Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Автоматика ваших котельных и теплоснабжения от «Теплой компании. Автоматизация котельных установок: описание, устройство и схема

АВТОМАТИЗАЦИЯ ПАРОВОГО КОТЛА

курсовая работа по курсу «Управление техническими системами»

Московский государственный строительный университет (МГСУ)
Кафедра Электротехники и Электропривода
Выполнила студентка группы МиАС 4-1
Луканцов Д.С.,
Проверил
доцент кафедры «Электротехники и Электропривода», к.т.н.
Беккер Ю.Л.

КРАТКОЕ ОПИСАНИЕ КОТЕЛЬНОЙ

Котельная Теплогорского литейно-механического завода предназначена для выработки пара отпускаемого для приготовления горячей воды и отопления цехов. Система теплоснабжения закрытая. Топливом для котельной служит газ теплотой сгорания Q н = 8485 ккал/м 3 .

Котельная оборудована двумя котлами ДКВР — 20/13 без пароперегревателей. Производительность котла в соответствии с расчетными данными 28 т/час. Давление пара 13 кгс/см 2 . Максимальное количество тепла, выдаваемого котельной в виде горячей воды составляет 100% . Возврат конденсата 10% . Исходная вода для питания котлов — речная осветленная или артезианская. Котельный агрегат ДКВР — 20/13 рис.3 комплектуется одноходовым чугунным экономайзером системы ВТН с трубами длиной 3м. Регулятор питания установлен до ВЭК, неотключаемый как по газу, так и по воде.



Рис.1. Котел марки ДКВР
1- экранные трубы; 2- верхний барабан; 3- манометр; 4- предохранительные клапаны; 5- трубы питательной воды; 6- сепаратор пара; 7- предохранительная пробка; 8- камера догорания; 9- перегородки; 10- конвективные трубки;
11- обдувочное устройство; 12- нижний барабан;
13- продувочный трубопровод.

Предусмотрена сгонная линия с автоматическим устройством для ограничения повышения температуры воды после ВЭК выше 174°С. Движение газов в экономайзере сверху вниз. Газы из экономайзера направляются к дымососу, установленному в стенах котельной. Дутьевой вентилятор монтируется под котлом. Забор воздуха вентилятором осуществляется по металлическому воздуховоду. Нагнетательный воздух к горелочному устройствам проходит в фундаменте котла. Котел оборудован тремя газомазутными горелками ГМГП рис.2.



Рис. 1. Горелка газомазутная ГМГП-120
1-газовая часть; 2-фланец; 3-воздушная часть; 4-газовое сопло; 5-ствол; 6-диффузор; 7-лепесток; 8-жидкостная форсунка; 9-регулировочный винт; 10-корпус

Номинальная тепловая мощность горелки ГМГП-120 — 1,75 МВт. Она пред-назначена для совместного сжигания газа и мазута. Распыл мазута обеспечи-вается водяным паром. Горелка снабжена диффузором (6), задающим угол раскрытия факела, и имеет раздельные газовые (4) и мазутные (5) сопла. Воздух подается в межсопловое пространство. Благодаря утопленному положению сопел на выходе горелки создается эжекционный эффект. Конструкция горелки обеспечивает легкий розжиг печи при пуске установки (подача только газа), хорошее смешение распыленного жидкого топлива с воздухом, подсос дымовых газов в корень факела (эжекционный эффект). Подача воздуха в межсопловое пространство (между потоков газа и жидкого топлива) создает условия двухстадийного сжигания топлива.



Рис.2. Профиль пламени горелки ГМГП-120

На рис.2 показан профиль пламени форсунки ГМГП-120 с двухфронтальным сгоранием топлива. Первичный воздух подается в межсопловое пространство с коэффициентом избытка воздуха ~1,0 и смешивается с жидким топливом. Испарившееся горючее и кислород воздуха поступают во внутренний фронт горения, где происходит неполное сгорание. Продукты химического недожога практически полностью сгорают во внешнем фронте пламени. Кислород во внешний фронт последнего поступает диффузией из воздуха, подсасываемого через амбразуру форсунки в топочное пространство. Суммарный коэффициент избытка воздуха а составляет 1,10–1,15. Кроме этого, за счет эжекционного эффекта в корень факела подсасываются дымовые газы, понижая содержание кислорода в подаваемом в межсопловое пространство воздухе, что приводит к понижению температуры горения на 50–70°С.

