Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Виды зажимных механизмов станочных приспособлений. Зажимные устройства приспособлений (клиновой и рычажный зажимы). Классификация зажимных элементов

96kb. 15.03.2009 00:15 225kb. 27.02.2007 09:31 118kb. 15.03.2009 01:57 202kb. 15.03.2009 02:10 359kb. 27.02.2007 09:33 73kb. 27.02.2007 09:34 59kb. 27.02.2007 09:37 65kb. 31.05.2009 18:12 189kb. 13.03.2010 11:25

3 Зажимные элементы приспособлений.doc

3. Зажимные элементы приспособлений

3.1. Выбор места приложения зажимных усилий, вида и количества зажимных элементов

При закреплении заготовки в приспособлении должны соблюдаться следующие основные правила:


  • не должно нарушаться положение заготовки достигнутое при ее базировании;

  • закрепление должно быть надежным, чтобы во время обработки положение заготовки сохранялось неизменным;

  • возникающие при закреплении смятие поверхностей заготовки, а также ее деформация должны быть минимальными и находиться в допустимых пределах.

  • для обеспечения контакта заготовки с опорным элементом и устранения возможного его сдвига при закреплении зажимное усилие следует направлять перпендикулярно к поверхности опорного элемента. В отдельных случаях зажимное усилие можно направлять так, чтобы заготовка одновременно прижималась к поверхностям двух опорных элементов;

  • в целях устранения деформации заготовки при закреплении точку приложения зажимного усилия надо выбирать так, чтобы линия его действия пересекала опорную поверхность опорного элемента. Лишь при закреплении особо жестких заготовок можно допускать, чтобы линия действия зажимного усилия проходила между опорными элементами.
3.2. Определение количества точек приложения зажимных усилий

Количество точек приложения зажимных усилий определяется конкретно к каждому случаю зажима заготовки. Для уменьшения смятия поверхностей заготовки при закреплении необходимо уменьшать удельное давление в местах контакта зажимного устройства с заготовкой путем рассредоточения зажимного усилия.

Это достигается применением в зажимных устройствах контактных элементов соответствующей конструкции, которые позволяют распределить зажимное усилие поровну между двумя или тремя точками, а иногда даже рассредоточить по некоторой протяженной поверхности. Количество точек зажима во многом зависит от вида заготовки, метода обработки, направления силы резания. Для уменьшения вибраций и деформаций заготовки под действием силы резания следует повышать жесткость системы заготовка-приспособление путем увеличения числа мест зажатия заготовки и приближения их к обрабатываемой поверхности.

3.3. Определение вида зажимных элементов

К зажимным элементам относятся винты, эксцентрики, прихваты, тисочные губки, клинья, плунжеры, прижимы, планки.

Они являются промежуточными звеньями в сложных зажимных системах.

3.3.1. Винтовые зажимы

Винтовые зажимы применяют в приспособлениях с ручным закреплением заготовки, в приспособлениях механизированного типа, а также на автоматических линиях при использовании приспособлений-спутников. Они просты, компактны и надежны в работе.

Рис. 3.1. Винтовые зажимы: а – со сферическим торцем; б – с плоским торцем; в – с башмаком.

Винты могут быть со сферическим торцем (пятой), плоским и с башмаком, предупреждающим порчу поверхности.

При расчете винтов со сферической пятой учитывается только трение в резьбе.

Где: L - длина рукоятки, мм; - средний радиус резьбы, мм; - угол подъема резьбы.

Где: S – шаг резьбы, мм; – приведенный угол трения.

Где: Pu150 Н.

Условие самоторможения: .

Для стандартных метрических резьб , поэтому все механизмы с метрической резьбой самотормозящие.

При расчете винтов с плоской пятой учитывается трение на торце винта.

Для кольцевой пяты:

Где: D – наружный диаметр опорного торца, мм; d – внутренний диаметр опорного торца, мм; – коэффициент трения.

С плоскими торцами:

Для винта с башмаком:

Материал: сталь 35 или сталь 45 с твердостью HRC 30-35 и точностью резьба по третьему классу.

^ 3.3.2. Клиновые зажимы

Клин применяется в следующих конструктивных вариантах:


  1. Плоский односкосый клин.

  2. Двускосый клин.

  3. Круглый клин.

Рис. 3.2. Плоский односкосый клин.

Рис. 3.3. Двускосый клин.

Рис. 3.4. Круглый клин.

4) кривошипный клин в форме эксцентрика или плоского кулачка с рабочим профилем, очерченным по архимедовой спирали;

Рис. 3.5. Кривошипный клин: а – в форме эксцентрика; б) – в форме плоского кулачка.

5) винтовой клин в форме торцевого кулачка. Здесь односкосый клин как бы свернут в цилиндр: основание клина образует опору, а его наклонная плоскость - винтовой профиль кулачка;

6) в самоцентрирующих клиновых механизмах (патроны, оправки) не пользуются системы из трех и более клиньев.

^ 3.3.2.1. Условие самоторможение клина

Рис. 3.6. Условие самоторможение клина.

Где: - угол трения.

Где: коэффициент трения;

Для клина с трением только по наклонной поверхности условие самоторможение:

С трением на двух поверхностях:

Имеем: ; или: ;.

Тогда: условие самоторможение для клина с трением на двух поверхностях:

Для клина с трением только на наклонной поверхности:

С трением на двух поверхностях:

С трением только на наклонной поверхности:

^ 3.3.3.Эксцентриковые зажимы

Рис. 3.7. Схемы для расчета эксцентриков.

Такие зажимы являются быстродействующими, но развивают меньшую силу, чем винтовые. Обладают свойством самоторможения. Основной недостаток: не могут надежно работать при значительных колебаниях размеров между установочной и зажимаемой поверхностью обрабатываемых деталей.

;

Где: (- среднее значение радиуса, проведенного из центра вращения эксцентрика в точку А зажима, мм; (- средний угол подъема эксцентрика в точке зажима; (, (1 – углы трения скольжения в точке А зажима и на оси эксцентрика.

Для расчетов принимают:

При l 2D расчет можно производить по формуле:

Условие самоторможения эксцентрика:

Обычно принимают .

Материал: сталь 20Х с цементацией на глубину 0,81,2 мм и закалкой до HRC 50…60.

3.3.4. Цанги

Цанги представляют собой пружинящие гильзы. Их применяют для установки заготовок по наружным и внутренним цилиндрическим поверхностям.

Где: – сила закрепления заготовки; Q – сила сжатия лепестков цанги; - угол трения между цангой и втулкой.

Рис. 3.8. Цанга.

^ 3.3.5. Устройства для зажима деталей типа тел вращения

Кроме цанги для зажима деталей имеющих цилиндрическую поверхность, применяют разжимные оправки, зажимные втулки с гидропластом, оправки и патроны с тарельчатыми пружинами, мембранные патроны и другие.

Консольные и центровые оправки применяют для установки с центральным базовым отверстием втулок, колец, шестерен, обрабатываемых на многорезцовых шлифовальных и других станках.

При обработке партии таких деталей требуется получить высокую концентричность наружных и внутренних поверхностей и заданную перпендикулярность торцов к оси детали.

В зависимости от способа установки и центрирования обрабатываемых деталей консольные и центровые оправки можно подразделить на следующие.виды: 1) жесткие (гладкие) для установки деталей с зазором или натягом; 2) разжимные цанговые; 3) клиновые (плунжерные, шариковые); 4) с тарельчатыми пружинами; 5) самозажимные (кулачковые, роликовые); 6) с центрирующей упругой втулкой.

Рис. 3.9. Конструкции оправок: а - гладкая оправка; б - оправка с разрезной втулкой.

