Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Абсолютный 0 температуры. A. Абсолютный нуль

Выбор в качестве основных точек температурной шкалы точек таяния льда и кипения воды совершенно произволен. Полученная таким образом температурная шкала оказалась неудобной для теоретических исследований.

Опираясь на законы термодинамики, Кельвину удалось построить так называемую абсолютную температурную шкалу (ее в настоящее время называют термодинамической шкалой температур или шкалой Кельвина), совершенно не зависящую ни от природы термометрического тела, ни от избранного термометрического параметра. Однако принцип построения такой шкалы выходит за пределы школьной программы. Мы рассмотрим этот вопрос, используя другие соображения.

Из формулы (2) вытекают два возможных способа установления температурной шкалы: использование изменения давления определенного количества газа при постоянном объеме или изменение объема при постоянном давлении. Такую шкалу называют идеальной газовой шкалой температуры .

Температура, определяемая равенством (2), называется абсолютной температурой . Абсолютная температура Τ не может быть отрицательной, так как слева в равенстве (2) стоят заведомо положительные величины (точнее, она не может быть разных знаков, она может быть либо положительной, либо отрицательной. Это зависит от выбора знака постоянной k . Так как условились температуру тройной точки считать положительной, то абсолютная температура может быть только положительной). Следовательно, наименьшее возможное значение температуры Т = 0 есть температура, когда давление или объем равны нулю.

Предельная температура, при которой давление идеального газа обращается в нуль при фиксированном объеме или объем идеального газа стремится к нулю (т.е. газ как бы должен сжаться в "точку") при неизменном давлении, называется абсолютным нулем . Это самая низкая температура в природе.

Из равенства (3), учитывая, что \(~\mathcal h W_K \mathcal i = \frac{m_0 \mathcal h \upsilon^2 \mathcal i}{2}\) , вытекает физический смысл абсолютного нуля: абсолютный нуль - температура, при которой должно прекратиться тепловое поступательное движение молекул . Абсолютный нуль недостижим.

В Международной системе единиц (СИ) используют абсолютную термодинамическую шкалу температур. За нулевую температуру по этой шкале принят абсолютный нуль. В качестве второй опорной точки принята температура, при которой находятся в динамическом равновесии вода, лед и насыщенный пар, так называемая тройная точка (по шкале Цельсия температура тройной точки равна 0,01 °С). Каждая единица абсолютной температуры, называемая Кельвином (обозначается 1 К), равна градусу Цельсия.

Погружая колбу газового термометра в тающий лед, а затем в кипящую воду при нормальном атмосферном давлении, обнаружили, что давление газа во втором случае в 1,3661 раза больше, чем в первом. Учитывая это и пользуясь формулой (2), можно определить, что температура таяния льда T 0 = 273,15 К.

Действительно, запишем уравнение (2) для температуры T 0 таяния льда и температуры кипения воды (T 0 + 100):

\(~\frac{p_1V}{N} = kT_0 ;\) \(~\frac{p_2V}{N} = k(T_0 + 100) .\)

Разделим второе уравнение на первое, получим:

\(~\frac{p_2}{p_1} = \frac{T_0 + 100}{T_0} .\)

\(~T_0 = \frac{100}{\frac{p_2}{p_1} - 1} = \frac{100}{1,3661 - 1} = 273,15 K.\)

На рисунке 2 схематически показаны шкала Цельсия и термодинамическая шкала.

Любое физическое тело, включая все объекты во Вселенной, имеет минимальный показатель температуры или ее предел. За точку отсчета любой температурной шкалы и принято считать значение абсолютного нуля температур. Но это только в теории. Хаотичное движение атомов и молекул, которые отдают в это время свою энергию, остановить пока на практике не удалось.

Это и есть основная причина, почему нельзя достичь абсолютного нуля температур. До сих пор ведутся споры и о последствиях этого процесса. С точки зрения термодинамики этот предел недостижим, так как тепловое движение атомов и молекул прекращается полностью, образуется кристаллическая решетка.

Представители квантовой физики предусматривают наличие при абсолютном нуле температур минимальных нулевых колебаний.

Какое значение абсолютного нуля температур и почему его нельзя достичь

На генеральной конференции по мерам и весам была установлена впервые реперная или точка отсчета для измерительных приборов, определяющих показатели температуры.

В настоящее время в Международной системе единиц реперная точка для шкалы Цельсия составляет 0°C при замерзании и 100°C в процессе кипения, значение абсолютного нуля температур приравнивается к −273,15°C.

Используя температурные значения по шкале Кельвина по той же Международный системе измерения единиц, кипение воды будет происходить при реперном значении 99,975°C, абсолютный нуль приравнивается к 0. По Фаренгейту на шкале соответствует показателю -459,67 градусов.