Понижение температуры горения замедляет скорость химических реакций и приводит к заметному удлинению факела пламени. Учитывая, что в технологической печи около 80% тепла передается радиацией, то радиационный тепловой поток остается практически неизменным и сохраняется тепловой баланс печи.

Котлы ДКВР состоят из следующих основных частей: двух барабанов (верхний и нижний); экранных труб; экранных коллекторов (камер).

Барабаны котлов на давление 13 кгс/см 2 имеют одинаковый внутренний диаметр (1000 мм) при толщине стенок 13 мм.

Для осмотра барабанов и расположенных в них устройств, а также для очистки труб шарошками на задних днищах имеются лазы; у котла ДКВР-20 с длинным барабаном имеется еще лаз на переднем днище верхнего барабана.

Для наблюдения за уровнем воды в верхнем барабане установлены два водоуказательных стекла и сигнализатор уровня. У котлов с длинным барабаном водоуказательные стекла присоединены к цилиндрической части барабана, а у котлов с коротким барабаном к переднему днищу. Из переднего днища верхнего барабана отведены импульсные трубки к регулятору питания. В водяном пространстве верхнего барабана находятся питательная труба, у котлов ДКВР 20-13 с длинным барабаном — труба для непрерывной продувки; в паровом объеме — сепарационные устройства. В нижнем барабане установлены перфорированная труба для периодической продувки, устройство для прогрева барабана при растопке и штуцер для спуска воды.

Боковые экранные коллекторы расположены под выступающей частью верхнего барабана, возле боковых стен обмуровки. Для создания циркуляционного контура в экранах передний конец каждого экранного коллектора соединен опускной необогреваемой трубой с верхним барабаном, а задний конец — перепускной трубой с нижним барабаном.

Вода поступает в боковые экраны одновременно из верхнего барабана по передним опускным трубам, а из нижнего барабана по перепускным. Такая схема питания боковых экранов повышает надежность работы при пониженном уровне воды в верхнем барабане, увеличивает кратность циркуляции.

Экранные трубы паровых котлов ДКВР изготовляют из стали 51×2.5 мм.

В котлах с длинным верхним барабаном экранные трубы приварены к экранным коллекторам, а в верхний барабан ввальцованы.

Шаг боковых экранов у всех котлов ДКВР 80 мм, шаг задних и фронтовых экранов — 80–130 мм.

Пучки кипятильных труб выполнены из стальных бесшовных гнутых труб диаметром 51×2.5 мм.

Концы кипятильных труб паровых котлов типа ДКВР прикреплены к нижнему и верхнему барабану с помощью вальцовки.

Циркуляция в кипятильных трубах происходит за счет бурного испарения воды в передних рядах труб, т.к. они расположены ближе к топке и омываются более горячими газами, чем задние, вследствие чего в задних трубах, расположенных на выходе газов из котла вода идет не вверх, а вниз.

Топочная камера в целях предупреждения затягивания пламени в конвективный пучок и уменьшения потери с уносом (Q 4 — от механической неполноты сгорания топлива), разделена перегородкой на две части: топку и камеру сгорания. Перегородки котла выполнены таким образом, что дымовые газы омывают трубы поперечным током, что способствует теплоотдаче в конвективном пучке.

Технологические параметры


2. АВТОМАТИЗАЦИЯ РАБОТЫ ПАРОВОГО КОТЛА

Обоснование необходимости контроля, регулирования и сигнализации технологических параметров.

Регулирование питания котельных агрегатов и регулирование давления в барабане котла главным образом сводится к поддержанию материального баланса между отводом пара и подачей воды. Параметром характеризующим баланс, является уровень воды в барабане котла. Надежность работы котельного агрегата во многом определяется качеством регулирования уровня. При повышении давления, снижение уровня ниже допустимых пределов, может привести л нарушению циркуляции в экранных трубах, в результате чего произойдет повышение температуры стенок обогреваемых труб и их пережег.

Повышение уровня также ведет к аварийным последствиям, так как возможен заброс воды в пароперегреватель, что вызовет выход его из строя. В связи с этим, к точности поддержания заданного уровня предъявляются очень высокие требования. Качество регулирования питания также определяется равенством подачи питательной воды. Необходимо обеспечить равномерное питание котла водой, так как частые и глубокие изменения расхода питательной воды могут вызвать значительные температурные напряжения в металле экономайзера.