На рис. 3.9, а показана гладкая оправка 2, на цилиндрической части которой установлена обрабатываемая деталь 3. Тяга 6, закрепленная на штоке пневмоцилиндра, при перемещении поршня со штоком влево головкой 5 нажимает на быстросменную шайбу 4 и зажимает деталь 3 на гладкой оправке 2. Оправка конической частью 1 вставляется в конус шпинделя станка. При зажиме обрабатываемой детали на оправке осевая сила Q на штоке механизированного привода вызывает между торцами шайбы 4, уступом оправки и обрабатываемой деталью 3 момент от силы трения, больший, чем момент М рез от силы резания Р z . Зависимость между моментами:

;

Откуда сила на штоке механизированного привода:

.

По уточненной формуле:

.

Где: - коэффициент запаса; Р z - вертикальная составляющая сила резания, Н (кгс); D - наружный диаметр поверхности обрабатываемой детали, мм; D 1 - наружный диаметр быстросменной шайбы, мм; d - диаметр цилиндрической установочной части оправки, мм; f= 0,1 - 0,15 - коэффициент трения сцепления.

На рис. 3.9, б показана оправка 2 с разрезной втулкой 6, на которой устанавливают и зажимают обрабатываемую деталь 3. Конической частью 1 оправку 2 вставляют в конус шпинделя станка. Зажим и разжим детали на оправке производят механизированным приводом. При подаче сжатого воздуха в правую полость пневмоцилиндра поршень, шток и тяга 7 движутся влево и головка 5 тяги с шайбой 4 перемещает разрезную втулку 6 по конусу оправки, пока она не зажмет деталь на оправке. Во время подачи сжатого воздуха в левую полость пневмоцилиндра поршень, шток; и тяга перемещаются вправо, головка 5 с шайбой 4 отходят от втулки 6 и деталь разжимается.

Рис.3.10. Консольная оправка с тарельчатыми пружинами (а) и тарельчатая пружина (б) .

Крутящий момент от вертикальной силы резания Р z должен быть меньше момента от сил трения на цилиндрической поверхности разрезной втулки 6 оправки. Осевая сила на штоке механизированного привода (см. рис. 3.9, б ).

;

Где: - половина угла конуса оправки, град; - угол трения на поверхности контакта оправки с разрезной втулкой, град; f=0,15-0,2 - коэффициент трения.

Оправки и патроны с тарельчатыми пружинами применяют для центрирования и зажима по внутренней или наружной цилиндрической поверхности обрабатываемых деталей. На рис. 3.10, а, б соответственно показаны консольная оправка с тарельчатыми пружинами и тарельчатая пружина. Оправка состоит из корпуса 7, упорного кольца 2, пакета тарельчатых пружин 6, нажимной втулки 3 и тяги 1, соединенной со штоком пневмоцилиндра. Оправку применяют для установки и закрепления детали 5 по внутренней цилиндрической поверхности. При перемещении поршня со штоком и тягой 1 влево последняя головкой 4 и втулкой 3 нажимает на тарельчатые пружины 6. Пружины выпрямляются, их наружный диаметр увеличивается, а внутренний уменьшается, обрабатываемая деталь 5 центрируется и зажимается.

Размер установочных поверхностей пружин при сжатии может изменяться в зависимости от их размера на 0,1 - 0,4 мм. Следовательно, базовая цилиндрическая поверхность обрабатываемой детали должна иметь точность 2 - 3-го классов.

Тарельчатую пружину с прорезями (рис. 3.10, б ) можно рассматривать как совокупность двухзвенных рычажно-шарнирных механизмов двустороннего действия, разжимаемых осевой силой. Определив крутящий момент М рез от силы резания Р z и выбирая коэффициент запаса К , коэффициент трения f и радиус R установочной поверхности тарельчатой поверхности пружины, получим равенство:

Из равенства определим суммарную радиальную силу зажима, действующую на установочной поверхности обрабатываемой детали:

.

Осевая сила на штоке механизированного привода для тарельчатых пружин:

С радиальными прорезями

;

Без радиальных прорезей

;

Где: - угол наклона тарельчатой пружины при зажиме детали, град; К=1,5 - 2,2 - коэффициент запаса; М рез - крутящий момент от силы резания Р z , Н-м (кгс-см); f=0,1- 0,12 - коэффициент трения между установочной поверхностью тарельчатых пружин и базовой поверхностью обрабатываемой детали; R - радиус установочной поверхности тарельчатой пружины, мм; Р z - вертикальная составляющая сила резания, Н (кгс); R 1 - радиус обработанной поверхности детали, мм.

Патроны и оправки с самоцентрирующими тонкостенными втулками, наполненными гидропластмассой, применяют для установки по наружной или внутренней поверхности деталей, обрабатываемых на токарных и других станках.

На приспособлениях с тонкостенной втулкой обрабатываемые детали наружной или внутренней поверхностью устанавливают на цилиндрическую поверхность втулки. При разжиме втулки гидропластмассой детали центрируются и зажимаются.

Форма и размеры тонкостенной втулки должны обеспечивать достаточную ее деформацию для надежного зажима детали на втулке при обработке детали на станке.

При конструировании патронов и оправок с тонкостенными втулками с гидропластмассой рассчитывают:


  1. основные размеры тонкостенных втулок;

  2. размеры нажимных винтов и плунжеров у приспособлений с ручным зажимом;

  3. размеры плунжеров, диаметр цилиндра и ход поршня для приспособлений с механизированным приводом.

Рис. 3.11. Тонкостенная втулка.

Исходными данными для расчета тонкостенных втулок являются диаметр D д отверстия или диаметр шейки обрабатываемой детали и длина l д отверстия или шейки обрабатываемой детали.

Для расчета тонкостенной самоцентрирующей втулки (рис. 3.11) примем следующие обозначения: D - диаметр установочной поверхности центрирующей втулки 2, мм; h - толщина тонкостенной части втулки, мм; Т - длина опорных поясков втулки, мм; t - толщина опорных поясков втулки, мм; - наибольшая диаметральная упругая деформация втулки (увеличение или уменьшение диаметра в ее средней части) мм; S max - максимальный зазор между установочной поверхностью втулки и базовой поверхностью обрабатываемой детали 1 в свободном состоянии, мм; l к - длина контактного участка упругой втулки с установочной поверхностью обрабатываемой детали после разжима втулки, мм; L -длина тонкостенной части втулки, мм; l д - длина обрабатываемой детали, мм; D д - диаметр базовой поверхности обрабатываемой детали, мм; d - диаметр отверстия опорных поясков втулки, мм; р - давление гидропластмассы, требуемое для деформации тонкостенной втулки, МПа (кгс/см 2); r 1 - радиус закругления втулки, мм; M рез =P z r - допустимый крутящий момент, возникающий от силы резания, Н-м (кгс-см); P z - сила резания, Н (кгс); r -плечо момента силы резания.

На рис. 3.12 показана консольная оправка с тонкостенной втулкой и гидропластмассой. Обрабатываемую деталь 4 базовым отверстием устанавливают на наружную поверхность тонкостенной втулки 5. При подаче сжатого воздуха в штоковую полость пневмоцилиндра поршень со штоком перемещается в пневмоцилиндре влево и шток через тягу 6 и рычаг 1 передвигает плунжер 2, который нажимает на гидропластмассу 3. Гидропластмасса равномерно давит на внутреннюю поверхность втулки 5, втулка разжимается; наружный диаметр втулки увеличивается, и она центрирует и закрепляет обрабатываемую деталь 4.

Рис. 3.12. Консольная оправка с гидропластмассой.

