаживания?

(В гости пришли 4 человека + хозяин = 5 человек рассаживаются на 5 стульях, надо посчитать число перестановок)

5. В книжке раскраске нарисованы непересекающиеся треугольник, квадрат и круг. Каждую фигуру надо раскрасить в один из цветов радуги, разные фигуры в разные цвета. Сколько существует способов раскрашивания?

(Посчитайте число размещений из 7 по 3)

№6 В классе 10 мальчиков и 4 девочки. Надо выбрать 3 человека дежурными так, чтобы среди них было 2 мальчика и 1 девочка. Сколькими способами это можно сделать?

(Число сочетаний из 10 по 2 умножить на число сочетаний из 4 по 1)

Ответы для задач с самостоятельным вычислением

1 15 рукопожатий

2 840 способов

3 720дней

5 120 способов

6 180 способов

Домашнее задание №835, №841

8 урок Тема: « Самостоятельная работа»

Цель: Проверка знаний учащихся

1.Проверка домашнего задании

^ 835 Сколько четных четырехзначных чисел, в которых цифры не повторяются, можно записать с помощью цифр а) 1,2,3,7 . б) 1,2,3,4.

28

а) Наши числа должны оканчиваться четной цифрой, такая цйфра в условии одна это цифра 2 , поставим ее на последнее место, а оставшиеся 3 цифры будем переставлять, число таких перестановок равно 3! = 6 .Значит можно составить 6 четных чисел

б) рассуждаем как в примере а) поставив на последнее место цифру 2 получим 6 четных чисел, поставив на последнее место цифру 4 получим еще 6 четных чисел,

значит всего 12 четных чисел

841 Сколькими способами из класса, где учатся 24 учащихся можно выбрать: а) двух дежурных; б) старосту и его помощника?

а) т.к. дежурными могут быть любые 2 человека из 24 , то количество пар равно

С 24 2 = = 23 ∙ 24:2 = 276

б) здесь выдирают упорядоченную пару элементов из 24 элементов, количество таких пар равно А 24 2 = = 23 ∙ 24 = 552

1 вариант решает задания № 1,2,3,4,5.

2 вариант решает задания №6,7,8,9,10.

Решение простейших комбинаторных задач

(по материалам к.р. в апреле 2010 года)

1 . Сколькими способами можно расставить на полке пять книг разных авторов?

2. Сколькими способами можно составить полдник из напитка и пирожка, если в меню указаны: чай, кофе, какао и пирожки с яблоком или с вишней?

3. В среду по расписанию в 9 «А» классе должно быть 5 уроков: химия, физика, алгебра, биология и ОБЖ. Сколькими способами можно составить расписание на этот день?

4. Имеются 2 белых лошади и 4 гнедых. Сколькими способами можно

составить пару из лошадей разной масти?

5. Каким числом способов можно разложить 5 различных монет в 5 разных карманов?

29

6. В шкафу на полке лежат 3 шапки различных фасонов и 4 шарфа разных цветов. Сколькими способами можно составить набор из одной шапки и одного шарфа?

7. В финал конкурса красоты вышли 4 участницы. Сколькими способами

можно установить очередность выступления участниц финала красоты?

^ 8 .Имеются 4 утки и 3 гуся. Сколькими способами можно из них выбрать две разных птицы?

9. Сколькими способами можно разложить 5 разных писем по 5 разным

конвертам, если в каждый конверт кладется только одно письмо?

10. В коробке хранятся 5 красных и 4 зелёных шара. Сколькими способами можно составить пару из шаров разного цвета?

Ответы для заданий самостоятельной работы

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

СЛОЖЕНИЕ И УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ. ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

Лекция для студентов землеустроительного факультета

заочной формы обучения

Горки, 2012

Сложение и умножение вероятностей. Повторные

независимые испытания

  1. Сложение вероятностей

Суммой двух совместных событий А и В называется событие С , состоящее в наступлении хотя бы одного из событий А или В . Аналогично суммой нескольких совместных событий называется событие, состоящее в наступлении хотя бы одного из этих событий.

Суммой двух несовместных событий А и В называется событие С , состоящее в наступлении или события А , или события В . Аналогично суммой нескольких несовместных событий называется событие, состоящее в наступлении какого-либо одного из этих событий.

Справедлива теорема сложения вероятностей несовместных событий: вероятность суммы двух несовместных событий равна сумме вероятностей этих событий , т.е. . Эту теорему можно распространить на любое конечное число несовместных событий.

Из данной теоремы следует:

сумма вероятностей событий, образующих полную группу, равна единице;

сумма вероятностей противоположных событий равна единице, т.е.
.

