Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Определение предельной полевой влагоемкости почвы. Определение влагоемкости почвы Полная влагоемкость почвы

ВЛАГОЕМКОСТЬ ПОЧВЫ, величина, количественно характеризующая водоудерживающую способность почвы; способность почвы поглощать и удерживать в себе от стекания определенное количество влаги действием капиллярных и сорбционных сил. В зависимости от условий, удерживающих влагу в почве, различают несколько видов В. п.: максимальную адсорбционную, капиллярную, наименьшую и полную.

Максимальная адсорбционная ВЛАГОЕМКОСТЬ ПОЧВЫ, связанная влага, сорбированная влага, ориентировочная влага - наибольшее количество прочно связанной воды, удерживаемое сорбционными силами. Чем тяжелее гранулометрический состав почвы и выше содержание в ней гумуса, тем больше доля связанной, почти недоступной винограду и др. культурам влаги в почве.

Капиллярная ВЛАГОЕМКОСТЬ ПОЧВЫ - максимальное количество влаги, удерживаемое в почвогрунте над уровнем грунтовых вод капиллярными (менисковыми) силами. Зависит от мощности слоя, в котором она определяется, и его удаленности от зеркала грунтовых вод. Чем больше мощность слоя и меньше его удаление от зеркала грунтовых вод, тем выше капиллярная В. п. При равном удалении от зеркала ее величина обусловлена общей и капиллярной пористостью, а также плотностью почвы. С капиллярной В. п. связана капиллярная кайма (слой подпертой влаги между уровнем грунтовых вод и верхней границей фронта смачивания почвы). В условиях достаточного тепла и пресных грунтовых вод допускается размещение винограда, особенно столовых сортов, при наличии капиллярной каймы в нижней части корнеобитаемого слоя. При засоленных грунтовых водах капиллярная кайма должна быть ниже корнеобитаемого слоя, чтобы не происходило его засоление, вредное для винограда. Капиллярная В. п. характеризует культурное состояние почвы. Чем почва менее оструктурена, тем больше в ней происходит капиллярный подъем влаги, ее физич. испарение и, зачастую, накопление в верхней части легкорастворимых, в т.ч. и вредных для винограда, солей.

Наименьшая ВЛАГОЕМКОСТЬ ПОЧВЫ, полевая ВЛАГОЕМКОСТЬ ПОЧВЫ - количество воды, фактически удерживаемое почвой в природных условиях в состоянии равновесия, когда устранено испарение и дополнительный приток воды. Эта величина зависит от гранулометрич., минералогич. и химического состава почвы, ее плотности и пористости. Применяется при расчете поливных норм. Полная В. п., водовместимость почвы - содержание влаги в почве при условии полного заполнения всех пор водой. При полной В. п. влага, находившаяся в крупных промежутках между частицами почвы, непосредственно удерживается зеркалом воды или водоупорным слоем. Водовместимость почвы рассчитывается по ее общей пористости. Значение величины полной В. п. необходимо при подсчете способности водовпитывания без образования поверхностного стока, для определения способности водоотдачи почвы, высоты подъема грунтовых вод при обильных дождях или орошении виноградников.
Литература: Роде А. А. Основы учения о почвенной влаге. - Л., 1992-1969.
- Ч. 1-2; Почвоведение / Под ред. И. С. Кауричева. - 3-е изд., - Москва,
1982.

Влагоемкость почвы – величина, которая количественно характеризует водоудерживающую способность почвы. Как и влажность, влагоемкость определяется в % к весу сухой почвы. В зависимости от сил, удерживающих влагу в почвах, различают три основные категории влагоемкости: полная, наименьшая и капиллярная.

Полная влагоемкость – это максимальное количество воды, которое может удерживать почва с использованием всех влагоудерживающих сил.

Наименьшая влагоемкость – это максимальное количество воды, которое почва может удерживать в химических связях и коллоидных системах.

Капиллярная влагоемкость – это максимальное количество воды, которое почва может удеживать в своих капиллярах.

Материалы и оборудование

1) стеклянные цилиндры без дна; 2) марля; 3) ванночки; 4) фильтровальная бумага; 5) технические весы; 6) образцы почвы.

Ход работы

Стеклянный цилиндр без дна обвязывают марлей с нижнего конца. В предварительно взвешенный на технических весах цилиндр насыпают, слегка уплотняя постукиванием, почву на высоту 10 см. Определяют массу цилиндра с почвой. Далее цилиндр с почвой помещают в специальную ванночку с водой – так, чтобы дно цилиндра стояло на фильтровальной бумаге, концы которой опущены в воду.