Мембранные патроны применяют для точного центрирования и зажима деталей, обрабатываемых на токарных и шлифовальных станках. В мембранных патронах обрабатываемые детали устанавливают по наружной или внутренней поверхности. Базовые поверхности деталей должны быть обработаны по 2-За-му классам точности. Мембранные патроны обеспечивают точность центрирования деталей 0,004-0,007 мм.

Мембраны - это тонкие металлические диски с рожками или без рожков (кольцевые мембраны). В зависимости от воздействия на мембрану штока механизированного привода - тянущего или толкающего действия - мембранные патроны подразделяются на разжимные и зажимные.

В разжимном мембранном рожковом патроне при установке кольцевой детали мембрана с рожками, штоком привода прогибается влево к шпинделю станка. При этом рожки мембраны с зажимающими винтами, установленными на концах рожков, сходятся к оси патрона, и обрабатываемое кольцо устанавливается центральным отверстием в патроне.

При прекращении нажима на мембрану под действием упругих сил она выпрямляется, ее рожки с винтами расходятся от оси патрона и зажимают обрабатываемое кольцо по внутренней поверхности. В зажимном мембранном рожковом патроне при установке кольцевой детали по наружной поверхности мембрана штоком привода прогибается вправо от шпинделя станка. При этом рожки мембраны расходятся от оси патрона и обрабатываемая деталь разжимается. Затем устанавливается следующее кольцо, нажим на мембрану прекращается, она выпрямляется и рожками с винтами зажимает обрабатываемое кольцо. Зажимные мембранные рожковые патроны с механизированным приводом изготовляются по МН 5523-64 и МН 5524-64 и с ручным приводом по МН 5523-64.

Мембранные патроны бывают рожковые и чашечные (кольцевые), их изготовляют из стали 65Г, ЗОХГС с закалкой до твердости HRC 40-50. Основные размеры рожковых и чашечных мембран нормализованы.

На рис. 3.13, а, б показана конструктивная схема мембранно-рожкового патрона 1. На заднем" конце шпинделя станка установлен пневмопривод патрона. При подаче сжатого воздуха в левую полость пневмоцилиндра поршень со штоком и тягой 2 перемещается вправо. При этом тяга 2, нажимая на рожковую мембрану 3, прогибает ее, кулачки (рожки) 4 расходятся, и деталь 5 разжимается (рис. 3.13, б ). Во время подачи сжатого воздуха в правую полость пневмоцилиндра его поршень со штоком и тягой 2 перемещается влево и отходит от мембраны 3. Мембрана под действием внутренних упругих сил выпрямляется, кулачки 4 мембраны сходятся и зажимают по цилиндрической поверхности деталь 5 (рис. 3.13, а).

Рис. 3.13. Схема мембранно-рожкового патрона

Основные данные для расчета патрона (рис. 3.13, а) с рожко-, вой мембраной: момент резания М рез , стремящийся повернуть обрабатываемую деталь 5 в кулачках 4 патрона; диаметр d = 2b базовой наружной поверхности обрабатываемой детали; расстояние l от середины мембраны 3 до середины кулачков 4. На рис. 3.13, в дана расчетная схема нагруженной мембраны. Круглая, жестко закрепленная по наружной поверхности мембрана нагружена равномерно распределенным изгибающим моментом М И , приложенным по концентрической окружности мембраны радиуса b базовой поверхности обрабатываемой детали. Данная схема является результатом наложения двух схем, показанных на рис. 3.13, г, д, причем М И 1 3 .

На рис. 3.13, в принято: а - радиус наружной поверхности мембраны, см (выбирают по конструктивным условиям); h=0,10,07 - толщина мембраны, см; М И - момент, изгибающий мембрану, Н-м (кгс-мм); - угол разжима кулачков 4 мембраны, требуемый для установки и зажима обрабатываемой детали с наименьшим предельным размером, град.

На рис. 3.13, е показан максимальный угол разжима кулачков мембраны:

Где: - дополнительный угол разжима кулачка, учитывающий допуск на неточность изготовления установочной поверхности детали; - угол разжима кулачков, учитывающий диаметральный зазор , необходимый для возможности установки деталей в патрон.

Из рис. 3.13, e видно, что угол:

;

Где: - допуск на неточность изготовления детали на смежной предшествующей операции; мм.

Число кулачков n мембранного патрона принимают в зависимости от формы и размеров обрабатываемой детали. Коэффициент трения между установочной поверхностью детали и кулачков . Коэффициент запаса. Допуск на размер установочной поверхности детали задается чертежом. Модуль упругости МПа (кгс/см 2).

Имея необходимые данные, рассчитывают мембранный патрон.

1. Радиальная сила на одном кулачке мембранного патрона для передачи крутящего момента М рез

Силы P з вызывают момент, изгибающий мембрану (см. рис. 3.13, в).

2. При большом количестве кулачков патрона момент М п можно считать равномерно действующим по окружности мембраны радиуса b и вызывающим ее изгиб:

3. Радиусом а наружной поверхности мембраны (из конструктивных соображений) задаются.

4. Отношение т радиуса а мембраны к радиусу b установочной поверхности детали: а/b = т.

5. Моменты М 1 и М 3 в долях от М и и = 1) находят в зависимости от m= a/b по следующим данным (табл. 3.1):

Таблица 3.1


m=a/b

1,25

1,5

1,75

2,0

2,25

2,5

2,75

3,0

M 1

0,785

0,645

0,56

0,51

0,48

0,455

0,44

0,42

M 3

0,215

0,355

0,44

0,49

0,52

0,545

0,56

0,58

6. Угол (рад) разжима кулачков при закреплении детали с наименьшим предельным размером:

7. Цилиндрическая жесткость мембраны [Н/м (кгс/см)]:

Где: МПа - модуль упругости (кгс/см 2); =0,3.

8. Угол наибольшего разжима кулачков (рад):

9. Сила на штоке механизированного привода патрона, необходимая для прогиба мембраны и разведения кулачков при разжиме детали, на максимальный угол :

.

При выборе точки приложения и направления зажимного усилия необходимо соблюдать следующее: для обеспечения контакта заготовки с опорным элементом и устранения возможного ее сдвига при закреплении зажимное усилие следует направлять перпендикулярно к поверхности опорного элемента; в целях устранения деформации заготовки при закреплении точку приложения зажимного усилия надо выбирать так, чтобы линия его действия пересекала опорную поверхность установочного элемента.

Количество точек приложения зажимных усилий определяют конкретно к каждому случаю зажима заготовки в зависимости от вида заготовки, метода обработки, направления силы резания. Для уменьшения вибрации и деформации заготовки под действием сил резания следует повышать жесткость системы заготовка – приспособление путем увеличения числа точек зажима заготовки за счет введения вспомогательных опор.

К зажимным элементам относятся винты, эксцентрики, прихваты, тисочные губки, клинья, плунжеры, планки. Они являются промежуточными звеньями в сложных зажимных системах. Форма рабочей поверхности зажимных элементов, контактирующих с заготовкой, в основном такая же, как и установочных элементов. Графически зажимные элементы обозначаются согласно табл. 3.2.

Таблица 3.2 Графическое обозначение зажимных элементов

Контрольные задания.

Задание 3.1.

Основные правила при закреплении заготовки?

Задание 3.2.

От чего зависит количество точек зажима детали при обработке?

Задание 3.3.

Преимущества и недостатки применения эксцентриков.

Задание 3.4.

Графическое обозначение зажимных элементов.