Пример 1 . В ящике находятся 2 белых, 3 красных и 5 синих шара. Шары перемешивают и наугад извлекают один. Какова вероятность того, что шар окажется цветным?

Решение . Обозначим события:

A ={извлечён цветной шар};

B ={извлечён белый шар};

C ={извлечён красный шар};

D ={извлечён синий шар}.

Тогда A = C + D . Так как события C , D несовместны, то воспользуемся теоремой сложения вероятностей несовместных событий: .

Пример 2 . В урне находятся 4 белых шара и 6 – чёрных. Из урны наугад вынимают 3 шара. Какова вероятность того, что все они одного цвета?

Решение . Обозначим события:

A ={вынуты шары одного цвета};

B ={вынуты шары белого цвета};

C ={вынуты шары чёрного цвета}.

Так как A = B + C и события В и С несовместны, то по теореме сложения вероятностей несовместных событий
. Вероятность события В равна
, где
4,

. Подставим k и n в формулу и получим
Аналогично найдём вероятность события С :
, где
,
, т.е.
. Тогда
.

Пример 3 . Из колоды в 36 карт наугад вынимают 4 карты. Найти вероятность того, что среди них окажется не менее трёх тузов.

Решение . Обозначим события:

A ={среди вынутых карт не менее трёх тузов};

B ={среди вынутых карт три туза};

C ={среди вынутых карт четыре туза}.

Так как A = B + C , а события В и С несовместны, то
. Найдём вероятности событий В и С :


,
. Следовательно, вероятность того, что среди вынутых карт не менее трёх тузов, равна

0.0022.

  1. Умножение вероятностей

Произведением двух событий А и В называется событие С , состоящее в совместном наступлении этих событий:
. Это определение распространяется на любое конечное число событий.

Два события называются независимыми , если вероятность наступления одного из них не зависит от того, произошло другое событие или нет. События , , … , называются независимыми в совокупности , если вероятность наступления каждого из них не зависит от того, произошли или не произошли другие события.

Пример 4 . Два стрелка стреляют по цели. Обозначим события:

A ={первый стрелок попал в цель};

B ={второй стрелок попал в цель}.

Очевидно, что вероятность попадания в цель первым стрелком не зависит от того, попал или не попал второй стрелок, и наоборот. Следовательно, события А и В независимы.

Справедлива теорема умножения вероятностей независимых событий: вероятность произведения двух независимых событий равна произведению вероятностей этих событий : .

Эта теорема справедлива и для n независимых в совокупности событий: .

Пример 5 . Два стрелка стреляют по одной цели. Вероятность попадания первого стрелка равна 0.9, а второго – 0.7. Оба стрелка одновременно делают по одному выстрелу. Определить вероятность того, что будут иметь место два попадания в цель.

Решение . Обозначим события:

A

B

C ={оба стрелка попадут в цель}.

Так как
, а события А и В независимы, то
, т.е. .

События А и В называются зависимыми , если вероятность наступления одного из них зависит от того, произошло другое событие или нет. Вероятность наступления события А при условии, что событие В уже наступило, называется условной вероятностью и обозначается
или
.

Пример 6 . В урне находятся 4 белых и 7 чёрных шаров. Из урны извлекаются шары. Обозначим события:

A ={извлечён белый шар} ;

B ={извлечён чёрный шар}.

Перед началом извлечения шаров из урны
. Из урны извлекли один шар и он оказался чёрным. Тогда вероятность события А после наступления события В будет уже другой, равной . Это означает, что вероятность события А зависит от события В , т.е. эти события будут зависимыми.

Справедлива теорема умножения вероятностей зависимых событий: вероятность произведения двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило , т.е. или .

Пример 7 . В урне находятся 4 белых шара и 8 красных. Из неё наугад последовательно извлекают два шара. Найти вероятность того, что оба шара будут чёрными.

Решение . Обозначим события:

A ={первым извлечён чёрный шар};

B ={вторым извлечён чёрный шар}.

События А и В зависимы, так как
, а
. Тогда
.

Пример 8 . Три стрелка стреляют по цели независимо друг от друга. Вероятность попадания в цель для первого стрелка равна 0.5, для второго – 0.6 и для третьего – 0.8. Найти вероятность того, что произойдут два попадания в цель, если каждый стрелок сделает по одному выстрелу.

Решение . Обозначим события:

A ={произойдут два попадания в цель};

B ={первый стрелок попадёт в цель};

C ={второй стрелок попадёт в цель};

D ={третий стрелок попадёт в цель};

={первый стрелок не попадёт в цель};

={второй стрелок не попадёт в цель};

={третий стрелок не попадёт в цель}.