Но, если эти данные получены, почему тогда нельзя на практике достичь абсолютного нуля температур. Для сравнения можно взять известную всем скорость света, которая равна постоянному физическому значению 1 079 252 848,8 км/ч.

Однако эту величину достичь не удается на практике. Она зависит и от длины волны передачи, и от условий, и от необходимого поглощения большого количества энергии частицами. Чтобы получить значение абсолютного нуля температур, необходима большая отдача энергии и отсутствие ее источников для предотвращения попадания ее в атомы и молекулы.

Но даже в условиях полного вакуума ни скорости света, ни абсолютного нуля температур ученым получить так и не удалось.

Почему можно достичь приблизительного нуля температур, но нельзя абсолютного

Что же будет происходить, когда наука сможет вплотную приблизиться к достижению предельно низкого показателя температуры абсолютного нуля, пока остается только в теории термодинамики и квантовой физики. В чем причина, почему нельзя достичь абсолютного нуля температур на практике.

Все известные попытки охладить вещество до самой низкой предельной границы за счет максимальной потери энергии приводили к тому, что значение теплоемкости вещества так же достигало минимального значения. Отдавать оставшуюся часть энергии молекулы уже были просто не в состоянии. В результате процесс охлаждения прекращался, так и не достигнув абсолютного нуля.

При изучении поведения металлов в условиях, приближенных к значению абсолютного нуля температур, ученые установили, что максимальное понижение температуры должно спровоцировать потерю сопротивления.

Но прекращение движения атомов и молекул привело только к образованию кристаллической решетки, через которую проходящие электроны передавали часть своей энергии неподвижным атомам. Достичь абсолютного нуля опять не удалось.

В 2003 году до температуры абсолютного нуля не хватило всего лишь половины миллиардной доли 1°C. Исследователи «NASA» использовали для проведения опытов молекулу Na, которая все время находилась в магнитном поле и отдавала свою энергию.

Ближе всех стало достижение ученых Йельского университета, которое в 2014 году добилась показателя в 0,0025 Кельвинов. Полученное соединение монофторид стронция (SrF) существовало всего лишь 2,5 секунды. И в итоге все равно распалось на атомы.

Абсолютному нулю соответствует температура −273,15 °C.

Считается, что абсолютный ноль на практике недостижим. Его существование и положение на температурной шкале следует из экстраполяции наблюдаемых физических явлений, при этом такая экстраполяция показывает, что при абсолютном нуле энергия теплового движения молекул и атомов вещества должна быть равна нулю, то есть хаотическое движение частиц прекращается, и они образуют упорядоченную структуру, занимая чёткое положение в узлах кристаллической решётки . Однако, на самом деле, даже при абсолютном нуле температуры регулярные движения составляющих вещество частиц останутся . Оставшиеся колебания, например нулевые колебания , обусловлены квантовыми свойствами частиц и физического вакуума , их окружающего.

В настоящее время в физических лабораториях удалось получить температуру, превышающую абсолютный ноль всего на несколько миллионных долей градуса; достичь же его самого, согласно законам термодинамики, невозможно.

Примечания

Литература

  • Г. Бурмин. Штурм абсолютного нуля. - М.: «Детская литература», 1983.

См. также

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Абсолютный нуль" в других словарях:

    Температуры, начало отсчета температуры по термодинамической температурной шкале (см. ТЕРМОДИНАМИЧЕСКАЯ ТЕМПЕРАТУРНАЯ ШКАЛА). Абсолютный нуль расположен на 273,16 °С ниже температуры тройной точки (см. ТРОЙНАЯ ТОЧКА) воды, для которой принято… … Энциклопедический словарь

    Температуры, начало отсчета температуры по термодинамической температурной шкале. Абсолютный нуль расположен на 273,16шC ниже температуры тройной точки воды (0,01шC). Абсолютный нуль принципиально недостижим, практически достигнуты температуры,… … Современная энциклопедия

    Температуры начало отсчета температуры по термодинамической температурной шкале. Абсолютный нуль расположен на 273,16 .С ниже температуры тройной точки воды, для которой принято значение 0,01 .С. Абсолютный нуль принципиально недостижим (см.… … Большой Энциклопедический словарь

    Температура, выражающая отсутствие теплоты, равна 218° Ц. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907. абсолютный нуль температуры (физ.) – наиболее низкая возможная температура (273,15°C). Большой словарь… … Словарь иностранных слов русского языка

    абсолютный нуль - Предельно низкая температура, при которой прекращается тепловое движение молекул, в шкале Кельвина абсолютный нуль (0°К) соответствует –273,16±0,01°С … Словарь по географии

    Сущ., кол во синонимов: 15 круглый ноль (8) маленький человек (32) мелкая сошка … Словарь синонимов

