Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

В научная экспедиция на дрейфующей станции. Ручное графическое счисление с учетом дрейфа. Влияние ветра на движение корабля. Счисление пути судна при дрейфе

Движение судна происходит одновременно в двух средах - в водной и воздушной, которые редко бывают в спокойном состоянии. Воздушная среда оказывает свое действие на движущееся судно прежде всего скоростью (силой) и направлением ветра. Скорость ветра измеряется анемометрами и выражается в метрах в секунду, а сила -в баллах от 0 до 12 по специальной шкале (см. табл. 49 МТ-63).

Курсовой угол ветра называют курсом судна относительно ветра. В зависимости от величины этого угла курсы судна относительно ветра получили различные наименования (рис. 47).

Если ветер дует в правый борт, то курсу судна относительно ветра придается еще название «правого галса», а когда он дует в левый борт - «левого галса».

Когда вследствие изменения направления ветра его курсовой угол уменьшается, говорят, что ветер заходит, или становится круче; если увеличивается, то-ветер отходит, или делается полнее. Когда же изменение угла вызывается переменой курса судна, то в первом случае говорят, что судно приведено к ветру, или легло круче, а во втором, что оно спустилось, или легло полнее.


Рис. 48


Под влиянием ветра и вызываемых им волнения и течения движущееся судно отклоняется от намеченного курса и изменяет свою скорость. Рассмотрим влияние ветра на движущееся судно на следующем примере (рис. 48). Предположим, что судно движется каким-то курсом ИК со скоростью по лагу vл и на него воздействует наблюдаемый (кажущийся) ветер Kw со скоростью w под углом q. Равнодействующая давления ветра на судно, равная вектору A, приложена к центру парусности судна и составляет с его диаметральной плоскостью угол у.

Разложим равнодействующую давления ветра А на две составляющие X и Z. Сила X направлена по диаметральной плоскости и равна X = A cosy, она оказывает влияние на скорость судна относительно воды (в данном случае уменьшает скорость) vл.

Сила Z направлена перпендикулярно диаметральной плоскости, Z = A.siny и вызывает боковое смещение - дрейф судна с линии курса со скоростью V др.

Сложив геометрически скорости судна по лагу vл И дрейфа удр, получим вектор действительной скорости судна относительно воды v0, по направлению которого происходит фактическое перемещение судна при действии этого ветра.

Линия фактического перемещения судна при действии ветра называется линией пути при дрейфе ПУ др, а угол между нордовой частью истинного меридиана и этой линией - путевым углом. Угол а между линией истинного курса и линией пути при дрейфе называется углом дрейфа. При решении задач углу дрейфа присваивается знак: при ветре правого галса - минус, а левого галса - плюс.

При одной и той же силе кажущегося ветра, но при различных курсовых углах влияние его на движущееся судно неодинаково. При курсовых углах ветра, равных 0 или 180°, угол дрейфа равен нулю, а при курсовых углах K w , близких к 50-60°, он достигает максимального значения вследствие того, что направление Kw является равнодействующей скорости и направления истинного ветра и скорости самого судна. При углах K w ~ 50 / 60° угол между направлением истинного ветра и диаметральной плоскостью судна будет примерно 90°.


Рис. 49


Угол дрейфа увеличивается с уменьшением скорости хода судна и при увеличении площади его парусности (в случае уменьшения осадки судна). Практика показывает, что у судов с прямыми штевнями дрейф бывает меньше, чем с наклонными, и что у судов с острыми обводами дрейф оказывается меньше, чем у судов с полными образованиями. Ветер, создавая волнение, вызывает качку судна, ухудшает управляемость, и судно становится менее устойчивым на курсе (у судна появляется рыскливость).

При продолжительном действии ветра в одном направлении создается поверхностное течение, которое также вызывает снос судна с линии истинного курса.

Таким образом, совокупное действие ветра и вызываемых им волнения и течения при плавании необходимо учитывать, вводя поправку на дрейф, равную величине угла дрейфа.

Истинный курс, путевой угол при дрейфе и угол дрейфа находятся в следующей алгебраической зависимости (рис. 49):


При этом следует помнить, что судно, перемещаясь по линии пути при дрейфе ПУ a , сохраняет направление своей диаметральной плоскости параллельно линии ИК и последняя всегда лежит ближе к ветру, а ПУ a - дальше от ветра (см. рис. 49).

Определение угла дрейфа

В настоящее время приборов по определению величины угла дрейфа, удобных для использования на судне, еще нет и только опыт и практика дают возможность судоводителю правильно оценить действие ветра на судно и вероятный его снос ветровым волнением и течением.