По условию примера
,
,
,

,
,
. Так как , то используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получим:

Пусть события
образуют полную группу событий некоторого испытания, а событии А может наступить только с одним из этих событий. Если известны вероятности и условные вероятности события А , то вероятность события А вычисляется по формуле:

Или
. Эта формула называется формулой полной вероятности , а события
гипотезами .

Пример 9 . На сборочный конвейер поступает 700 деталей с первого станка и 300 деталей со второго. Первый станок даёт 0.5% брака, а второй – 0.7%. Найти вероятность того, что взятая деталь будет бракованной.

Решение . Обозначим события:

A ={взятая деталь будет бракованной};

={деталь изготовлена на первом станке};

={деталь изготовлена на втором станке}.

Вероятность того, что деталь изготовлена на первом станке, равна
. Для второго станка
. По условию вероятность получения бракованной детали, изготовленной на первом станке, равна
. Для второго станка эта вероятность равна
. Тогда вероятность того, что взятая деталь будет бракованной, вычисляется по формуле полной вероятности

Если известно, что в результате испытания наступило некоторое событие А , то вероятность того, что это событие наступило с гипотезой
, равна
, где
- полная вероятность события А . Эта формула называется формулой Байеса и позволяет вычислять вероятности событий
после того, как стало известно, что событие А уже наступило.

Пример 10 . Однотипные детали к автомобилям производятся на двух заводах и поступают в магазин. Первый завод производит 80% общего количества деталей, а второй – 20%. Продукция первого завода содержит 90% стандартных деталей, а второго – 95%. Покупатель купил одну деталь и она оказалась стандартной. Найти вероятность того, что эта деталь изготовлена на втором заводе.

Решение . Обозначим события:

A ={куплена стандартная деталь};

={деталь изготовлена на первом заводе};

={деталь изготовлена на втором заводе}.

По условию примера
,
,
и
. Вычислим полную вероятность события А : 0.91. Вероятность того, что деталь изготовлена на втором заводе, вычислим по формуле Байеса:

.

Задания для самостоятельной работы

    Вероятность попадания в цель для первого стрелка равна 0.8, для второго – 0.7 и для третьего – 0.9. Стрелки произвели по одному выстрелу. Найти вероятность того, что имеет место не менее двух попаданий в цель.

    В ремонтную мастерскую поступило 15 тракторов. Известно, что 6 из них нуждаются в замене двигателя, а остальные – в замене отдельных узлов. Случайным образом отбираются три трактора. Найти вероятность того, что замена двигателя необходима не более, чем двум отобранным тракторам.

    На железобетонном заводе изготавливают панели, 80% из которых – высшего качества. Найти вероятность того, что из трёх наугад выбранных панелей не менее двух будут высшего сорта.

    Три рабочих собирают подшипники. Вероятность того, что подшипник, собранный первым рабочим, высшего качества, равна 0.7, вторым – 0.8 и третьим – 0.6. Для контроля наугад взято по одному подшипнику из собранных каждым рабочим. Найти вероятность того, что не менее двух из них будут высшего качества.

    Вероятность выигрыша по лотерейному билету первого выпуска равна 0.2, второго – 0.3 и третьего – 0.25. Имеются по одному билету каждого выпуска. Найти вероятность того, что выиграет не менее двух билетов.

    Бухгалтер выполняет расчёты, пользуясь тремя справочниками. Вероятность того, что интересующие его данные находятся в первом справочнике, равна 0.6, во втором – 0.7 ив третьем – 0.8. Найти вероятность того, что интересующие бухгалтера данные содержатся не более, чем в двух справочниках.

    Три автомата изготавливают детали. Первый автомат изготавливает деталь высшего качества с вероятностью 0.9, второй – с вероятностью 0.7 и третий – с вероятностью 0.6. Наугад берут по одной детали с каждого автомата. Найти вероятность того, что среди них не менее двух высшего качества.

    На двух станках обрабатываются однотипные детали. Вероятность изготовления нестандартной детали для первого станка равна 0.03, в для второго – 0.02. Обработанные детали складываются в одном месте. Среди них 67% с первого станка, а остальные – со второго. Наугад взятая деталь оказалась стандартной. Найти вероятность того, что она изготовлена на первом станке.

    В мастерскую поступили две коробки однотипных конденсаторов. В первой коробке было 20 конденсаторов, из которых 2 неисправных. Во второй коробки 10 конденсаторов, из которых 3 неисправных. Конденсаторы были переложены в один ящик. Найти вероятность того, что наугад взятый из ящика конденсатор окажется исправным.