    Предельно низкая температура, при которой прекращается тепловое движение молекул. Давление и объем идеального газа, согласно закону Бойля Мариотта, становится равным нулю, а за начало отсчета абсолютной температуры по шкале Кельвина принимается… … Экологический словарь

    абсолютный нуль - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN zeropoint … Справочник технического переводчика

    Начало отсчета абсолютной температуры. Соответствует 273,16° С. В настоящее время в физических лабораториях удалось получить температуру, превышающую абсолютный нуль всего на несколько миллионных долей градуса, достичь же его, согласно законам… … Энциклопедия Кольера

    абсолютный нуль - absoliutusis nulis statusas T sritis Standartizacija ir metrologija apibrėžtis Termodinaminės temperatūros atskaitos pradžia, esanti 273,16 K žemiau vandens trigubojo taško. Tai 273,16 °C, 459,69 °F arba 0 K temperatūra. atitikmenys: angl.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    абсолютный нуль - absoliutusis nulis statusas T sritis chemija apibrėžtis Kelvino skalės nulis (−273,16 °C). atitikmenys: angl. absolute zero rus. абсолютный нуль … Chemijos terminų aiškinamasis žodynas

Физическое понятие «абсолютный нуль температуры» имеет для современной науки очень важное значение: с ним тесно связано такое понятие, как сверхпроводимость, открытие которой произвело настоящий фурор во второй половине ХХ века.

Чтобы понять, что же такое абсолютный ноль, следует обратиться к работам таких известных физиков, как Г. Фаренгейт, А. Цельсий, Ж. Гей-Люссак и У. Томсон. Именно они сыграли ключевую роль в создании используемых до сих пор основных температурных шкал.

Первым свою температурную шкалу предложил в 1714 году немецкий физик Г. Фаренгейт. При этом за абсолютный нуль, то есть за самую низкую точку этой шкалы, была принята температура смеси, которая включала в себя снег и нашатырь. Следующим важным показателем стала которая стала равняться 1000. Соответственно, каждое деление данной шкалы получило название «градус Фаренгейта», а сама шкала - «шкалы Фаренгейта».

Спустя 30 лет шведский астроном А. Цельсий предложил свою температурную шкалу, где основными точками стали температура таяния льда и воды. Эта шкала получила название «шкалы Цельсия», она до сих пор популярна в большинстве стран мира, в том числе и в России.

В 1802 году, проводя свои знаменитые опыты, французский ученый Ж. Гей-Люссак обнаружил, что объем массы газа при постоянном давлении находится в прямой зависимости от температуры. Но самое любопытное состояло в том, что при изменении температуры на 10 по шкале Цельсия, объем газа увеличивался или уменьшался на одну и ту же величину. Произведя необходимые вычисления, Гей-Люссак установил, что эта величина равнялась 1/273 от объема газа при температуре, равной 0С.

Из этого закона следовал напрашивающийся вывод: температура, равная -2730С, является наименьшей температурой, даже подойдя к которой вплотную, достичь ее невозможно. Именно эта температура получила название «абсолютный нуль температуры».

Более того, абсолютный нуль стал отправной точкой для создания шкалы абсолютной температуры, активное участие в котором принял английский физик У. Томсон, известный также, как лорд Кельвин.

Его основное исследование касалось доказательства того, что ни одно тело в природе не может быть охлаждено ниже, чем абсолютный нуль. При этом он активно использовал второй поэтому, введенная им в 1848 году абсолютная шкала температур стала называться термодинамической или «шкалой Кельвина».

В последующие годы и десятилетия происходило только числовое уточнение понятия «абсолютный ноль», которое после многочисленных согласований стало считаться равным -273,150С.

Стоит также обратить внимание, что абсолютный ноль играет очень важную роль в Все дело в том, что в 1960 году на очередной Генеральной конференции по мерам и весам единица термодинамической температуры - кельвин - стала одной из шести основных единиц измерений. При этом специально оговаривалось, что один градус Кельвина численно равен одному только вот точкой отсчета «по Кельвину» принято считать абсолютный ноль, то есть -273,150С.

Основной физический смысл абсолютного нуля состоит в том, что, согласно основным физическим законам, при такой температуре энергия движения элементарных частиц, таких как атомы и молекулы, равна нулю, и в этом случае должно прекратиться любое хаотическое движение этих самых частиц. При температуре, равной абсолютному нулю, атомы и молекулы должны занять четкое положение в основных пунктах кристаллической решетки, образуя упорядоченную систему.

В настоящее время, используя специальное оборудование, ученые смогли получить температуру, лишь на несколько миллионных долей превышающую абсолютный ноль. Достичь же самой этой величины физически невозможно из-за описанного выше второго закона термодинамики.

Похожие публикации