Барабанам котла с естественной циркуляцией присуща значительная аккумулирующая способность, которая проявляется в переходных режимах. Если в стационарном режиме положение уровня воды в барабане котла определяется состоянием материального баланса, то в переходных режимах на положение уровня влияет большое количество возмущений. Основными из них являются.изменение расхода питательной воды, изменение паросъема котла при изменении нагрузки потребителя, изменение паропроизводительности при изменении при изменении нагрузки топки, изменение температуры питательной воды.

Регулирование соотношения газ-воздух необходимо как чисто физически, так и экономически. Известно, что одним из важнейших процессов, происходящих в котельной установке, является процесс горения топлива. Химическая сторона горения топлива представляет собой реакцию окисления горючих элементов молекулами кислорода. Для горения используется кислород, находящийся в атмосфере. Воздух в топку подается в определенном соотношении с газом посредством дутьевого вентилятора. Соотношение газ-воздух примерно составляет 1.10. При недостатке воздуха в топочной камере происходит неполное сгорание топлива. Не сгоревший газ будет выбрасываться в атмосферу, что экономически и экологически не допустимо. При избытке воздуха в топочной камере будет происходить охлаждение топки, хотя газ будет сгорать полностью, но в этом случае остатки воздуха будут образовывать двуокись азота, что экологически недопустимо, так как это соединение вредно для человека и окружающей среды.

Система автоматического регулирования разряжения в топке котла сделана для поддержания топки под наддувом, то есть чтобы поддерживать постоянство разряжения(примерно 4мм.вод.ст.). При отсутствии разряжения пламя факела будет прижиматься, что приведет к обгоранию горелок и нижней части топки. Дымовые газы при этом пойдут в помещение цеха, что делает невозможным работу обслуживающего персонала.

В питательной воде растворены соли, допустимое количество которых определяется нормами. В процессе парообразования эти соли остаются в котловой воде и постепенно накапливаются. Некоторые соли образуют шлам – твердое вещество, кристаллизующееся в котловой воде. Более тяжелая часть шлама скапливается в нижних частях барабана и коллекторов.

Повышение концентрации солей в котловой воде выше допустимых величин может привести к уносу их в пароперегреватель. Поэтому соли, скопившиеся в котловой воде, удаляются непрерывной продувкой, которая в данном случае автоматически не регулируется. Расчетное значение продувки парогенераторов при установившемся режиме определяется из уравнений баланса примесей к воде в парогенераторе. Таким образом, доля продувки зависит от отношения концентрации примесей в воде продувочной и питательной. Чем лучше качество питательной воды и выше допустимая концентрация примесей в воде, тем доля продувки меньше. А концентрация примесей в свою очередь зависит от доли добавочной воды, в которую входит, в частности, доля теряемой продувочной воды.

Сигнализация параметров и защиты, действующие на останов котла, физически необходимы, так как оператор или машинист котла не в силах уследить за всеми параметрами функционирующего котла. Вследствие этого может возникнуть аварийная ситуация. Например, при упуске воды из барабана, уровень воды в нем понижается, вследствие этого может быть нарушена циркуляция и вызван, пережег труб донных экранов.

Сработавшая без промедления защита, предотвратит выход из строя парогенератора. При уменьшении нагрузки парогенератора, интенсивность горения в топке снижается. Горение становится неустойчивым и может прекратиться. В связи с этим предусматривается защита по погашению факела.

Надежность защиты в значительной мере определяется количеством, схемой включения и надежностью используемых в ней приборов. По своему действию защиты подразделяются на действующие, на останов парогенератора; снижение нагрузки парогенератора; выполняющие локальные операции.

Согласно вышеперечисленного автоматизация работы парового котла должна осуществляться по следующим параметрам: по поддержанию постоянного давления пара;
по поддержанию постоянного уровня воды в котле;
по поддержанию соотношения «газ — воздух»;
по поддержанию разрежения в топочной камере.

3. ВЫБОР АВТОМАТИЧЕСКОЙ СИСТЕМЫ УПРАВЛЕНИЯ.

3.1. Для автоматизации работы котла выбираем
программируемый контроллер семейства МИКРОКОНТ-Р3

Программируемые контроллеры МИКРОКОНТ-Р3 имеют модульную конструкцию, что позволяет произвольно наращивать число входов-выходов в каждой точке управления и сбора информации. Высокая вычислительная мощность процессора и развитые сетевые средства позволяют создавать иерархические АСУ ТП любой сложности.