Вода по порам бумаги передается почве, производя ее капиллярное насыщение. Через каждые сутки цилиндр взвешивают на технических весах до тех пор, пока его масса не перестанет возрастать. Это укажет на то, что почва достигла полного капиллярного насыщения. Капиллярную влагоёмкость рассчитывают по формуле:

где КВ – капиллярная влагоёмкость, %;В – масса почвы в цилиндре после насыщения, г;

М – масса абсолютно сухой почвы, г.

Поскольку в цилиндр помещается воздушно-сухая навеска, а расчеты производятся на массу абсолютно сухой почвы, поэтому массу абсолютно сухой почвы предварительно надо вычислить, используя значение коэффициента пересчёта, полученное в предыдущей работе (все лабораторные работы выполняются с тем же почвенным образцом) по формуле:

где М – масса абсолютно сухой почвы,b – вес воздушно-сухой почвы,

k H 2 O ‑ коэффициент гигроскопичности.

Полученные результаты занести в таблицу.

Лабораторная работа № 7

Определение кислотности почвы

Основные сведения по теме работы

Кислотность почв – это их способность обуславливать кислую реакцию почвенного раствора за счет наличия в ней катионов водорода. Наиболее распространенным источником кислотности почв являются фульвокислоты, которые образуются при разложении растительных остатков. Кроме них в почве присутствуют многие низкомолекулярные кислоты – органические (масляная, уксусная) и неорганические (угольная, серная, соляная).

Кислотность – это диагностический параметр, оказывающий значительное влияние на жизнь обитателей почвы и произрастающих на ней растений. Для большинства сельскохозяйственных культур оптимальные диапазоны кислотности близки к нейтральным, однако многие естественные почвы являются щелочными или кислыми, поэтому возникает необходимость оценки и, при необходимости, коррекции их кислотности.

Избыточная кислотность прямо или косвенно оказывает негативное влияние на растения. Подкисление почв приводит к нарушению их структуры, что в свою очередь вызывает резкое ухудшение аэрации и капиллярных свойств почвы. Избыточная кислотность подавляет жизнедеятельность полезных микроорганизмов (особенно нитрификаторов и азотфиксаторов), усиливает связывание фосфора алюминием, что нарушает ионообменные процессы в корнях растений. В конечном счете, эти процессы приводят к закупорке корневых сосудов и отмиранию корневой системы.

Различают две формы кислотности - актуальную и потенциальную.

    Актуальная кислотность обусловлена наличием в почвенном растворе свободных ионов водорода, образовавшихся в результате диссоциации водорастворимых органических и слабых минеральных кислот, а также гидролитически кислых солей. Она непосредственно влияет на развитие растений и микроорганизмов.

    Потенциальная кислотность характеризуется наличием в почвенно-поглотительном комплексе ионов Н + и Al 3+ , которые при взаимодействии твердой фазы с катионами солей вытесняются в почвенный раствор и подкисляют его.

Определение кислотности почвы как правило проводится потенциометрическим методом. Он основан на измерении электродвижущей силы в цепи, состоящей из двух полуэлементов: электрода измерения, погруженного в испытуемый раствор, и вспомогательного электрода с постоянным значением потенциала. Прибор для измерения рН называется потенциометром или рН-метром.

Результаты потенциометрического измерения рН почвы оцениваются по стандартным шкалам. В практическом почвоведении используется классификация почв по уровню рН водной вытяжки (актуальная кислотность) или солевой вытяжки (потенциальная кислотность) (табл. 6).

Табл. 6. Классификация почв по уровню кислотности

Тип почвы

Очень сильнокислые

Сильнокислые

Слабокислые

Близкие к нейтральным

Нейтральные

Слабощелочные

Щелочные

Сильнощелочные

Очень сильнощелочные

Материалы и оборудование

1) химические стаканчики на 100-150 мл, 2) 1 N раствор КСl, 3) потенциометр (рН-метр), 4) технические весы; 5) образцы почвы.

Ход работы

Для определения актуальной кислотности следует на технических весах взвесить 20 г воздушно-сухой почвы. Навеску поместить в химический стакан на 100-150 мл и прилить 50 мл дистиллированной воды. Содержимое перемешивать 1-2 мин и оставить стоять 5 мин. Перед определением суспензию еще раз перемешать, после чего полностью погрузить в нее электрод измерения и электрод сравнения. Через 30-60 сек. отсчитать по шкале потенциометра значение рН, соответствующее измеряемой кислотности почвенной суспензии.

Для определения потенциальной кислотности к навеске почвы 20 г приливают 50 мл 1N р-ра КСl. Дальнейший ход анализа тот же, что и при определении актуальной кислотности.