  • 2. Установочные элементы и их назначение. Условные обозначения опор и установочных учтройств согласно гост. Материалы, применяемые для изготовления опор.
  • 3. Установка детали на плоскость, на плоскость и перпендикулярные к ней отверстия, на плоскость и два отверстия. Особенности конструирования установочных элементов. Материалы и термообработка.
  • 4. Назначение зажимов и особенности их конструкций в зависимости от схемы приспособления
  • 6. Особенности конструкций и эксплуатации винтовых и клиновых зажимов. Примеры их использования в приспособлениях. Величина усилия зажатия, создаваемая данным механизмом.
  • 7. Особенности конструкций рычажных зажимов. Возможные типовые схемы и величина создаваемого ими зажимного усилия, эскиз конструкции рычажного зажима.
  • 8. Особенности конструкции г-образных зажимов, простых и поворотных. Эскиз конструкции. Применяемые материалы.
  • 9. Цанговые зажимные устройства, особенности их конструкций и область применения. Величина усилия зажима. Применяемые материалы.
  • 10. Виды приводов зажимных устройств и их условное обозначение по гост. Особенности конструкций пнев- и гидравлических приводов. Величина создаваемого усилия.
  • 11. Особенности применения электромеханическогг и инерционного приводов. Схемы магнитного и вакуумного приводов.
  • 12. Передаточные механизмы, их назначение и особенности конструкций для разных типов механизмов.
  • 13. Виды самоцентрирующих устройств и их особенности для различных типов приспособлений. Условное обозначение: токарного патрона, цанговой и гидропластовой оправки.
  • 16. Элементы для направления режущего инструмента. Особенности их конструирования в зависимости от назначения. Материалы, твёрдость. Пути повышения срока службы. (стр.159,283,72)
  • 17. Вспомогательный инструмент. Классификация вспомогательного инструмента по виду оборудования и режущего инструмента. Пример конструкции вспомогательного инструмента.
  • 18. Контрольные приспособления и их назначение.
  • 19. Узлы контрольных приспособлений. Требования к ним. Особенности конструирования.
  • 20. Приспособоения с гидропластом. Виды приспособлений. Особенности конструирования. Определение исходной силы.
  • 4. Назначение зажимов и особенности их конструкций в зависимости от схемы приспособления

    Основное назначение зажимных устройств состоит в обеспечении надежного контакта заготовки с установочными элементами и предупреждении ее смещения и вибраций в процессе обработки.

    Зажимные устройства используются также для обеспечения правильной установки и центрирования заготовки. В этом случае зажимы выполняют функцию установочно-зажимных элементов. К ним относятся самоцентрирующие патроны, цанговые зажимы и другие устройства.

    Заготовка может не закрепляться, если обрабатывается тяжелая деталь (устойчивая), по сравнению с весом которой силы резания незначительны; сила, возникающая в процессе резания, приложена так, что не нарушает установки детали.

    В процессе обработки на заготовку могут действовать следующие силы:

    Силы резания, которые могут быть переменными вследствие разного припуска на обработку, свойств материала, затупления режущего инструмента;

    Вес заготовки (при вертикальном положении детали);

    Центробежные силы, возникающие в результате смещения центра тяжести детали относительно оси вращения.

    К зажимным устройствам приспособлений предъявляются следующие основные требования:

      При закреплении заготовки не должно нарушаться ее положение, достигнутое установкой;

      Силы зажима должны исключать возможность перемещения детали и ее вибрацию в процессе обработки;

      Деформация детали под действием зажимных сил должна быть минимальной.

      Смятие базирующих поверхностей должно быть минимальным, поэтому усилие зажима должно быть приложено так, чтобы деталь прижималась к установочным элементам приспособления плоской базирующей поверхностью, а не цилиндрической или фасонной.

      Зажимные устройства должны быть быстродействующими, удобно расположенными, просты по конструкции и требовать минимальных усилий от рабочего.

      Зажимные устройства должны быть износоустойчивыми, а наиболее изнашиваемые детали – сменными.

      Силы зажима должны быть направлены на опоры, чтобы не деформировать деталь, особенно нежесткую.

    Материалы: стали 30ХГСА, 40Х, 45. Рабочая поверхность должна быть обработана по 7 кв. и точнее.

    Обозначение зажимов:

    Обозначение устройства зажима:

    П – пневматическое

    Н – гидравлическое

    Е – электрическое

    М – магнитное

    ЕМ – электромагнитное

    Г – гидропластовое

    В единичном производстве применяют ручные приводы: винтовые, эксцентриковые и др. В серийном производстве применяют механизированные приводы.

    5. ЗАЖАТИЕ ДЕТАЛИ. ИСХОДНЫЕ ДАННЫЕ ДЛЯ СОСТАВЛЕНИЯ СХЕМЫ К РАСЧЕТУ УСИЛИЯ ЗАЖАТИЯ ДЕТАЛИ. МЕТОДИКА ОПРЕДЕЛЕНИЯ УСИЛИЯ ЗАЖАТИЯ ДЕТАЛИ В ПРИСПОСОБЛЕНИИ. ТИПОВЫЕ СХЕМЫ К РАСЧЕТУ УСИЛИЯ, ПОТРЕБНАЯ ВЕЛИЧИНА УСИЛИЯ ЗАЖАТИЯ.

    Величину потребных сил зажима определяют решая задачу статики на равновесие твердого тела под действием всех приложенных к нему сил и моментов.

    Расчет сил зажима производится в 2-х основных случаях:

    1. при использовании имеющихся универсальных приспособлений с зажимными устройствами, развивающими определенную силу;

    2. при конструировании новых приспособлений.

    В первом случае расчет зажимной силы носи проверочный характер. Найденная из условий обработки необходимая зажимная сила должна быть меньше или равна той силе, которую развивает зажимное устройство используемого универсального приспособления. Если это условие не выдерживается, то производят изменение условий обработки в целях уменьшения необходимой зажимной силы с последующим новым проверочным расчетом.

    Во втором случае методика расчета зажимных сил заключается в следующем:

    1. Выбирается наиболее рациональная схема установки детали, т.е. намечается положение и тип опор, места приложения сил зажима с учетом направления сил резания в самый неблагоприятный момент обработки.

    2. На выбранной схеме стрелками отмечаются все приложенные к детали силы, стремящиеся нарушить положение детали в приспособлении (силы резания, силы зажима) и силы, стремящиеся сохранить это положение (силы трения, реакции опор). При необходимости учитываются и силы инерции.

    3. Выбирают уравнения равновесия статики, применимые к данному случаю и определяют искомое значение величины сил зажима Q 1 .

    4. Приняв коэффициент надежности закрепления (коэффициент запаса), необходимость которого вызывается неизбежными колебаниями сил резания в процессе обработки, определяется фактически потребная сила зажима:

    Коэффициент запаса К рассчитывается применительно к конкретным условиям обработки

    где К 0 = 2,5 – гарантированный коэффициент запаса для всех случаев;

    К 1 – коэффициент, учитывающий состояние поверхности заготовок; К 1 = 1,2 – для черновой поверхности; К 1 = 1 – для чистовой поверхности;

    К 2 – коэффициент, учитывающий увеличение сил резания от прогрессирующего затупления инструмента (К 2 = 1,0…1,9);

    К 3 – коэффициент, учитывающий увеличение сил резания при прерывистом резании; (К 3 = 1,2).

    К 4 – коэффициент, учитывающий постоянство силы зажима, развиваемой силовым приводом приспособления; К 4 = 1…1,6;

    К 5 – данный коэффициент учитывается только при наличии крутящих моментов, стремящихся повернуть обрабатываемую деталь; К 5 = 1…1,5.