    На трёх станках изготавливают однотипные детали, которые поступают на общий конвейер. Среди всех деталей 20% с первого автомата, 30% - со второго и 505 – с третьего. Вероятность изготовления стандартной детали на первом станке равна 0.8, на втором – 0.6 и на третьем – 0.7. Взятая деталь оказалась стандартной. Найти вероятность того, эта деталь изготовлена на третьем станке.

    Комплектовщик получает для сборки 40% деталей с завода А , а остальные – с завода В . Вероятность того, что деталь с завода А – высшего качества, равна 0.8, а с завода В – 0.9. Комплектовщик наугад взял одну деталь и она оказалась не высшего качества. Найти вероятность того, что эта деталь с завода В .

    Для участия в студенческих спортивных соревнованиях выделено 10 студентов из первой группы и 8 – из второй. Вероятность того, что студент из первой группы попадёт в сборную академии, равна 0.8, а со второй – 0.7. Наугад выбранный студент попал в сборную. Найти вероятность того, что он из первой группы.

Лекция 7. Теория вероятностей

СЛЕДСТВИЯ ТЕОРЕМ СЛОЖЕНИЯ И УМНОЖЕНИЯ

Теорема сложения вероятностей совместных событий

Была рассмотрена теорема сложения для несовместных событий. Здесь будет изложена теорема сложения для совместных событий.

Два события называют совместными , если появление одного из них не исключает появления другого в одном и том же испытании.

Пример 1 . А – появление четырех очков при бросании игральной кости; В – появление четного числа очков. События А и В – совместные.

Пусть события А и В совместны, причем даны вероятности этих событий и вероятность их совместного появления. Как найти вероятность события А + В, состоящего в том, что появится хотя бы одно из событий А и В? Ответ на этот вопрос дает теорема сложения вероятностей совместных событий.

Теорема . Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления: Р(А + В) = Р(А) + Р(В) – Р(АВ).

Доказательство . Поскольку события А и В, по условию, совместны, то событие А + В наступит, если наступит одно из следующих трех несовместных событий: . По теореме сложения вероятностей несовместных событий, имеем:

Р(А + В) = Р(А ) + Р( В) + Р(АВ). (*)

Событие А произойдет, если наступит одно из двух несовместных событий: А
или АВ. По теореме сложения вероятностей несовместных событий имеем

Р(А) = Р(А ) + Р(АВ).

Р(А )=Р(А) – Р(АВ). (**)

Аналогично имеем

Р(В) = Р(ĀВ) + Р(АВ).

Р(ĀВ) = Р(В) – Р(АВ). (***)

Подставив (**) и (***) в (*), окончательно получим

Р(А + В) = Р(А) + Р(В) – Р(АВ). (****)

Что и требовалось доказать.

Замечание 1. При использовании полученной формулы следует иметь в виду, что события А и В могут быть как независимыми , так и зависимыми .

Для независимых событий

Р(А + В) = Р(А) + Р(В) – Р(А)*Р(В);

Для зависимых событий

Р(А + В) = Р(А) + Р(В) – Р(А)*Р А (В).

Замечание 2. Если события А и В несовместны , то их совмещение есть невозможное событие и, следовательно, Р(АВ) = 0.

Формула (****) для несовместных событий принимает вид

Р(А + В) = Р(А) + Р(В).

Мы вновь получили теорему сложения для несовместных событий. Таким образом, формула (****) справедлива как для совместных, так и для несовместных событий.

Пример 2. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: p 1 = 0,7; p 2 = 0,8. Найти вероятность попадания при одном залпе
(из обоих орудий) хотя бы одним из орудий.

Решение . Вероятность попадания в цель каждым из орудий не зависит от результата стрельбы из другого орудия, поэтому события А (попадание первого орудия) и В (попадание второго орудия) независимы.


Вероятность события АВ (оба орудия дали попадание)

Р(АВ) = Р(А) * Р(В) = 0,7 * 0,8 = 0,56.

Искомая вероятность Р(А + В) = Р(А) + Р(В) – Р(АВ) = 0,7 + 0,8 – 0,56 = 0,94.

Замечание 3. Так как в настоящем примере события А и В независимые, то можно было воспользоваться формулой Р = 1 – q 1 q 2

В самом деле, вероятности событий, противоположных событиям А и В, т.е. вероятности промахов, таковы:

q 1 = 1 – p 1 = 1 – 0,7 = 0,3;

q 2 = 1 – p 2 = 1 – 0,8 = 0,2;

Искомая вероятность того, что при одном залпе хотя бы одно орудие даст попадание, равна

P = 1 – q 1 q 2 = 1 – 0,3 * 0,2 = 1 – 0,06 = 0,94.

Как и следовало ожидать, получен тот же результат.