Результаты работы занести в таблицу:

Лабораторная работа № 8

Влага необходима для прорастания семян, без нее невозможны последующий рост и развитие растения. С водой в растение из почвы поступают питательные вещества, испарение воды листьями обеспечивает нормальные температурные условия жизнедеятельности растения.

ВЛАГОЕМКОСТЬ ПОЧВЫ, величина, количественно характеризующая водо-удерживающую способность почвы; способность почвы поглощать и удерживать в себе от стекания определенное количество влаги действием капиллярных и сорбционных сил. В зависимости от условий, удерживающих влагу в почве, различают несколько видов В. п.: максимальную адсорбционную, капиллярную, наименьшую и полную.

Максимальная адсорбционная ВЛАГОЕМКОСТЬ ПОЧВЫ, связанная влага, сорбированная влага,ориентировочная влага - наибольшее количество прочно связанной воды,удерживаемое сорбционными силами. Чем тяжелее гранулометрический состав почвы и выше содержание в ней гумуса, тем больше доля связанной, почти недоступной винограду и др. культурам влаги в почве.

Вода - обязательное условие почвообразования и формирования почвенного плодородия. Без нее невозможно развитие почвенной фауны и микрофлоры.

Процессы превращения, трансформации и миграции веществ в почве также требуют большого количества воды.

Для определения потребности растений в воде применяют показатель -транспирационный коэффициент - количество весовых частей воды, затраченной на одну весовую часть урожая.

Степень доступности почвенной влаги растениям и состояние водного режима,выражают почвенно-гидролитические константами. Различают следующие почвенно-гидрологические константы:

  • 1. Максимальная адсорбционная влагоемкость (МАВ) - влажность почвы,соответствующая наибольшему содержанию недоступной растениям прочносвязанной влаги.
  • 2. Максимальная гигроскопичность (МГ) - влажность почвы, соответствующая количеству воды, которое почва может сорбировать из воздуха, полностью насыщенного водяным паром. Влага, соответствующая МГ, полностью недоступна растениям.
  • 3. Влажность устойчивого завядания растений (ВЗ), соответствующая содержанию в почве воды, при котором растения обнаруживают признаки завядания, не проходящие при помещении растений в насыщенную водяным паром атмосферу. Влажность завядания соответствует влажности почвы, когда влага из недоступного для растений состояния переходит в доступное (нижний предел доступности почвенной влаги).
  • 4. Наименьшая (полевая) влагоемкость почвы (НВ) - соответствует капиллярно-подвешенному насыщению почвы водой, когда последняя максимально доступна растениям.
  • 5. Полная влагоемкость (ПВ) - соответствует такому содержанию влаги в почве, когда все ее поры насыщены водой.

Способность почвы к устойчивому обеспечению растений водой зависит от агрофизических факторов плодородия.

Влагоемкость почвы - называют способность ее удерживать воду. Различают капиллярную, наименьшую (полевую) и полную влагоемкость. Капиллярная влагоемкость определяется количеством воды, содержащимся в капиллярах почвы, подпертых водоносным горизонтом. Наименьшая влагоемкость аналогична капиллярной, но при условии отрыва капиллярной воды от воды водоносного горизонта. Полная влагоемкость - состояние влажности, когда все поры (капиллярные и не капиллярные) полностью заполнены водой.

Водопроницаемостью почвы называют способность впитывать и пропускать через себя воду. Водопроницаемость зависит от гранулометрического состава,структуры почвы и степени увлажнения. Определяют водопроницаемость,пропуская через слой почвы воду.

Водоподъемная способность почвы - способность к капиллярному подъему воды.

Обусловлено это свойство действием менисковых сил смоченных водой стенок почвенных капилляров.

Условия водного режима в пахотной почве постоянно изменяются. Радикальный метод регулирования водного режима почв - мелиорация. Современные приемы гидротехнической мелиорации обеспечивают возможность двухстороннего регулирования водного режима: орошение со сбросом лишней воды и осушение в комплексе с дозированным орошением.

Поступление влаги в почву складывается из впитывания при частичном заполнении пор водой и фильтрации воды. Совокупность этих явлений объединяется понятием «водопроницаемость почвы ». По скорости впитывания во,ды различают почвы хорошо-, средне и слабо водопроницаемые. Фильтрация почвы, т. е. нисходящее передвижение влаги в почве или грунте при заполнении всех порводой, зависит от многих факторов: механического состава, водопрочности агрегатов, плотности,сложения.