    Типовые схемы к расчету усилия зажатия детали и потребная величина усилия зажатия:

    1. Сила резания Р и сила зажима Q одинаково направлены и действуют на опоры:

    При постоянном значении Р сила Q = 0. Этой схеме соответствует протягивание отверстий, обтачивание в центрах, цекование бобышек.

    2. Сила резания Р направлена против зажимного усилия:

    3. Сила резания стремится сдвинуть заготовку с установочных элементов:

    Характерно для маятникового фрезерования, фрезерования замкнутых контуров.

    4. Заготовка установлена в патроне и находиться под действием момента и осевой силы:

    где Q c – суммарная сила зажима всеми кулачками:

    где z – число кулачков в патроне.

    С учетом коэффициента запаса k потребная сила, развиваемая каждым кулачком, будет:

    5. Если в детали сверлится одно отверстие и направление силы зажима совпадает с направлением сверления, то сила зажима определяется по формуле:

    k  M = W  f  R

    W = k  M / f  R

    6. Если в детали сверлится одновременно несколько отверстий и направление силы зажима совпадает с направлением сверления, то сила зажима определяется по формуле:

    Зажимные элементы должны обеспечить надёжный контакт обрабатываемой детали с установочным элементами и препятствовать нарушению его под действием возникающих при обработке усилий, быстрый и равномерный зажим всех деталей и не вызывать деформации и порчи пов-тей закрепляемых деталей.

    Зажимные элементы подразделяются:

    По конструкции – на винтовые, клиновые, эксцентриковые, рычажные, рычажно-шарнирные (применяются также комбинированные зажимные элементы – винторычажные, эксцентрико-рычажные и т.д).

    По степени механизации – на ручные и механизированные с гидравлическим, пневматическим, электрическим или вакуумным приводом.

    Зажимные мех-мы могут быть автоматизированными.

    Винтовые зажимы используют для непосредственного зажима или зажима через прижимные планки, либо прихваты одной или нескольких деталей. Недостатком их является то, что для закрепления и открепления детали приходится затрачивать много времени.

    Эксцентриковые и клиновые зажимы, также как винтовые, позволяют закреплять деталь непосредственно или через прижимные планки и рычаги.

    Наибольшее распространение получили круговые эксцентриковые зажимы. Эксцентриковый зажим является частным случаем клинового зажима, причём для обеспечения самоторможения угол клина не должен превышать 6-8 град. Эксцентриковые зажимы изготовляют из высокоуглеродистой или цементуемой стали и термически обрабатывают до твёрдости HRC55-60. Эксцентриковые зажимы относятся к быстродействующим зажимам, т.к. для зажима необход. повернуть эксцентрик на угол 60-120 град.

    Рычажно- шарнирные элементы применяются в качестве приводных и усилительных звеньев зажимных механизмов. По конструкции они делятся на однорычажные, двухрычажные (одностороннего и двустороннего действия – самоцентрирующие и многозвенные). Рычажные механизмы не обладают самотормозящими свойствами. Наиболее простым примером рычажно-шарнирных мех-мов является прижимные планки приспособлений, рычаги пневматических патронов и т.д.

    Пружинные зажимы применяют для зажима изделий с небольшими усилиями, возникающие при сжатии пружины.

    Для создания постоянных и больших зажимных усилий, сокращения времени зажима, осуществления дистанционного управления зажимами применяют пневматические, гидравлические и другие приводы.



    Наиболее распространёнными пневматическими приводами явл-ся поршневые пневматические цилиндры и пневматические камеры с упругой диафрагмой, стационарные, вращающиеся и качающиеся.

    Пневматические приводы приводятся в действие сжатым воздухом под давлением 4-6 кг/см.² При необходимости применения малогабаритных приводов и создания больших зажимных усилий используют гидравлические приводы, рабочее давление масла в котор. достигает 80 кг/см².

    Усилие на штоке пневматического или гидравлического цилиндра равно произведению рабочей площади поршня в квадратных см. на давление воздуха или рабочей жидкости. При этом необходимо учитывать потери на трение между поршнем и стенками цилиндра, между штоком и направляющими втулками и уплотнениями.

    Электромагнитные зажимные устройства выполняют в виде плит и планшайб. Они предназначены для закрепления стальных и чугунных заготовок с плоской базовой поверхностью при шлифовании или чистовом точении.

    Магнитные зажимные устройства могут быть выполнены в виде призм, служащих для закрепления цилиндрических заготовок. Появились плиты, у которых в качестве постоянных магнитов используют ферриты. Эти плиты отличаются большой удерживающей силой и меньшим расстоянием между полюсами.

    3.1. Выбор места приложения зажимных усилий, вида и количества зажимных элементов

    При закреплении заготовки в приспособлении должны соблюдаться следующие основные правила:

    · не должно нарушаться положение заготовки достигнутое при ее базировании;

    · закрепление должно быть надежным, чтобы во время обработки положение заготовки сохранялось неизменным;

    · возникающие при закреплении смятие поверхностей заготовки, а также ее деформация должны быть минимальными и находиться в допустимых пределах.

    · для обеспечения контакта заготовки с опорным элементом и устранения возможного его сдвига при закреплении зажимное усилие следует направлять перпендикулярно к поверхности опорного элемента. В отдельных случаях зажимное усилие можно направлять так, чтобы заготовка одновременно прижималась к поверхностям двух опорных элементов;

    · в целях устранения деформации заготовки при закреплении точку приложения зажимного усилия надо выбирать так, чтобы линия его действия пересекала опорную поверхность опорного элемента. Лишь при закреплении особо жестких заготовок можно допускать, чтобы линия действия зажимного усилия проходила между опорными элементами.

    3.2. Определение количества точек приложения зажимных усилий

    Количество точек приложения зажимных усилий определяется конкретно к каждому случаю зажима заготовки. Для уменьшения смятия поверхностей заготовки при закреплении необходимо уменьшать удельное давление в местах контакта зажимного устройства с заготовкой путем рассредоточения зажимного усилия.

    Это достигается применением в зажимных устройствах контактных элементов соответствующей конструкции, которые позволяют распределить зажимное усилие поровну между двумя или тремя точками, а иногда даже рассредоточить по некоторой протяженной поверхности. Количество точек зажима во многом зависит от вида заготовки, метода обработки, направления силы резания. Для уменьшения вибрацийи деформаций заготовки под действием силы резания следует повышать жесткость системы заготовка-приспособление путем увеличения числа мест зажатия заготовки и приближения их к обрабатываемой поверхности.

    3.3. Определение вида зажимных элементов

    К зажимным элементам относятся винты, эксцентрики, прихваты, тисочные губки, клинья, плунжеры, прижимы, планки.

    Они являются промежуточными звеньями в сложных зажимных системах.

    3.3.1. Винтовые зажимы

    Винтовые зажимы применяют в приспособлениях с ручным закреплением заготовки, в приспособлениях механизированного типа, а также на автоматических линиях при использовании приспособлений-спутников. Они просты, компактны и надежны в работе.

    Рис. 3.1. Винтовые зажимы: а – со сферическим торцем; б – с плоским торцем; в – с башмаком.

    Винты могут быть со сферическим торцем (пятой), плоским и с башмаком, предупреждающим порчу поверхности.

    При расчете винтов со сферической пятой учитывается только трение в резьбе.

    где: L - длина рукоятки, мм; - средний радиус резьбы, мм; - угол подъема резьбы.

    где: S – шаг резьбы, мм; – приведенный угол трения.

    где: Pu 150 Н.

    Условие самоторможения: .

    Для стандартных метрических резьб , поэтому все механизмы с метрической резьбой самотормозящие.

    При расчете винтов с плоской пятой учитывается трение на торце винта.