Из пункта 2 аксиомы, по которой вводилось определение вероятности события, следует, что если A 1 и A 2 несовместные события, то

) = P(A 1) + P(A 2)

Если A 1 и A 2 - совместные события, то

=(A 1 \A 2), причем очевидно, что A 1 \A 2 и A 2 - несовместные события. Отсюда следует: ) = P(A 1 \A 2) + P(A 2) (*) , причем A 1 \A 2 и – несовместные события, откуда следует: P(A 1) = P(A 1 \A 2) + P() Найдем из этой формулы выражение для P(A 1 \ A 2) и подставим его в правую часть формулы (*). В результате получим формулу сложения вероятностей: )= P(A 1) + P(A 2) – P()

Из последней формулы легко получить формулу сложения вероятностей для несовместных событий, положив

= Æ.

Пример 1. Найти вероятность вытащить туза или червовую масть при случайном отборе одной карты из колоды в 32 листа.

Р(ТУЗ) = 4/32 = 1/8; Р(ЧЕРВОВАЯ МАСТЬ) = 8/32 = 1/4;

Р(ТУЗЧЕРВЕЙ)=1/32;

(ЧЕРВОВАЯ МАСТЬ)) = 1/8 + 1/4 – 1/32 =11/32

Того же результата можно было достичь с помощью классического определения вероятности, пересчитав число благоприятных исходов.

Условные вероятности.

Рассмотрим задачу. Студент перед экзаменом выучил из 30 билетов билеты с номерами с 1 по 5 и с 26 по 30. Известно, что студент на экзамене вытащил билет с номером, не превышающим 20. Какова вероятность, что студент вытащил выученный билет?

Определим пространство элементарных исходов: W=(1,2,3,...,28,29,30). Пусть событие А заключается в том, что студент вытащил выученный билет: А=(1,...,5,25,...,30,), а событие В - в том, что студент вытащил билет из первых двадцати: В=(1,2,3,...,20)

состоит из пяти исходов: (1,2,3,4,5), и его вероятность равна 5/30. Это число можно представить как произведение дробей 5/20 и 20/30. Число 20/30 – это вероятность события B. Число 5/20 можно рассматривать как вероятность события А при условии, что событие В произошло (обозначим её Р(А/В)). Таким образом, решение задачи определяется формулой

Р(А/В) = P(АÇВ) /Р(B) (1)

Р(А/В) называется условной вероятностью события A при условии, что событие В произошло. Формулу (1) можно рассматривать, как определение условной вероятности. Эту же формулу можно переписать в виде

P(АÇВ)=Р(А/В)Р(B) (2)

Формула (2) называется формулой умножения вероятностей (теоремой умножения вероятностей), а условная вероятность Р(А/В) здесь должна восприниматься просто по смыслу.

Пример 2. Из урны, содержащей 7 белых и 3 черных шаров, наудачу один за другим извлекают (без возвращения) два шара. Какова вероятность того, что первый шар будет белым, а второй черным?

Пусть X – событие, состоящее в извлечении первым белого шара, а Y - событие, состоящее в извлечении вторым черного шара. Тогда

– событие, заключающееся в том, что первый шар будет белым, а второй - черным. P(Y/X) =3/9 =1/3 - условная вероятность извлечения вторым черного шара, если первым был извлечен белый. Учитывая, что P(X) = 7/10, по формуле умножения вероятностей получаем: P() = 7/30

Событие А называется независимым от события В (иначе: события А и В называются независимыми), если Р(А/В)=Р(А). За определение независимых событий можно принять следствие последней формулы и формулы умножения

P(АÇВ)= Р(А) Р(B)

Докажите самостоятельно, что если А и В - независимые события, то

и тоже являются независимыми событиями.

Пример 3. Найти вероятность того, что при трёх бросках игральной кости три раза выпадет шестёрка. Очевидно, что при каждом броске результат не зависит от результатов предыдущих бросков, и искомая вероятность равна (1/6) 3 =1/216.

Определим в условиях этой задачи вероятность того, что при трёх бросках в сумме выпало 4 очка. Выпишем благоприятные исходы: “1,1,2”, “1,2,1”, “2,1,1”. Вероятность каждого из этих исходов равна 1/216. Так как все эти исходы несовместимы, интересующая нас вероятность будет равна 3/216=1/72.

Пример 4. Из колоды карт в 32 листа извлекается одна карта. Пусть А – событие, состоящее в том, что извлечённая карта – дама. Событие В состоит в том, что извлечённая карта пиковой масти. Очевидно, что Р(А)=4/32=1/8. Вычислим величину вероятность того, что извлечённая карта –дама при условии, что эта карта пиковой масти, то есть Р(А/В). Очевидно, что Р(АÇВ)=1/32, и Р(В)=8/32. Тогда Р(А/В)=Р(АÇВ)/ Р(В)=1/8, то есть Р(А)=Р(А/В). Отсюда следует, что события А и В независимы.