В практике судовождения угол дрейфа определяют из непосредственных наблюдений, применяя один из следующих способов.


Рис. 50


При плавании в видимости берегов по береговым ориентирам. Следуя неизменным курсом KK1 (рис. 50), несколько раз (не менее трех) определяют место судна по береговым ориентирам. Затем, соединив полученные точки А1 А2 и А3, измеряют транспортиром угол между нордовой частью истинного меридиана и линией действительного перемещения судна-линией пути ПП1. Угол дрейфа а получают как разность между ПУ и ИК, т. е. а = ПУ - ИК. Эту величину угла дрейфа и учитывают в дальнейшем. Однако следует иметь в виду, что такое определение можно делать, когда в данном районе нет постоянного течения.

Пеленгованием кильватерной струи (применяется как приближенный способ). Кильватерная струя представляет собой след перемещающегося судна вследствие возмущения вращением винтов массы воды. При ветре направление кильватерной струи почти не смещается. Поэтому для получения угла дрейфа можно измерять угол между направлениями диаметральной плоскости судна и кильватерной струи. Пеленги берут по ближайшему к корме компасу, устанавливая визирную плоскость пеленгатора параллельно кильватерной струе. Если отсчет замечают по азимутальному кругу компаса, то

А = КУ - 180°,

А если снимают ОКП, то а = ОКП - КК.

Величину угла дрейфа, определяемую всеми доступными способами, и условия, при которых она определялась (курс судна относительно ветра, скорость судна, сила ветра, состояние судна по загрузке, осадке и т. п.), необходимо записывать в специальной тетради с тем, чтобы можно было в аналогичных условиях заранее учитывать дрейф, т. е. при прокладке учитывать поправку на ветер.

Счисление пути судна при дрейфе

При ведении графического счисления с учетом угла дрейфа, кроме линии истинного курса, прокладывают линию пути при дрейфе ПУ a по заданному или рассчитанному углу дрейфа а и над ней, кроме компасного курса и поправки компаса, указывают величину угла дрейфа с соответствующим знаком. Расстояние, пройденное судном (с учетом поправки или коэффициента лага), учитывается всегда по линии пути ПУ.

Пройденное по лагу (кроме забортного) расстояние при углах дрейфа более 8° рассчитывается с введением поправки на угол дрейфа по формуле


Если пройденное расстояние определяется по оборотам движителей (по таблице соответствия скорости хода оборотам движителей), то никаких поправок не вводят.

При ведении графического счисления с учетом дрейфа следует наносить на карту место судна в момент траверза ориентира; рассчитывать момент прихода судна на траверз ориентира; определять кратчайшее расстояние до ориентира при следовании заданным курсом и момент открытия или скрытия ориентира.

Для нанесения места судна на карту в момент траверза ориентира рассчитывают обратный истинный пеленг по следующим формулам. При наблюдении ориентира: справа


слева
ОИП прокладывают от ориентира до ПУа, и точка А (пересечения ОИП с ПУ a) будет местом судна на карте в момент траверза (рис. 51). Для того чтобы определить, когда судно придет действительно на траверз ориентира, необходимо незадолго до этого поставить пеленгатор компаса на заранее рассчитанный ОКП = КК ±90° (+90° - ориентир слева, -90° - справа) и вести наблюдение. Как только направление на ориентир совпадет с визирной плоскостью пеленгатора, этот момент и будет моментом траверза.

Такую задачу часто приходится решать при определении точки поворота на новый курс.


Рис. 51


Чтобы заранее рассчитать момент прихода судна на траверз ориентира, измеряют на карте по линии пути расстояние S от последней обсервованной точки В до точки А (см. рис. 51), полученной пересечением линии ОИП с линией ПУа, и, разделив его на скорость судна по лагу, получают промежуток времени соответствующий продолжительности перехода судна из точки В в точку А.
Прибавив Т к моменту времени Т1 (обсервации в точке В), получают момент Т2 прихода судна на траверз, т. е. Т2 = Т1 + Т. Для ускорения расчета величины Т пользуются табл. 27-б «Время по расстоянию и скорости» (МТ-63).

Чтобы рассчитать заранее показание лага в момент прихода судна на траверз (в точку А), пользуясь расстоянием S, определяют рол по табл. 28-а или 28-6 (МТ-63) в зависимости от знака Ал или по фор- муле рол = S/Кл. Затем к отсчету лага, во время определения по ори- ентиру (в точке В), прибавляют найденное рол и получают ол2 = ол1 + рол.