    Для кольцевой пяты:

    где: D – наружный диаметр опорного торца, мм; d – внутренний диаметр опорного торца, мм; – коэффициент трения.

    С плоскими торцами:

    Для винта с башмаком:

    Материал: сталь 35 или сталь 45 с твердостью HRC 30-35 и точностью резьба по третьему классу.

    3.3.2. Клиновые зажимы

    Клин применяется в следующих конструктивных вариантах:

    1. Плоский односкосый клин.

    2. Двускосый клин.

    3. Круглый клин.

    Рис. 3.2. Плоский односкосый клин.

    Рис. 3.3. Двускосый клин.

    Рис. 3.4. Круглый клин.

    4) кривошипный клин в форме эксцентрика или плоского кулачка с рабочим профилем, очерченным по архимедовой спирали;

    Рис. 3.5. Кривошипный клин: а – в форме эксцентрика; б) – в форме плоского кулачка.

    5) винтовой клин в форме торцевого кулачка. Здесь односкосый клин как бы свернут в цилиндр: основание клина образует опору, а его наклонная плоскость - винтовой профиль кулачка;

    6) в самоцентрирующих клиновых механизмах (патроны, оправки) не пользуются системы из трех и более клиньев.

    3.3.2.1. Условие самоторможение клина

    Рис. 3.6. Условие самоторможение клина.

    где: - угол трения.

    где: коэффициент трения;

    Для клина с трением только по наклонной поверхности условие самоторможение:

    с трением на двух поверхностях:

    Имеем: ; или: ; .

    Тогда: условие самоторможение для клина с трением на двух поверхностях:

    для клина с трением только на наклонной поверхности:

    С трением на двух поверхностях:

    С трением только на наклонной поверхности:

    3.3.3.Эксцентриковые зажимы

    Рис. 3.7. Схемы для расчета эксцентриков.

    Такие зажимы являются быстродействующими, но развивают меньшую силу, чем винтовые. Обладают свойством самоторможения. Основной недостаток: не могут надежно работать при значительных колебаниях размеров между установочной и зажимаемой поверхностью обрабатываемых деталей.

    где: (- среднее значение радиуса, проведенного из центра вращения эксцентрика в точку А зажима, мм; (- средний угол подъема эксцентрика в точке зажима; (, (1 – углы трения скольжения в точке А зажима и на оси эксцентрика.

    Для расчетов принимают:

    При l 2D расчет можно производить по формуле:

    Условие самоторможения эксцентрика:

    Обычно принимают .

    Материал: сталь 20Х с цементацией на глубину 0,8 1,2 мм и закалкой до HRC 50…60.

    3.3.4. Цанги

    Цанги представляют собой пружинящие гильзы. Их применяют для установки заготовок по наружным и внутренним цилиндрическим поверхностям.

    где: – сила закрепления заготовки; Q – сила сжатия лепестков цанги; - угол трения между цангой и втулкой.

    Рис. 3.8. Цанга.

    3.3.5. Устройства для зажима деталей типа тел вращения

    Кроме цанги для зажима деталей имеющих цилиндрическую поверхность, применяют разжимные оправки, зажимные втулки с гидропластом, оправки и патроны с тарельчатыми пружинами, мембранные патроны и другие.

    Консольные и центровые оправки применяют для установки с центральным базовым отверстием втулок, колец, шестерен, обрабатываемых на многорезцовых шлифовальных и других станках.

    При обработке партии таких деталей требуется получить высокую концентричность наружных и внутренних поверхностей и заданную перпендикулярность торцов к оси детали.

    В зависимости от способа установки и центрирования обрабатываемых деталей консольные и центровые оправки можно подразделить на следующие.виды: 1) жесткие (гладкие) для установки деталей с зазором или натягом; 2) разжимные цанговые; 3) клиновые (плунжерные, шариковые); 4) с тарельчатыми пружинами; 5) самозажимные (кулачковые, роликовые); 6) с центрирующей упругой втулкой.

    Рис. 3.9. Конструкции оправок: а - гладкая оправка; б - оправка с разрезной втулкой.

    На рис. 3.9, а показана гладкая оправка 2, на цилиндрической части которой установлена обрабатываемая деталь 3. Тяга 6, закрепленная на штоке пневмоцилиндра, при перемещении поршня со штоком влево головкой 5нажимает на быстросменную шайбу 4и зажимает деталь 3на гладкой оправке 2. Оправка конической частью 1 вставляется в конус шпинделя станка. При зажиме обрабатываемой детали на оправке осевая сила Q на штоке механизированного привода вызывает между торцами шайбы 4, уступом оправки и обрабатываемой деталью 3момент от силы трения, больший, чем момент М рез от силы резания Р z . Зависимость между моментами:

    откуда сила на штоке механизированного привода:

    По уточненной формуле:

    Где: - коэффициент запаса; Р z - вертикальная составляющая сила резания, Н (кгс); D - наружный диаметр поверхности обрабатываемой детали, мм; D 1 - наружный диаметр быстросменной шайбы, мм; d - диаметр цилиндрической установочной части оправки, мм; f= 0,1 - 0,15 - коэффициент трения сцепления.

    На рис. 3.9, б показана оправка 2с разрезной втулкой 6, на которой устанавливают и зажимают обрабатываемую деталь 3. Конической частью 1оправку 2 вставляют в конус шпинделя станка. Зажим и разжим детали на оправке производят механизированным приводом. При подаче сжатого воздуха в правую полость пневмоцилиндра поршень, шток и тяга 7 движутся влево и головка 5 тяги с шайбой 4 перемещает разрезную втулку 6 по конусу оправки, пока она не зажмет деталь на оправке. Во время подачи сжатого воздуха в левую полость пневмоцилиндра поршень, шток; и тяга перемещаются вправо, головка 5 с шайбой 4отходят от втулки 6 и деталь разжимается.

    Рис.3.10. Консольная оправка с тарельчатыми пружинами (а) и тарельчатая пружина (б) .

    Крутящий момент от вертикальной силы резания Р z должен быть меньше момента от сил трения на цилиндрической поверхности разрезной втулки 6 оправки. Осевая сила на штоке механизированного привода (см. рис. 3.9, б ).

    где: - половина угла конуса оправки, град; - угол трения на поверхности контакта оправки с разрезной втулкой, град; f=0,15-0,2 - коэффициент трения.

    Оправки и патроны с тарельчатыми пружинами применяют для центрирования и зажима по внутренней или наружной цилиндрической поверхности обрабатываемых деталей. На рис. 3.10, а, б соответственно показаны консольная оправка с тарельчатыми пружинами и тарельчатая пружина. Оправка состоит из корпуса 7, упорного кольца 2,пакета тарельчатых пружин 6, нажимной втулки 3 и тяги 1, соединенной со штоком пневмоцилиндра. Оправку применяют для установки и закрепления детали 5 по внутренней цилиндрической поверхности. При перемещении поршня со штоком и тягой 1 влево последняя головкой 4 и втулкой 3 нажимает на тарельчатые пружины 6.Пружины выпрямляются, их наружный диаметр увеличивается, а внутренний уменьшается, обрабатываемая деталь 5 центрируется и зажимается.

    Размер установочных поверхностей пружин при сжатии может изменяться в зависимости от их размера на 0,1 - 0,4 мм. Следовательно, базовая цилиндрическая поверхность обрабатываемой детали должна иметь точность 2 - 3-го классов.