3.2. Конструктивное исполнение микроконтроллера МИКРОКОНТ

Данный микроконтроллер имеет модульную конструкцию (рис. 4) Все элементы (модули) семейства выполнены в закрытых корпусах единого исполнения и ориентированы на установку в шкафах. Присоединение модулей ввода/вывода (EXP) к модулю вычислителя (СРU) выполняется с помощью гибкой шины расширения (плоский кабель) без использования шасси ограничивающего возможности расширения и снижающего гибкость при компоновке.



Рис.4

В состав данного микроконтроллера входят следующие модули:

Модуль процессора

МП-320-центральный процессор DS80C320, RAM-96 K, EPROM-32 K, FLASH-128 K.

Модули ввода-вывода

Bi/o16 DC24 дискретный ввод/вывод,16/16 =24 В,Iвх=10 мА,Iвых=0,2 А;
Bi 32 DC24 дискретный ввод, 32 сигнала =24 В, 10 мA;
Bi16 AC220 дискретный ввод, 16 сигналов ~220 В, 10 мА;
Bo32 DC24 дискретный вывод, 32 сигналов =24 В, 0,2 А;
Bo16 ADC дискретный вывод, 16 сигналов ~220 В, 2,5 А;
MPX64 коммутатор дискретных входов, 64 входа, =24 В, 10 мА;
Ai-TC 16 аналоговых входов от термопар;
Ai-NOR/RTD-1 20 аналоговых входов i или U;
Ai-NOR/RTD-2 16 входов i или U, 2 термопреобразователей сопротивления;
Ai-NOR/RTD-3 12 входов i или U, 4 термопреобразователей сопротивления;
Ai-NOR/RTD-4 8 входов i или U, 6 термопреобразователей сопротивления;
Ai-NOR/RTD-5 4 входа i или U, 8 термопреобразователей сопротивления;
Ai-NOR/RTD-6 10 термопреобразователей сопротивления; PO-16 пульт (дисплей — 16 букв, 24 клавиши).

Модули ввода — вывода имеют разъемы ввода-вывода с зажимами под винт, совмещающие функции разъемов и клеммных соединений, которые упрощают объем оборудования в шкафу и обеспечивают быстрое подключение/ отключение внешних цепей.

Пульт оператора

РО-04 — пульт для установки на щит. ЖКИ — индикатор (2 строки по 20 знаков), встроенная клавиатура (18 клавиш), возможность подключения 6-ти внешних клавиш, интерфейс RS232/485, питание = нестабилизированное 8–15 В;

РО-01 — портативный пульт. ЖКИ — индикатор (2 строки по 16 знаков), клавиатура, интерфейс RS232/485, питание: а) = 8–15 В; б) батарея.

Для подготовки и отладки прикладных программ автоматизации технологического оборудования предусматривается применение персонального компьютера (типа IBM PC), подключаемого к каналу информационной сети через адаптер AD232/485.

Подготовка прикладных программ осуществляется на одном из двух языков:

* РКС (язык технологического программирования, оперирующий типовыми элементами релейно-контактной логики и автоуправления;

* АССЕМБЛЕР.

Допускается компоновка программы из модулей, написанных на любом из указанных языков. При отладке прикладных программ модуля сохраняется штатный режим работы прикладных программ остальных модулей и обмена по каналу локальной сети.

3.3. Назначение и технические характеристики основных модулей микроконтроллера

Модуль процессора МП-320

Модуль предназначен для организации интеллектуальных систем управления и выполняет функции центрального процессора программируемого контроллера.

Управление объектами осуществляется через модули ввода/вывода, подключаемые к модулю МП посредством шины расширения. Связь с верхним уровнем и с другими контроллерами осуществляется через последовательные порты (до 4-х) RS485 или RS232.

Модуль МП-320 может быть подключен к двум локальным сетям BITNET (ведомый-ведущий; моноканал; витая пара; RS485; 255 абонентов) и выполнять функции как ведущего, так и ведомого в обеих сетях.

Модуль МП-320 может выполнять функции активного ретранслятора между двумя сегментами локальной сети (до 32х абонентов в каждом сегменте).

Модуль МП-320 включает в себя источник питания использующийся как для питания внутренних элементов так и для питания модулей ввода/вывода (до 10-и модулей ввода/вывода).

Основные технические характеристики
Подключение модулей ввода/вывода (EXP)


Подключение модулей ввода/вывода к модулю МП-320 выполняется с помощью гибкой шины расширения (плоский кабель, 34 жилы).

Модули ввода/вывода могут располагаться как слева, так и справа от процессора.

Максимальная длина кабеля шины расширения — 2500 мм.