Дрейф - перемещение корабля относительно водной поверхности под воздействием ветра. На надстройку корабля действует аэродинамическая сипа ветра - Р. Рх; Ру - составляющие силы Р. Рх - проекция силы Р на диамаметральную плоскость корабля, изменяет относительную скорость на величину ∆V и учитывается относительным лагом. Знак ∆V определяется курсовым углом ветра qw: ветер попутный - скорость увеличивается, прогивный - скорость уменьшается.

Составляющая Pу - проекция силы Р на плоскость шпангоутов, вызывает смещение корабля с линии ИК со скоростью Vдр. Таким образом, корабль перемещается со скоростью V = Vo + Vдр по линии пути, где Vо =Vл - Kл

Угол между северной частью истинного меридиана и линией пути - путевой угол при дрейфе - ПУ α. Угол между линией истинного курса и линией пути, обусловленный влиянием ветра на корабль,- угол дрейфа - α .

ПУ α = ИК + α.

Знак угла дрейфа определяется по курсовому углу ветра:
- ветер в левый борт - корабль сносит вправо: α - знак «плюс»;
- ветер в правый борт - корабль сносит влево: α - знак «минус».

Углы дрейфа определяются опытным путем и заносятся в «Справочные таблицы штурмана» для дальнейшего учета в процессе плавания.

Аргументами для выбора угла дрейфа являются отношения скоростей ветра (W в м/с) и корабля (V в узлах) и курсовой угол ветра qw - угол между диаметральной плоскостью корабля и направлением линии действующего ветра. Для определения направления ветра используется мнемоническое правило: «ветер дует в компас» - это значит, что направление ветра указывает, от куда он «дует». Например: северный ветер - с Севера, ветер 230° с направления 230°, т е. с юго-запада, ветер 315° с направления 315° - с северо-запада и т. д.

Например: ПЛ следует истинным курсом ИК=70,0° со скоростью 6 узлов, направление ветра 130°, скорость W= 12м/с. Отношение W/V=12/6=2. Курсовой угол ветра 60° правого борта. Из таблицы углов дрейфа α =4,0°. Ветер в правый борт - знак угла дрейфа минус. Т.о., угол дрейфа a=-4,0°

Путевая скорость корабля V = Vo / cosα = Vo secα, следовательно при углах дрейфа α ≤ 5°, sec α 5°).

Методика учета дрейфа при ручном графическом счислении

Расчет пути корабля:

  1. Из «Справочных таблиц штурмана» по курсовому углу ветра qw и отношению скоростей ветра и корабля W/V выбрать угол дрейфа α.
  2. Рассчитать путь корабля: ПУ α= ИК + α и проложить его на карте из точки начала учета дрейфа, если α > 5°, то на карте прокладываются линии истинного курса и пути.
  3. У линии пути производится надпись: КК 63,0°(+2,0°) α = +3,0°.
  1. Из исходной точки на карте проложить линию пути ПУ α, по которой над лежит следовать.
  2. Из «Справочных таблиц штурмана» выбрать угол дрейфа α.
  3. По курсовому углу ветра определить знак угла дрейфа.
  4. Рассчитать истинный курс и компасный курс корабля, задаваемый рулевому: ИК = ПУ α -α; КК = ИК - Δ К.

Расчет счислимого места на заданный момент времени:

Если α ≤ 5,0°

  1. Для расчета счислимого места на заданный момент зафиксировать время Т2 и отсчет лага ОЛ2.
  2. Рассчитать пройденное по лагу расстояние: Sл=(ОЛ2 - ОЛ1) * кл.
  3. Пройденное расстояние Sл отложить от исходной точки по линии пути, полученная точка - счислнмое место на момент Т2

Если α > 5°

  1. Пройденное по лагу расстояние Sл отложить от исходной точки по линии ИК.
  2. Полученную точку на ИК снести по перпендикуляру к истинному курсу на ПУ α - точка Т2/ОЛ2 - искомoe счислимое место на момент Т2.

Точка на линии пути может назначаться либо по координатам, либо относительно какого-либо объекта (навигационного ориентира) по заданному пеленгу, расстоянию от ориентира, курсовому углу на ориентир, например траверз. Для предвычисления времени и отсчета лага необходимо:

Eсли α ≤ 5,0°

  1. Нанести на линию пути ПУ заданную точку C1 (С2, С3)одним из указанных способов.
  2. Измерить расстояние Sл, проходимое кораблем по относительному лагу от исходной до заданной точки.
  3. Рассчитать РОЛ, на который изменит отсчет счетчик пройденного расстояния лага: РОЛ=Sл / кл.
  4. Рассчитать время плавания от исходной точки до заданной: t=Sл /V0
  5. Рассчитать искомое время и отсчет лага: Т2 = T1 + t; ОЛ2=ОЛ1+ РОЛ.