Количество воды, характеризующее водоудерживающую способность почвы, называют влагоемкостью .В зависимости от сил, удерживающих влагу в почве,различают максимальную адсорбционную влагоемкость (влага, которая удерживается па поверхности частиц под действием сорбционных сил), капиллярную (запас воды, удерживаемый капиллярными силами), наименьшую (полевую) и полную влагоемкость или водо-вместимость (содержание воды в почве при заполнении всех пор водой).

С капиллярной влагоемкостью связано важное в агрономической науке понятие капиллярной каймы. Капиллярной каймой называется весь слой влаги между уровнем грунтовых вод и верхней границей фронта смачивания почвы.

Наименьшая (полевая) влагоемкость - это количество влаги, которое сохраняется в почве(или грунте) при отсутствии капиллярного подтока после стенания избыточной гравитационной воды.Это максимальное количество воды, удерживаемое почвой в естественных условиях при отсутствии испарения и притока воды извне. Влагоемкость почвы зависит от механического, химического,минералогического состава почвы, ее плотности,пористости и т. д.

Аэрация, водопроницаемость, влагоемкость и другие водно-физические свойства почвы являются важными почвенными характеристиками, влияющими на плодородие почвы, ее хозяйственную ценность.

Корневые выделения. Растения не остаются в долгу перед микроорганизмами - живые растения кормят почвенные микроорганизмы своими корневыми выделениями, а не только отмирающими послеуборочными остатками, хотя корни тоже составляют около трети массы растения. Татьяна Угарова приводит цифру - до 20% всей массы растений составляют корневые выделения. В состав корневых выделений входят органические кислоты, сахара, аминокислоты и многое другое. По Т. Угаровой сильное растение обильно кормит почвенные микроорганизмы, при этом происходит массовое размножение ризосферной (корневой) полезной микрофлоры. Причем растения стимулируют развитие преимущественно такой микрофлоры, которая питает растения, вырабатывает стимуляторы роста растений, подавляет вредную растениям микрофлору.

Влагоемкостью почвы называется способность почв вмещать и удерживать в себе определенное количество воды.

Выполнение анализа: Берут цилиндр с сетчатым дном и взвешивают его. Взвешенный цилиндр наполняют на ¾ объема воздушно-сухой почвой и снова взвешивают.

Погружают цилиндр с почвой в сосуд с водой и доводят уровень воды в сосуде до уровня почвы в цилиндре. После того, как вода пропитает всю почву, дают стечь излишней воде, протирают увлажненную поверхность цилиндра, взвешивают и производят расчеты.

А = 100 (с - в) / (в - а)

где: А – влагоемкость почвы, %; а – масса пустого цилиндра, г; в – масса цилиндра с почвой до погружения в воду, г; с – масса цилиндра с почвой после насыщения водой, г.

Определение капиллярности почвы

Под капиллярностью понимают водоподъемную способность почвы по капиллярам из нижних слоев в верхние, которая зависит от ее механического состава, т.е. чем меньше частицы почвы, тем выше капиллярный подъем влаги. Высокая капиллярность нередко служит основной причиной сырости почвы, помещений, если не принимаются соответствующие меры (гидроизоляция).

Выполнение анализа: В штативе устанавливают ряд (в зависимости от образцов почвы) высоких 50 – 100 см стеклянных трубок диаметром 2-3 см с сантиметровым делением. Каждую трубку заполняют исследуемой почвой. Нижние концы трубок обвязывают полотном и погружают в ванночки с водой на глубину 0,5 см. По изменению окраски почвы следят за быстротой и высотой подъема воды, отмечая её уровень в сантиметрах через 5; 10; 15; 20 и 60 минут, а далее через каждый час до прекращения водоподъема.

Определение водопроницаемости почвы

Водопроницаемостью называется способность почвы проводить воду из верхних слоев в нижние. Водопроницаемость (фильтрационная способность) определяется количеством воды, просачивающейся через определенный слой почвы в единицу времени и зависит от размера ее зерен, наличия коллоидных частиц, а также от высоты слоя воды над ней.

Водопроницаемость песчаных почв – 5-8 мин, глинистых – 15 мин и более.

Выполнение анализа: Берут стеклянную трубку диаметром 3-4 см, высотой 25-30 см. Нижний конец трубки подвязывают полотном и наполняют сухой измельченной почвой до высоты 20 см, равномерно распределяя ее легким постукиванием о стенки трубки. Трубку с почвой укрепляют в штативе и наливают в нее воду, постоянно поддерживая высоту уровня воды над почвой в 4 см до появления первой капли прошедшей через матерчатое дно трубки. В ходе определения водопроницаемости отмечают время с начала заливания воды, и время появления первой капли. Разница во времени показывает быстроту прохождения воды через слой почвы в 20 см.