Пусть событие С заключается в том, что извлечённая карта не туз. Покажем, что события А и С зависимы. Очевидно, что Р(АÇС)=Р(А)=1/8. Р(С)=28/32=7/8. Отсюда получаем Р(А/С)=1/7, и это не равно величине Р(А), следовательно, события А и С зависимы.

Пример 5. Рассмотрим задачу, аналогичную задаче из примера 2, но с одним дополнительным условием: вытащив первый шар, запоминаем его цвет и возвращаем шар в урну, после чего все шары перемешиваем. В данном случае результат второго извлечения никак не зависит от того, какой шар – черный или белый появился при первом извлечении. Вероятность появления первым белого шара (событие А) равна 7/10. Вероятность события В – появления вторым черного шара – равна 3/10. Теперь формула умножения вероятностей дает: P(АÇВ)=21/100.

Извлечение шаров способом, описанным в этом примере, называется выборкой с возвращением или возвратной выборкой.

Следует отметить, что если в двух последних примерах положить изначальные количества белых и черных шаров равными соответственно 7000 и 3000, то результаты расчетов тех же вероятностей будут отличаться пренебрежимо мало для возвратной и безвозвратной выборок.

Рассмотрим некоторые задачи на применение теорем сложения и умножения вероятностей.

1. Три стрелка стреляют в мишень. Каждый попадает в мишень или не попадает в мишень независимо от результатов выстрелов остальных стрелков. Первый стрелок попадает в мишень с вероятностью 0,9, второй – с вероятностью 0,8, а третий – с вероятностью 0,7. Найти вероятность того, что мишень будет поражена?

Вопрос можно поставить иначе: какова вероятность того, что хотя бы один стрелок попадёт в мишень? Очевидно, что мишень будет поражена, если все трое попадут в мишень, если в мишень попадут любые двое стрелков, а третий не попадёт и т. д. Пусть событие А состоит в том, что хотя бы один из стрелков попал в мишень. Тогда противоположное событие

заключается в том, что все трое не попали в мишень. Если первый не попадает в мишень с вероятностью 0,1, второй – с вероятностью 0,2, а третий – с вероятностью 0,3, то по теореме умножения вероятностей Р()=0,1×0,2×0,3=0,006. Тогда Р(А)=1–Р()=0,994.

2. При включении двигатель начинает работать с вероятностью р. а) Найти вероятность того, что двигатель начнёт работать с второго включения. б) Найти вероятность того, что для запуска двигателя потребуется не более двух включений.

а) Для того, чтобы двигатель начал работать со второго включения, нужно, во-первых, чтобы он не запустился при первом включении (событие А). Это происходит с вероятностью 1–р. При втором включении двигатель запустится (событие В) с вероятностью р. Нас интересует вероятность события АÇВ. Из условия задачи можно понять, что события А и В независимы. Отсюда P(АÇВ)=р(1–р).

б) Нас интересует вероятность события, состоящего в том, что двигатель запустится при первом включении или при втором включении. Противоположное событие заключается в том, что двигатель не запустится ни при первом, н при втором включении. Вероятность этого противоположного события равна (1–р) 2 . Отсюда вероятность интересующего нас события равна 1–(1–р) 2 .

3. В семье Ивановых 4 ребёнка. Известно, что один из детей – мальчик. Найти вероятность того, что все дети –мальчики. Принять вероятность рождения мальчика и вероятность рождения девочки равными 1/2 и не зависящими от того, какого пола дети уже имеются в семье.

Пусть событие В состоит в том, что все дети в семье – мальчики, событие А состоит в том, что в семье есть хотя бы один мальчик (именно так мы должны понимать условие задачи). Нас интересует величина Р(В/А). Для того, чтобы воспользоваться формулой условной вероятности, надо, во-первых, вычислить P(АÇВ). В нашем случае событие А является следствием события В, поэтому P(АÇВ)=Р(В) (смотри объяснение к теме 2). По условию задачи Р(В)=(1/2) 4 =1/16. Чтобы вычислить Р(А), заметим, что событие

состоит в том, что все дети в семье –девочки. Очевидно, что Р()=(1/2) 4 =1/16. Тогда Р(А)=1–Р()=15/16. Теперь можно воспользоваться формулой для определения условной вероятности Р(В/А) = P(АÇВ)/Р(А). В результате получается Р(В/А)=(1/16)/(15/16)=1/15.