Если α >5°

  1. Нанести на линию пути ПУα заданную точку С1(С2, С3).
  2. Заданную точку С1 (С2, C3)снести по перпендикуляру к ИК на линию истинного курса - полученная точка А1(А2, A3).
  3. Измерить расстояние Sл по линии ИК от исходной точки до ТОЧКИ А1 (А2, А3).
  4. Рассчитать время плавания t и РОЛ, на который изменит показания счетчик пройденного расстояния лага: t=Sл/V0; РОЛ=Sл / Кл
  5. Рассчитать искомое время и отсчет лага Т2 = T1 + t; ОЛ2=ОЛ1 + РОЛ.

Дрейф первой научно-исследовательской экспедиции под руководством Ивана Папанина начался в мае 1937 года. 9 месяцев работы, наблюдений и исследований станции «Северный полюс» завершились, когда в Гренландском море льдина разрушилась и ученым пришлось свернуть свою деятельность. За эпопеей спасения четырех папанинцев наблюдал весь Советский Союз.

Иван Дмитриевич Папанин

Идеологом этой экспедиции был Отто Юльевич Шмидт. После одобрения Сталина он быстро нашел людей для этого проекта - все они были не новичками в арктических походах. Работоспособный коллектив состоял из четырех человек: Ивана Папанина, Эрнста Кренкеля, Евгения Федорова и Петра Ширшова. Начальником экспедиции был Иван Дмитриевич Папанин.

Хотя он и родился на берегу Черного моря в Севастополе в семье матроса, свою жизнь связал с морями Северного Ледовитого океана. На Крайний Север Папанин был впервые направлен в 1925 году для постройки радиостанции в Якутии. В 1931 году он участвовал в походе ледокола «Малыгин» к архипелагу Земля Франца-Иосифа, уже через год он вернулся на архипелаг в качестве начальника полевой радиостанции, а затем создал научную обсерваторию и радиоцентр на мысе Челюскин.

П.П. Ширшов

Гидробиолог и гидролог Петр Петрович Ширшов также не был новичком в арктических экспедициях. Он окончил Одесский институт народного образования, был сотрудником Ботанического сада Академии наук, однако его манили путешествия, и в 1932 году он нанялся в экспедицию на ледокольный пароход «А. Сибиряков», а год спустя стал участником трагического рейса на «Челюскине».

Е.К. Федоров

Самым молодым членом экспедиции был Евгений Константинович Федоров. Он окончил Ленинградский университет в 1934 году и посвятил свою жизнь геофизике и гидрометеорологии. Федоров был знаком с Иваном Папаниным еще до этой экспедиции «Северный полюс - 1». Он работал магнитологом на полярной станции в бухте Тихой на ЗФИ, а затем в обсерватории на мысе Челюскин, где его начальником и был Иван Папанин. После этих зимовок Федорова включили в команду для дрейфа на льдине.

Э.Т. Кренкель

Виртуозный радист Эрнст Теодорович Кренкель в 1921 году окончил курсы радиотелеграфистов. На выпускных экзаменах он показал такую высокую скорость работы азбукой Морзе, что его сразу направили на Люберецкую радиостанцию. С 1924 года Кренкель работал в Арктике - сначала на Маточкином Шаре, затем еще на нескольких полярных станциях Новой и Северной Земли. Кроме этого, он участвовал в экспедициях на «Георгии Седове» и «Сибирякове» и в 1930 году сумел установить мировой рекорд, связавшись из Арктики с американской антарктической станцией.

Пес Веселый

Еще один полноправный член экспедиции - пес Веселый. Его подарили зимовщики острова Рудольф, с которого самолеты и совершали бросок к полюсу. Он скрашивал однообразную жизнь на льдине и был душой экспедиции. Вороватый пес никогда не отказывал себе в удовольствии при случае пробраться на склад с продуктами и стащить что-нибудь съедобное. Кроме оживления атмосферы основной обязанностью Веселого было предупреждать о приближении белых медведей, с чем он прекрасно справлялся.

Врача в экспедиции не было. Его обязанности были возложены на Ширшова.