    Тарельчатую пружину с прорезями (рис. 3.10, б ) можно рассматривать как совокупность двухзвенных рычажно-шарнирных механизмов двустороннего действия, разжимаемых осевой силой. Определив крутящий момент М рез от силы резания Р z и выбирая коэффициент запаса К , коэффициент трения f и радиус R установочной поверхности тарельчатой поверхности пружины, получим равенство:

    Из равенства определим суммарную радиальную силу зажима, действующую на установочной поверхности обрабатываемой детали:

    Осевая сила на штоке механизированного привода для тарельчатых пружин:

    с радиальными прорезями

    без радиальных прорезей

    где: - угол наклона тарельчатой пружины при зажиме детали, град; К=1,5 - 2,2 - коэффициент запаса; М рез - крутящий момент от силы резания Р z ,Н-м (кгс-см); f=0,1- 0,12 - коэффициент трения между установочной поверхностью тарельчатых пружин и базовой поверхностью обрабатываемой детали; R - радиус установочной поверхности тарельчатой пружины, мм; Р z - вертикальная составляющая сила резания, Н (кгс); R 1 - радиус обработанной поверхности детали, мм.

    Патроны и оправки с самоцентрирующими тонкостенными втулками, наполненными гидропластмассой, применяют для установки по наружной или внутренней поверхности деталей, обрабатываемых на токарных и других станках.

    На приспособлениях с тонкостенной втулкой обрабатываемые детали наружной или внутренней поверхностью устанавливают на цилиндрическую поверхность втулки. При разжиме втулки гидропластмассой детали центрируются и зажимаются.

    Форма и размеры тонкостенной втулки должны обеспечивать достаточную ее деформацию для надежного зажима детали на втулке при обработке детали на станке.

    При конструировании патронов и оправок с тонкостенными втулками с гидропластмассой рассчитывают:

    1. основные размеры тонкостенных втулок;

    2. размеры нажимных винтов и плунжеров у приспособлений с ручным зажимом;

    3. размеры плунжеров, диаметр цилиндра и ход поршня для приспособлений с механизированным приводом.

    Рис. 3.11. Тонкостенная втулка.

    Исходными данными для расчета тонкостенных втулок являются диаметр D д отверстия или диаметр шейки обрабатываемой детали и длина l д отверстия или шейки обрабатываемой детали.

    Для расчета тонкостенной самоцентрирующей втулки (рис. 3.11) примем следующие обозначения: D - диаметр установочной поверхности центрирующей втулки 2, мм; h - толщина тонкостенной части втулки, мм; Т - длина опорных поясков втулки, мм; t - толщина опорных поясков втулки, мм; - наибольшая диаметральная упругая деформация втулки (увеличение или уменьшение диаметра в ее средней части) мм; S max - максимальный зазор между установочной поверхностью втулки и базовой поверхностью обрабатываемой детали 1 в свободном состоянии, мм; l к - длина контактного участка упругой втулки с установочной поверхностью обрабатываемой детали после разжима втулки, мм; L -длина тонкостенной части втулки, мм; l д - длина обрабатываемой детали, мм; D д - диаметр базовой поверхности обрабатываемой детали, мм; d - диаметр отверстия опорных поясков втулки, мм; р - давление гидропластмассы, требуемое для деформации тонкостенной втулки, МПа (кгс/см 2); r 1 - радиус закругления втулки, мм; M рез =P z r - допустимый крутящий момент, возникающий от силы резания, Н-м (кгс-см); P z - сила резания, Н (кгс); r -плечо момента силы резания.

    На рис. 3.12 показана консольная оправка с тонкостенной втулкой и гидропластмассой. Обрабатываемую деталь 4базовым отверстием устанавливают на наружную поверхность тонкостенной втулки 5. При подаче сжатого воздуха в штоковую полость пневмоцилиндра поршень со штоком перемещается в пневмоцилиндре влево и шток через тягу 6и рычаг 1передвигает плунжер 2,который нажимает на гидропластмассу 3. Гидропластмасса равномерно давит на внутреннюю поверхность втулки 5,втулка разжимается; наружный диаметр втулки увеличивается, и она центрирует и закрепляет обрабатываемую деталь 4.

    Рис. 3.12. Консольная оправка с гидропластмассой.

    Мембранные патроны применяют для точного центрирования и зажима деталей, обрабатываемых на токарных и шлифовальных станках. В мембранных патронах обрабатываемые детали устанавливают по наружной или внутренней поверхности. Базовые поверхности деталей должны быть обработаны по 2-За-му классам точности. Мембранные патроны обеспечивают точность центрирования деталей 0,004-0,007 мм.

    Мембраны - это тонкие металлические диски с рожками или без рожков (кольцевые мембраны). В зависимости от воздействия на мембрану штока механизированного привода - тянущего или толкающего действия - мембранные патроны подразделяются на разжимные и зажимные.

    В разжимном мембранном рожковом патроне при установке кольцевой детали мембрана с рожками, штоком привода прогибается влево к шпинделю станка. При этом рожки мембраны с зажимающими винтами, установленными на концах рожков, сходятся к оси патрона, и обрабатываемое кольцо устанавливается центральным отверстием в патроне.

    При прекращении нажима на мембрану под действием упругих сил она выпрямляется, ее рожки с винтами расходятся от оси патрона и зажимают обрабатываемое кольцо по внутренней поверхности. В зажимном мембранном рожковом патроне при установке кольцевой детали по наружной поверхности мембрана штоком привода прогибается вправо от шпинделя станка. При этом рожки мембраны расходятся от оси патрона и обрабатываемая деталь разжимается. Затем устанавливается следующее кольцо, нажим на мембрану прекращается, она выпрямляется и рожками с винтами зажимает обрабатываемое кольцо. Зажимные мембранные рожковые патроны с механизированным приводом изготовляются по МН 5523-64 и МН 5524-64 и с ручным приводом по МН 5523-64.

    Мембранные патроны бывают рожковые и чашечные (кольцевые), их изготовляют из стали 65Г, ЗОХГС с закалкой до твердости HRC 40-50. Основные размеры рожковых и чашечных мембран нормализованы.

    На рис. 3.13, а, б показана конструктивная схема мембранно-рожкового патрона 1. На заднем" конце шпинделя станка установлен пневмопривод патрона. При подаче сжатого воздуха в левую полость пневмоцилиндра поршень со штоком и тягой 2 перемещается вправо. При этом тяга 2, нажимая на рожковую мембрану 3,прогибает ее, кулачки (рожки) 4 расходятся, и деталь 5 разжимается (рис. 3.13, б ). Во время подачи сжатого воздуха в правую полость пневмоцилиндра его поршень со штоком и тягой 2перемещается влево и отходит от мембраны 3. Мембрана под действием внутренних упругих сил выпрямляется, кулачки 4мембраны сходятся и зажимают по цилиндрической поверхности деталь 5 (рис. 3.13, а).

    Рис. 3.13. Схема мембранно-рожкового патрона

    Основные данные для расчета патрона (рис. 3.13, а) с рожко-, вой мембраной: момент резания М рез , стремящийся повернуть обрабатываемую деталь 5 в кулачках 4патрона; диаметр d = 2b базовой наружной поверхности обрабатываемой детали; расстояние l от середины мембраны 3до середины кулачков 4.На рис. 3.13, в дана расчетная схема нагруженной мембраны. Круглая, жестко закрепленная по наружной поверхности мембрана нагружена равномерно распределенным изгибающим моментом М И , приложенным по концентрической окружности мембраны радиуса b базовой поверхности обрабатываемой детали. Данная схема является результатом наложения двух схем, показанных на рис. 3.13, г, д, причем М И =М 1 +М 3 . М рез

    Силы P з вызывают момент, изгибающий мембрану (см. рис. 3.13, в).