Сложение и умножение вероятностей. В этой статье речь пойдёт о решении задач по теории вероятностей. Ранее мы с вами уже разбирали некоторые простейшие задания, для их решения достаточно знать и понимать формулу (советую повторить).

Есть тины задачи немного сложнее, для их решения необходимо знать и понимать: правило сложения вероятностей, правило умножения вероятностей, понятия зависимые и независимые события, противоположные события, совместные и несовместные события. Не пугайтесь определений, все просто)). В этой статье мы с вами именно такие задачи и рассмотрим.

Немного важной и простой теории:

несовместными , если появление одного из них исключает появление других. То есть, может произойти только одно определённое событие, либо другое.

Классический пример: при бросании игральной кости (кубика) может выпасть только единица, либо только двойка, либо только тройка и т.д. Каждое из этих событий несовместно с другими и совершение одного из них исключает совершение другого (в одном испытании). Тоже самое с монетой — выпадение «орла» исключает возможность выпадение «решки».

Также это относится и к более сложным комбинациям. Например, горят две лампы освещения. Каждая из них может перегореть или не перегореть в течение какого-то времени. Существую варианты:

  1. Перегорает первая и перегорает вторя
  2. Перегорает первая и не перегорает вторая
  3. Не перегорает первая и перегорает вторая
  4. Не перегорает первая и перегорает вторая.

Все эти 4 варианта событий несовместны — они вместе произойти просто не могут и никакое из них с любым другим...

Определение: События называются совместными , если появление одного из них не исключает появление другого.

Пример: из колоды карт будет взята дама и из колоды карт будет взята карта пик. Рассматриваются два события. Данные события не исключают друг друга — можно вытащить даму пик и, таким образом, произойдут оба события.

О сумме вероятностей

Суммой двух событий А и В называется событие А+В, которое состоит в том, что наступит или событие А или событие В или оба одновременно.

Если происходят несовместные события А и В, то вероятность суммы данных событий равна сумме вероятностей событий:


Пример с игральной костью:

Бросаем игральную кость. Какова вероятность выпадения числа меньшего четырёх?

Числа меньшие четырёх это 1,2,3. Мы знаем, что вероятность выпадения единицы равна 1/6, двойки 1/6, тройки 1/6. Это несовместные события. Можем применить правило сложения. Вероятность выпадения числа меньшего четырёх равна:

Действительно, если исходить из понятия классической вероятности: то число всевозможных исходов равно 6 (число всех граней кубика), число благоприятных исходов равно 3 (выпадение единицы, двойки или тройки). Искомая вероятность равна 3 к 6 или 3/6 = 0,5.

*Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без учёта их совместного появления: Р(А+В)=Р(А)+Р(В) -Р(АВ)

Об умножении вероятностей

Пусть происходят два несовместных события А и В, их вероятности соответственно равны Р(А) и Р(В). Произведением двух событий А и В называют такое событие А·В, которое состоит в том что эти события произойдут вместе, то есть произойдёт и событие А и событие В. Вероятность такого события равна произведению вероятностей событий А и В. Вычисляется по формуле:

Как вы уже заметили логическая связка «И» означает умножение.

Пример с той же игральной костью: Бросаем игральную кость два раза. Какова вероятность выпадения двух шестёрок?

Вероятность выпадения шестёрки первый раз равна 1/6. Во второй раз так же равна 1/6. Вероятность выпадения шестёрки и в первый раз и во второй раз равна произведению вероятностей:

Говоря простым языком: когда в одном испытании происходит некоторое событие, И далее происходит(ят) другое (другие), то вероятность того что они произойдут вместе равна произведению вероятностей этих событий.

Задачи с игральной костью мы решали, но пользовались только логическими рассуждениями, формулу произведения не использовали. В рассматриваемых же ниже задачах без формул не обойтись, вернее с ними будет получить результат проще и быстрее.

Стоит сказать ещё об одном нюансе. При рассуждениях в решении задач используется понятие ОДНОВРЕМЕННОСТЬ совершения событий. События происходят ОДНОВРЕМЕННО — это не означает, что они происходят в одну секунду (в один момент времени). Это значит, что они происходят в некоторый промежуток времени (при одном испытании).

Например:

Две лампы перегорают в течение года (может быть сказано — одновременно в течение года)

Два автомата ломаются в течении месяца (может быть сказано — одновременно в течение месяца)

Игральная кость бросается три раза (очки выпадают одновременно это означает при одном испытании)

Биатлонист делает пять выстрелов. События (выстрелы) происходят во время одного испытания.

События А и В являются НЕзависимыми, если вероятность любого из них не зависит от появления либо непоявления другого события.