При подготовке экспедиции старались учесть все, что возможно, - от условий работы оборудования до бытовых мелочей. Папанинцы были снабжены солидным запасом провианта, походной лабораторией, ветряком, который вырабатывал энергию, и радиостанцией для сообщения с землей. Однако главная особенность этой экспедиции состояла в том, что она была подготовлена на основе теоретических представлений об условиях пребывания на льдине. Но без практики было сложно предположить, чем может закончиться экспедиция и, главное, как вообще снимать ученых со льдины.

Жилищем и походной лабораторией на время дрейфа была палатка. Сооружение было невелико - 4 на 2,5 метра. Она утеплялась по принципу пуховика: каркас был обтянут тремя чехлами: внутренний был сшит из парусины, средний чехол был из шелка, набитого гагачьим пухом, наружный - из тонкого черного брезента, пропитанного водонепроницаемым составом. На брезентовом полу палатки в качестве утеплителя лежали оленьи шкуры.

Папанинцы вспоминали, что внутри было очень тесно и они боялись что-либо задеть - в палатке хранились и лабораторные образцы, поднятые с глубин Северного Ледовитого океана и заспиртованные в склянках.

Папанин готовит обед

Требования к питанию полярников были довольно жесткие - в сутки рацион каждого должен был состоять из еды калорийностью до 7000 ккал. При этом пища должна была быть не только питательной, но и содержать значительное количество витаминов - главным образом, витамина С. Для питания экспедиции были специально разработаны концентрированные суповые смеси - своего рода нынешние бульонные кубики, только более полезные и наваристые. Одной пачки такой смеси было достаточно, чтобы сварить хороший суп на четверых членов экспедиции. Помимо супов, из таких смесей можно было приготовить кашу, компоты. В сухом виде для экспедиции были заготовлены даже котлеты - всего было разработано около 40 видов концентратов быстрого приготовления - для этого требовался только кипяток, и вся пища была готова уже через 2-5 минут.

Кроме привычных блюд, в рационе полярников появились абсолютно новые продукты с интересным вкусом: в частности, сухарики, на 23 процента состоящие из мяса, и «солоноватый шоколад с примесью мясного и куриного порошка». Помимо концентратов, у папанинцев в рационе были и масло, и сыр, и даже колбаса. Также участники экспедиции были обеспечены витаминными таблетками и конфетами.

Вся посуда была изготовлена по принципу, чтобы один предмет входил в другой для экономии места. Это впоследствии стало применяться производителями посуды не только экспедиционной, но и обычной, бытовой.

Практически сразу же после высадки на льдину началась работа. Петр Ширшов проводил промеры глубины, брал образцы грунта, пробы воды на разных глубинах, определял ее температуру, соленость, содержание в ней кислорода. Все пробы тут же обрабатывались в походной лаборатории. За метеонаблюдения отвечал Евгений Федоров. Измерили атмосферное давление, температуру, относительную влажность воздуха, направление и скорость ветра. Все сведения по рации передавались на остров Рудольфа. Эти сеансы связи проводились по 4 раза в сутки.

Для связи с землей центральная радиолаборатория в Ленинграде изготовила по специальному заказу две радиостанции - мощную на 80 ватт и 20-ваттную аварийную. Основной источник питания для них был ветряк (кроме него имелся движок с ручным приводом). Все это оборудование (общий вес его был около 0,5 тонны) изготавливалось при личном наблюдении Кренкеля и руководстве радиотехника Н.Н. Стромилова.

Сложности начались в январе 1938 года. Льдина дрейфовала на юг и попадала в непогоду. На ней появилась трещина, и ее размеры стремительно уменьшались. Однако полярники старались сохранять спокойствие духа и соблюдали обычный режим дня.

«В палатке, нашей славной старой жилой палатке, вскипал чайник, готовился ужин. Неожиданно, в самом разгаре приятных приготовлений, раздался резкий толчок и скрипучий шорох. Казалось, где-то рядом рвут шелк или полотно», - вспоминал Кренкель о том, как трещал лед.

«Дмитрич (Иван Папанин) спать не мог. Он курил (первый признак волнения) и возился с хозяйственными делами. Иногда он с тоской поглядывал на репродуктор, подвешенный к потолку. При толчках репродуктор слегка качался и дребезжал. Под утро Папанин предложил сразиться в шахматы. Играли вдумчиво, спокойно, с полным сознанием важности выполняемого дела. И вдруг сквозь грохот ветра снова прорвался необычный шум. Судорожно содрогнулась льдина. Мы решили все же не прекращать игру», - написал он о моменте, когда льдина треснула под самой палаткой.