    2. При большом количестве кулачков патрона момент М п можно считать равномерно действующим по окружности мембраны радиуса b и вызывающим ее изгиб:

    3. Радиусом а наружной поверхности мембраны (из конструктивных соображений) задаются.

    4. Отношение т радиуса а мембраны к радиусу b установочной поверхности детали: а/b = т.

    5. Моменты М 1 и М 3 в долях от М и (М и = 1) находят в зависимости от m= a/b по следующим данным (табл. 3.1):

    Таблица 3.1

    m=a/b 1,25 1,5 1,75 2,0 2,25 2,5 2,75 3,0
    M 1 0,785 0,645 0,56 0,51 0,48 0,455 0,44 0,42
    M 3 0,215 0,355 0,44 0,49 0,52 0,545 0,56 0,58

    6. Угол (рад) разжима кулачков при закреплении детали с наименьшим предельным размером:

    7. Цилиндрическая жесткость мембраны [Н/м (кгс/см)]:

    где: МПа - модуль упругости ( кгс/см 2); =0,3.

    8. Угол наибольшего разжима кулачков (рад):

    9. Сила на штоке механизированного привода патрона, необходимая для прогиба мембраны и разведения кулачков при разжиме детали, на максимальный угол :

    При выборе точки приложения и направления зажимного усилия необходимо соблюдать следующее: для обеспечения контакта заготовки с опорным элементом и устранения возможного ее сдвига при закреплении зажимное усилие следует направлять перпендикулярно к поверхности опорного элемента; в целях устранения деформации заготовки при закреплении точку приложения зажимного усилия надо выбирать так, чтобы линия его действия пересекала опорную поверхность установочного элемента.

    Количество точек приложения зажимных усилий определяют конкретно к каждому случаю зажима заготовки в зависимости от вида заготовки, метода обработки, направления силы резания. Для уменьшения вибрации и деформации заготовки под действием сил резания следует повышать жесткость системы заготовка – приспособление путем увеличения числа точек зажима заготовки за счет введения вспомогательных опор.

    К зажимным элементам относятся винты, эксцентрики, прихваты, тисочные губки, клинья, плунжеры, планки. Они являются промежуточными звеньями в сложных зажимных системах. Форма рабочей поверхности зажимных элементов, контактирующих с заготовкой, в основном такая же, как и установочных элементов. Графически зажимные элементы обозначаются согласно табл. 3.2.

    Таблица 3.2 Графическое обозначение зажимных элементов

    Конструкции зажимных устройств состоят из трех основных частей: привода, контактного элемента, силового механизма.

    Привод, преобразуя определенный вид энергии, развивает силу Q, которая с помощью силового механизма преобразуется в силу зажима Р и передается через контактные элементы заготовке.

    Контактные элементы служат для передачи зажимного усилия непосредственно на заготовку. Их конструкции позволяют рассредоточивать усилия, предотвращая смятие поверхностей заготовки, и распределять между несколькими точками опор.

    Известно, что рациональный выбор приспособления сокращает вспомогательное время. Вспомогательное время можно сократить, применяя механизированные приводы.

    Механизированные приводы в зависимости от типа и источника энергии могут быть подразделены на следующие основные группы: механические, пневматические, электромеханические, магнитные, вакуумные и др. Область применения механических приводов с ручным управлением ограничена, так как требуются значительные затраты времени на установку и снятие обрабатываемых заготовок. Наибольшее распространение получили приводы пневматические, гидравлические, электрические, магнитные и их комбинации.

    Пневматические приводы работают по принципу подачи сжатого воздуха. В качестве пневматического привода могут быть использованы

    пневматические цилиндры (двустороннего и одностороннего действия) и пневматические камеры.

    для полости цилиндра со штоком



    для цилиндров одностороннего действия


    К недостаткам пневматических приводов относятся их относительно большие габаритные размеры. Сила Q(H) в пневмоцилиндрах зависит от их типа и без учета сил трения ее определяют по следующим формулам:

    Для пневмоцилиндров двустороннего действия для левой части цилиндра

    где р - давление сжатого воздуха, МПа; давление сжатого воздуха обычнопринимают равным 0,4-0,63 МПа,

    D - диаметр поршня, мм;

    d - диаметр штока, мм;

    ή- КПД, учитывающий потери в цилиндре, при D = 150 ... 200 мм ή =0,90... 0,95;

    q - сила сопротивления пружин, Н.

    Пневматические цилиндры применяют с внутренним диаметром 50, 75, 100, 150, 200, 250, 300 мм. Посадка поршня в цилиндре при использовании уплотнительных колец или , а при уплотнении манжетами или.

    Использование цилиндров диаметром менее 50 мм и более 300 мм экономически невыгодно, в этом случае надо использовать другие виды приводов,

    Пневматические камеры имеют ряд преимуществ по сравнению с пневмоцилиндрами: долговечны, выдерживают до 600 тысяч включений (пневмоцилиндры - 10 тысяч); компактны; имеют небольшую массу и проще в изготовлении. К недостаткам относят небольшой ход штока и непостоянство развиваемых усилий.

    Гидравлические приводы по сравнению с пневматическими имеют

    следующие преимущества: развивает большие силы (15 МПа и выше); их рабочая жидкость (масло) практически несжимаема; обеспечивают плавную передачу развиваемых сил силовым механизмом; могут обеспечить передачу силы непосредственно на контактные элементы приспособления; имеют широкую область Применения, поскольку их можно использовать для точных перемещений рабочих органов станка и подвижных частей приспособлений; позволяют применять рабочие цилиндры небольшого диаметра (20, 30, 40, 50 мм v. более), что обеспечивает их компактность.

    Пневмогидравлические приводы обладают рядом преимуществ по сравнению с пневматическими и гидравлическими: имеют высокие рабочие силы, быстроту действия, низкую стоимость и небольшие габариты. Расчетные формулы аналогичны расчету гидроцилиндров.

    Электромеханические приводы находят широкое применение в токарных станках с ЧПУ, агрегатных станках, автоматических линиях. Приводятся в действие от электродвигателя и через механические передачи, силы передаются на контактные элементы зажимного устройства.

    Электромагнитные и магнитные зажимные устройства выполняют преимущественно в виде плит и планшайб для закрепления стальных и чугунных заготовок. Используется энергия магнитного поля от электромагнитных катушек или постоянных магнитов. Технологические возможности применения электромагнитных и магнитных устройств в условиях малосерийного производства и групповой обработки значительно расширяются при использовании быстросменных наладок. Эти устройства повышают производительность труда за счет снижения вспомогательного и основного времени (в 10-15 раз) при многоместной обработке.

    Вакуумные приводы применяют для крепления заготовок из различных материалов с плоской или криволинейной поверхностью, принимаемой за основную базу. Вакуумные зажимные устройства работают по принципу использования атмосферного давления.

    Сила (Н), прижимающая заготовку к плите:

    где F - площадь полости приспособления, из которой удаляется воздух, см 2 ;

    р - давление (в заводских условиях обычно р = 0,01 ... 0,015 МПа).

    Давление для индивидуальных и групповых установок создается одно- и двухступенчатыми вакуумными насосами.

    Силовые механизмы выполняют роль усилителя. Основная их характеристика - коэффициент усиления:

    где Р - сила закрепления, приложенная к заготовке, Н;

    Q - сила, развиваемая приводом, Н.

    Силовые механизмы выполняют часто роль самотормозящего элемента в случае внезапного выхода из строя привода.

    Некоторые типовые схемы конструкций зажимных устройств показаны на рис. 5.

    Рисунок 5 Схемы зажимных устройств:

    а - с помощью клипа; 6 - качающимся рычагом; в - самоцентрирующиеся призмы

    Похожие публикации