Рассмотрим задачи:

Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 35 % этих стекол, вторая –– 65%. Первая фабрика выпускает 4% бракованных стекол, а вторая –– 2%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Первая фабрика выпускает 0,35 продукции (стёкол). Вероятность купить бракованное стекло с первой фабрики равна 0,04.

Вторая фабрика выпускает 0,65 стёкол. Вероятность купить бракованное стекло со второй фабрики равна 0,02.

Вероятность того, что стекло куплено на первой фабрике И при этом оно окажется бракованным равна 0,35∙0,04 = 0,0140.

Вероятность того, что стекло куплено на второй фабрике И при этом оно окажется бракованным равна 0,65∙0,02 = 0,0130.

Покупка в магазине бракованного стекла подразумевает, что оно (бракованное стекло) куплено ЛИБО с первой фабрики, ЛИБО со второй. Это несовместные события, то есть полученные вероятности складываем:

0,0140 + 0,0130 = 0,027

Ответ: 0,027

Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,62. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,2. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Возможность выиграть первую и вторую партию не зависят друг от друга. Сказано, что гроссмейстер должен выиграть оба раза, то есть выиграть первый раз И при этом выиграть ещё и второй раз. В случае, когда независимые события должны произойти совместно вероятности этих событий перемножаются, то есть используется правило умножения.

Вероятность произведения указанных событий будет равна 0,62∙0,2 = 0,124.

Ответ: 0,124

На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,3. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

То есть необходимо найти вероятность того, что школьнику достанется вопрос ЛИБО по теме «Вписанная окружность», ЛИБО по теме «Параллелограмм». В данном случае вероятности суммируются, так как это события несовместные и произойти может любое из этих событий: 0,3 + 0,25 = 0,55.

*Несовместные события – это события, которые не могут произойти одновременно.

Ответ: 0,55

Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,9. Найдите вероятность того, что биатлонист первые четыре раза попал в мишени, а последний промахнулся. Результат округлите до сотых.

Поскольку биатлонист попадает в мишень с вероятностью 0,9, то он промахивается с вероятностью 1 – 0,9 = 0,1

*Промах и попадание это события, которые при одном выстреле не могут произойти одновременно, сумма вероятностей этих событий равна 1.

Речь идёт о совершении нескольких (независимых) событий. Если происходит событие и при этом происходит другое (последующие) в одно время (испытание), то вероятности этих событий перемножаются.

Вероятность произведения независимых событий равна произведению их вероятностей.

Таким образом, вероятность события «попал, попал, попал, попал, промахнулся» равна 0,9∙0,9∙0,9∙0,9∙0,1 = 0,06561.

Округляем до сотых, получаем 0,07

Ответ: 0,07

В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,07 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Найдем вероятность того, что неисправны оба автомата.

Эти события независимые, значит вероятность будет равна произведению вероятностей этих событий: 0,07∙0,07 = 0,0049.

Значит, вероятность того, что исправны оба автомата или какой-то из них будет равна 1 – 0,0049 = 0,9951.

*Исправны оба и какой-то один полностью – отвечает условию «хотя бы один».

Можно представить вероятности всех (независимых) событий для проверки:

1. «неисправен-неисправен» 0,07∙0,07 = 0,0049

2. «исправен-неисправен» 0,93∙0,07 = 0,0651

3. «неисправен-исправен» 0,07∙0,93 = 0,0651

4. «исправен-исправен» 0,93∙0,93 = 0,8649

Чтобы определить вероятность того, что исправен хотя бы один автомат, необходимо сложить вероятности независимых событий 2,3 и 4: Достоверным событием называется событие, которое наверняка произойдет в результате опыта. Событие называется невозможным, если оно никогда не произойдет в результате опыта.

Например, если из коробки, содержащей только красные и зеленые шары, наугад вынимают один шар, то появление среди вынутых шаров белого – невозможное событие. Появление красного и появление зеленого шаров образуют полную группу событий.

Определение: События называются равновозможными , если нет оснований считать, что одно из них появится в результате опыта с большей вероятностью.

В приведенном выше примере появление красного и зеленого шаров – равновозможные события, если в коробке находится одинаковое количество красных и зеленых шаров. Если же в коробке красных шаров больше, чем зеленых, то появление зеленого шара – событие менее вероятное, чем появление красного.

В мы рассмотрим ещё задачи, где используется сумма и произведение вероятностей событий, не пропустите!

На этом всё. Успехов вам!

С уважением, Александр Крутицких.

Марья Ивановна ругает Васю:
— Петров, ты почему вчера не был в школе?!
— Мне мама вчера штаны постирала.
— Ну и что?
— А я шел мимо дома и увидел, что Ваши висят. Думал, не придете.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Похожие публикации