Кренкель тогда довольно буднично передал по радио сообщение Папанина: «В результате шестидневного шторма в 8 часов утра 1 февраля в районе станции поле разорвало трещинами от полукилометра до пяти. Находимся на обломке поля длиной 300, шириной 200 метров (первоначальный размер льдины составлял примерно 2 на 5 километров). Отрезаны две базы, также технический склад с второстепенным имуществом. Из топливного и хозяйственного складов все ценное спасено. Наметилась трещина под жилой палаткой. Будем переселяться в снежный дом. Координаты сообщу дополнительно сегодня; в случае обрыва связи просим не беспокоиться».

К полярникам уже выдвинулись корабли «Таймыр» и «Мурман», однако добраться до станции было непросто из-за сложной ледовой обстановки. Самолеты также не могли забрать полярников с льдины - площадка для их посадки на льду разрушилась, а один самолет, посланный с корабля, и сам затерялся, и для его поисков была создана спасательная экспедиция. Корабли смогли пробиться к станции, только когда образовалась полынья, они получили в пути значительные повреждения во льдах.

19 февраля в 13 часов 40 минут «Мурман» и «Таймыр» пришвартовались к ледовому полю в 1,5 километрах от полярной станции. Они приняли на борт всех участников экспедиции и их снаряжение. Последнее сообщение экспедиции было таким: «…В этот час мы покидаем льдину на координатах 70 градусов 54 минуты нордовой, 19 градусов 48 минут вестовой и пройдя за 274 суток дрейфа свыше 2500 км. Наша радиостанция первая сообщила весть о покорении Северного полюса, обеспечила надежную связь с Родиной и этой телеграммой заканчивает свою работу». 21 февраля папанинцы перешли на ледокол «Ермак», который доставил их в Ленинград 16 марта.

Научные результаты, полученные в уникальном дрейфе, были представлены Общему собранию АН СССР 6 марта 1938 года и получили высокую оценку специалистов. Всем участникам экспедиции были присвоены ученые степени и звания Героев Советского Союза. Также это звание было присвоено летчикам - А.Д. Алексееву, П.Г. Головину, И.П. Мазуруку и М.И. Шевелеву.

Благодаря этой первой экспедиции стали возможны и следующие - в 1950-х годах последовала экспедиция «Северный полюс - 2», а вскоре такие зимовки стали постоянными. В 2015 году состоялась последняя экспедиция «Северный полюс».

Средняя величина неровностей нижней поверхности пакового льда равна примерно 3 м, что существенно влияет на характер распространения звуковой энергии, излучаемой гидроакустическими приборами, затрудняя обнаружение полыней. Однако для правильной ориентировки в ледовой обстановке надо знать не только характер поверхности льда, но и его форму, размеры и сплоченность.

С точки зрения форм и размеров различают ледяные поля и битый лед. Ледяные поля подразделяются на обширные (более 10 км в поперечнике), большие (2-10 км, малые (0,5-2 км) и обломки (100-500 м). Кроме того, лед бывает крупнобитый (размеры льдин 20-100 м), мелкобитый (2-20 м), куски (0,5-2,0 м) и ледяная каша. Битый лед в полыньях и разводьях сильно затрудняет всплытие. Поэтому аппаратура, предназначенная для обеспечения данного маневра, должна иметь высокую разрешающую способность, позволяющую различать мелкобитый лед и даже куски, так как они могут повредить ограждение рубки, выдвижные устройства, рули и винты, что например, и произошло с американской подводной лодкой «Карп».

Возможность всплытия зависит также от сплоченности (густоты) дрейфующего льда. Сплоченностью, принято называть отношение суммарной площади льда, которая освещается звуковым лучом гидроакустического прибора, к площади промежутков чистой воды между отдельными льдинами. Следует помнить, что дрейфующий лед, как правило, неравномерно покрывает море (особенно летом) и густота его в различных секторах неодинакова.

Большую опасность при подледном плавании представляют айсберги и ледяные острова. Айсберги встречаются во многих районах Северного Ледовитого океана. Высота их надводной части достигает 50 м, осадка же в несколько раз превосходит эту величину. Встречаются айсберги длиной 2-2,5 км и шириной до 1,5 км. Понятно, что неожиданная встреча с таким подводным препятствием грозит подводному кораблю крупными неприятностями. На помощь подводникам в этом случае приходит гидроакустическая техника – гидролокаторы и айсбергомеры, но трудности подледного плавания, все равно остаются довольно значительными.