Запись результатов исследований

Номер пробы почвы

Физические свойства почвы

Температура, о С

Порозность,

Влагоемкость,

Капилярность,

Водопроницаемость, сек

Задание 2. Определить максимальную молекулярную (адсорбционную) влагоемкость методом А.Ф. Лебедева.

Максимальной молекулярной влагоемкостью (ММВ) называется наибольшее количество гигроскопической пленочной воды, удерживаемой частицами почвы за счет сил молекулярного притяжения.

Метод ее определения основан на удалении влаги сверх ММВ с помощью пресса.

Порядок проведения работы

    Взять 10–15 г почвы, просеянной через сито d= 1мм (мелкозем), в фарфоровую чашку, смочить водой до полного насыщения и тщательно перемешать шпателем.

    На лист фильтровальной бумаги, покрытой куском марли, положить металлическое кольцо с внутренним отверстием диаметром 4–5 см и равномерно намазать шпателем переувлажненную почву, заполнив отверстие кольца.

    После снятия кольца на фильтровальной бумаге остается кружок почвы, равный толщине кольца. Этот кружок покрыть кусочком марли и переслоить сверху и снизу фильтровальной бумагой (в 20 листов).

    Приготовленные таким образом кружочки почвы (5–6 штук) поместить между деревянными прокладками под пресс на 30 мин под давлением около 100 кг/см 2 . В результате в почве останется лишь молекулярная вода.

    По окончании прессования кружок почвы быстро очистить от приставших волокон бумаги или марли и перенести во взвешенный стаканчик.

    Стаканчик с почвой взвесить и просушить в термостате при температуре 100–105 ºС до постоянного веса.

    Охлажденный после сушки стаканчик с почвой взвесить с точностью до 0,01 г.

    ММВ вычислить по формуле:

где А – масса стакана с сырой почвой, г;

В – масса стакана с абсолютно сухой почвой, г;

С – масса пустого стакана.

Величина ММВ имеет те же зависимости от свойств почвы, что и максимальная гигроскопическая влажность. Она является постоянной для каждой почвы и содержит в себе весьма труднодоступную влагу для растений. ММВ составляет ориентировочно 7–9 % от массы почвы.

Задание 3. Определить капиллярную влагоемкость почвы (кв).

Капиллярная влагоемкость – максимально возможное содержание капиллярной воды в почве (без перехода ее в гравитационную). Она фактически определяет запасы так называемой продуктивной влаги и водные условия жизни растений. Ее величина зависит от механического и структурного составов почвы, содержания гумуса и состава солей.

Порядок проведения работы

    Взвесить пустой цилиндр с сетчатым дном и вложенным в него кружочком фильтровальной бумаги с точностью до 0,1 г.

    Наполнить цилиндр до половины объема воздушносухой почвой, уплотняя постукиванием о ладонь, и взвесить цилиндр с почвой.

    Поставить цилиндр с почвой в ванночку с водой на фильтровальную бумагу так, чтобы вода была выше уровня дна цилиндра на 0,5 см.

    После насыщения, когда поверхность почвы в цилиндре увлажнится, вынуть цилиндр из ванночки, промокнуть дно и взвесить.

КВ =
,

где КВ – капиллярную влагоемкость, %;

С – масса цилиндра с почвой после насыщения, г;

В – масса цилиндра с воздушно-сухой почвой, г;

А – масса пустого цилиндра, г.

Капиллярная влагоемкость, определенная в полевых условиях для конкретной разновидности почв при глубоких грунтовых водах, называется наименьшей влагоемкостью (НВ). Наименьшая влагоемкость характеризует максимальную водоудерживающую способность почвы при промачивании ее сверху. Величина наименьшей влагоемкости зависит от целого ряда характеристик почвы, главным из которых является механический и структурный составы и содержание гумуса.

Наименьшая влагоемкость имеет важное значение в орошаемом земледелии. По ее величине рассчитывают сроки поливов, поливные и промывные нормы, определяют водоотдачу, продуктивную влагу и т.д.

При увлажнении до наименьшей влагоемкости в почве содержится максимальное количество доступной для растений влаги, т.к. 55–75 % пор почвы заполнены водой.

Полная влагоемкость (ПВ) – это максимальное содержание воды в почве, равное объему всех пор, трещин и пустот. Она характеризует водовместимость почвы. Полную влагоемкость можно рассчитать по общей пористости почвы: ПВ = S, % от объема почвы и ПВ = , % от массы абсолютно сухой почвы, где S – общая пористость, % объема; d – объемная масса почвы, г/см 3 .

Данные водных свойств почв записать в табл. 1.

Похожие публикации