Айсберги проникают в ЦАБ главным образом, из района Земли Франца-Иосифа, Северной Земли; здесь их больше всего. Ледяные горы, рождающиеся в районах Гренландии и Шпицбергена, в высокие широты почти не попадают. Полярные исследователи отмечают, что число айсбергов от года к году может резко меняться».

В конце 40-х годов в ЦАБ и прилегающих арктических морях советские полярные летчики открыли дрейфующие ледяные острова. Сейчас их известно около двух десятков. Самый большой из них (открытый в апреле 1948 г. летчиком И.П. Мазуруком имеет размеры 17x18 миль. Толщина дрейфующих ледяных островов колеблется 50 до 70 м, удельный вес льда – от 0,87 до 0,92 г/см3 , осадка достигает 50 м.

Несмотря на многочисленные и очевидные трудности подледных походов в высокие широты, кроме атомных подводных лодок Советского Союза под полярной шапкой льдов за последние годы побывали подводные лодки США, Англии и Франции. Он тоже всплывали в надводное положение на участках чистой воды или в молодом тонком льду. От определения размеров и характера таких пространств во многом зависит правильная оценка возможности всплытия. В связи с этим несколько подробнее рассмотрим характеристики таких форм, как полынья, разводье, канал, трещина, окно.

Полынья – достаточно устойчивое пространство чистой воды среди ледяных полей. Размеры полыней бывают весьма различные: от нескольких десятков квадратных метров до десятков квадратных километров. Чаще всего они имеют форму прямоугольника, квадрата либо круга. Однако существуют гигантские полыньи, вытянутые в длину. Их размеры и местоположение, безусловно, представляют большой интерес, тем более что они заранее обнаруживаются и фиксируются авиаразведкой. Так, с советского самолета Н-169 2-3 марта 1941 г. в районе «полюса относительной недоступности» наблюдались полыньи шириной до 500 м и длиной до 18 км; изредка попадались обширные пространства чистой воды шириной до 10 км и длиной до 45 км. Кроме того, в Центральном арктическом бассейне постоянно существует два больших открытых пространства чистой воды: «Сибирская Полынья» к северу от Новосибирских островов и Северной Земли и «Великая Полынья» к северо-востоку от острова Элсмир. Авиаразведкой выявлено также, что образование больших полыней, встречающихся на границе дрейфующих льдов и берегового припая, связано главным образом с режимом ветра.

Разводье – менее устойчивое пространство чистой воды шириной в несколько десятков метров, подверженное действию ветров и приливо-отливных явлений. Наиболее характерная форма разводий – вытянутая, длиной до нескольких километров. Часто разводья искривлены, что затрудняет выбор участка для всплытия.

Канал – узкая длинная полоса воды (длина более чем в 10 раз превосходит ширину между крупными льдинами, появляющаяся обычно вследствие расширения трещин. Как отмечают исследователи, каналы, так же как полыньи и разводья, встречаются в центральной Арктике не только в летнее, но и в зимнее время. Каналы из-за малой ширины обнаружить с помощью эхоледомеров трудно, что отмечал в своей книге «Морской дракон» командир американской атомной подводной лодки Д. Стил во время специального полета над арктическими льдами.

Трещина – разрыв во льду шириной до 10 м. При подледном плавании местоположение длинных трещин полезно отмечать на карте, так как известно, что за небольшой срок узкая трещина может превратиться в достаточно широкий канал. Трещины можно использовать для радиосвязи, выпуская в них специальные буйковые радиоантенны.

Окно – еще неустановившийся термин, принятый для обозначения участков молодого льда, покрывающего поверхность полыней, разводий и каналов. Окно хорошо просматривается в перископ. Оно выделяется ярким пятном на более темном фоне остальной поверхности, покрытой толстым паковым льдом.

Образование молодого льда в полыньях, разводьях и каналах начинается в первой половине сентября, а иногда даже и во второй половине августа. Скорость его нарастания зависит прежде всего от температуры воздуха. При минус 40 °С можно ожидать увеличения толщины льда в среднем на 2,5 см за несколько часов, за неделю – на 30 см, за месяц – до 1 м. Своевременно обнаружить окна и правильно определить толщину их льда помогают эхоледомеры, указатели полыней и другие приборы, обеспечивающие плавание в зимнее время.

Для успешного всплытия важно также учитывать течение, характер, направление и скорость дрейфа льдов вообще и отдельных ледовых образований в частности. В подтверждение можно привести пример, когда подводная лодка «Скейт» в разводье шириной около 100 м из-за неучета дрейфа льда всплыть с первого раза не смогла. Маневр удался Только после тщательного учета дрейфа льда и скорости всплытия подводной лодки.

ПЛ проекта 613 в арктических льдах.

От чего же зависит дрейф льда и каковы его элементы? Профессор Н.Н. Зубов дает три наиболее характерных случая:

– ветровой дрейф сплоченных льдов, вызывающий даже самостоятельное дрейфовое подледнее течение;

– дрейф отдельной льдины под действием ветра на верхнюю ее часть и ветрового течения на нижнюю;

– ветровой дрейф разреженных льдов, когда оказывается, что каждая льдина (из-за различий в форме и размерах) дрейфует по-своему, что особенно опасно при всплытии, так как ледовая обстановка в таких случаях меняется очень быстро.

Направление дрейфа льда при устойчивых ветрах отличается от направления ветра примерно на 30° вправо, а зависимость скорости дрейфа от скорости ветра определяется в общем случае ветровым коэффициентом, равным 0,32. Направление ветрового течения (когда на поверхности моря отсутствует лед) отклоняется от направлении ветра на 45° вправо.

Причинами, вызывающими генеральное движение больших масс льда в ЦАБ, являются в основном постоянные течения и господствующие ветры, связанные с распределением атмосферного давления. Под действием этих факторов значительная часть льдов выносится в проход между Гренландией и Шпицбергеном. В секторе, прилегающем к Америке, льды дрейфуют по часовой стрелке по замкнутому кругу. Эти генеральные направления становятся заметными лишь на больших расстояниях. При дрейфе льдины обычно описывают причудливые петли и зигзаги и часто возвращаются в исходные точки. В отношении годичных колебаний выноса льда известные советские полярники Н.А. Волков и З.М. Гуд- кович отмечают: «Заметно изменяется в течение года и средняя скорость поверхностного выносного течения. Максимальная скорость приходится на июль – сентябрь, а минимальная на октябрь – декабрь».

— научно-исследовательская станция на дрейфующих льдах в глубоководной части Северного Ледовитого океана. Станции выполняют программу комплексных круглогодичных исследований в области океанологии, ледоведения (физики и динамики льдов), метеорологии, аэрологии, геофизики (наблюдения в ионосферном и магнитном полях), гидрохимии, гидрофизики, а также биологии моря.

История любой дрейфующей станции начинается с поиска подходящей льдины . Ледовые разведчики совершают полеты в Северном Ледовитом океане. Основная сложность поиска пригодной для организации дрейфующей станции льдины заключается в том, что недостаточно найти мощную льдину оптимальных размеров и толщины, надо, чтобы ее не поломало в течение зимовки.

Надо еще, чтобы к этой льдине вплотную примыкал молодой, ровный малозаснеженный лед, называемый "припаем ", аналогично неподвижному льду у берега. Толщина его и размеры должны быть подходящими для строительства на нем в кратчайший срок взлетно-посадочной полосы. И таких "припаев" у многолетней льдины желательно иметь несколько — для запасных аэродромов на случай возможных разломов.

Дрейфующая полярная станция представляет собой небольшое поселение , включающее жилые постройки для полярников и научные помещения, электро- и радиостанции, метеорадиолокатор, основные и аварийные склады.

Необходимость организации дрейфующих станций была вызвана отсутствием суши в центральной части Северного Ледовитого океана, пригодной для устройства постоянных наблюдательных пунктов.

Впервые идею о высадке людей на дрейфующий лед высказал в 1925 году норвежец Фритьоф Нансен . Этот проект не был осуществлен, но многим идея показалась стоящей.

В Советской России ее разделяли академик Отто Шмидт и профессор Владимир Визе. Проект основания научной станции на полюсе был впервые рассмотрен в СССР в 1929 году по предложению Визе, однако до 1935 года практических шагов в этом направлении не предпринималось.

В начале 1936 года правительством Советского Союза был одобрен план организации дрейфующей научно-исследовательской станции, начальником которой был назначен Иван Папанин. В состав экспедиции вошли также геофизик Евгений Федоров, гидролог Петр Ширшов и радист Эрнест Кренкель. 21 мая 1937 года на льдине в районе географического Северного полюса произвел посадку самолет с четверкой "папанинцев" и руководством экспедиции. Через несколько дней оставшаяся группа самолетов доставила грузы дрейфующей станции на льдину.

"СП-2015" удалось провести уникальный летний дрейф в северных широтах, благодаря которому ученые получили интересные данные по биоразнообразию, проявлениям климатических изменений в разных средах.

Решение о запуске очередной станции "Северный полюс" в 2016 году не было принято из-за финансовых трудностей.

Похожие публикации