Максимальное количество подключаемых модулей ввода/вывода — 16. При подключении к шине более 10 модулей ввода/вывода рекомендуется располагать их поровну с разных сторон от CPU

Модуль ввода аналогового сигнала

Модуль аналогового ввода Ai-NOR/RTD предназначен для автоматического сканирования и преобразования сигналов от датчиков с нормированным токовым выходом, и от термопреобразователей сопротивления в цифровые данные с последующей записью их в двухпортовую память, доступную для модуля CPU по шине расширения.

Полное обозначение модуля аналогового ввода Ai-NOR/RTD-XXX-X:
первые две буквы обозначают тип модуля: Ai — аналоговый ввод. Следующие буквы — тип входного сигнала: NOR — нормированный аналоговый сигнал, RTD — термопреобразователь сопротивления).

Следующие три цифры определяют:
первая цифра — число и соотношение аналоговых входов. Предусмотрено шесть вариантов соотношения нормированных входов и входов от термопреобразователей сопротивления.

Ai-NOR/RTD-1X0 -20 нормированных входов, RDT входов – нет;
Ai-NOR/RTD-2XX — 16 нормированных входов, 2 входа RTD;
Ai-NOR/RTD-3XX — 12 нормированных входов, 4 входа RTD;
Ai-NOR/RTD-4XX — 8 нормированных входов, 6 входов RTD;Ai-NOR/RTD-5XX — 4 нормированных входа, 8 входов RTD;
Ai-NOR/RTD-60X — отсутствуют нормированные входы, 10 входов RTD.

вторая цифра - диапазон нормированного токового или потенциаль-ного входного сигнала. Предусмотрено семь вариантов нормированных сигналов.
Ai-NOR/RTD-X1X -диапазон входного сигнала -10 В10 В;
Ai-NOR/RTD-X2X -диапазон входного сигнала 0 В10 В;
Ai-NOR/RTD-X3X -диапазон входного сигнала -1 В1 В;
Ai-NOR/RTD-X4X -диапазон входного сигнала -100 мB-100 мВ;
Ai-NOR/RTD-X5X -диапазон входного сигнала 0-5 мA;
Ai-NOR/RTD-X6X -диапазон входного сигнала 0-20 мA;
Ai-NOR/RTD-X7X -диапазон входного сигнала 4-20 мA.

третья цифра - тип термопреобразователя сопротивления. Предусмотрено подключение пяти типов термопреобразователей сопротивления.
Ai-NOR/RTD-XX1 — термопреобразователь сопротивления — медный типа ТСМ-50М, значение W100=1,428;
Ai-NOR/RTD-XX2 — термопреобразователь сопротивления — медный типа ТСМ-100М, значение W100=1,428;
Ai-NOR/RTD-XX3 — термопреобразователь сопротивления — платиновый типа ТСП-46П, значение W100=1,391;
Ai-NOR/RTD-XX4 — термопреобразователь сопротивления — платиновый типа ТСП-50П, значение W100=1,391;
Ai-NOR/RTD-XX5 — термопреобразователь сопротивления — платиновый типа ТСП-100П, значение W100=1,391.

Диапазон температур и электрических сопротивлений термо-преобразователей приведены в табл.2.

Замыкающая шифр буква — тип клеммного соединения (подключение кабеля): R - подключение справа, L - подключение слева, F - подключение с фронта.

Таблица 2


Подключение к модулю CPU

Подключение к модулю CPU выполняется при помощи гибкой шины расширения.

Максимальная длина шины расширения зависит от типа применяемого модуля CPU и указывается в его техническом описании. Распределение сигналов шины распределения по контактам и их назначение приведено в техническом описании на модуль CPU. Максимальное количество модулей аналогового ввода, подключаемых к одному CPU, определяется их потреблением от источника питания, встроенного в CPU, но не должно превышать 8.

Для адресации аналогового модуля в адресном пространстве модуля CPU, на задней панели аналогового модуля имеется переключатель адреса. На каждом аналоговом модуле, подключенном к шине расширения модуля CPU, должен быть установлен индивидуальный адрес переключателем. Разрешенная область установки адресов от 0 до 7 (по положению переключателя).

Описание работы модуля

Модуль ввода аналоговых сигналов Ai-NOR/RTD производит преобразование нормированных токовых сигналов и сигналов термосопротивлений в цифровые данные.

Преобразование входных аналоговых сигналов производится путем автоматического последовательного сканирования (подключения) входных цепей к входу общего нормирующего усилителя. Усиленный нормирующим усилителем входной сигнал (0–10)В подается на высокостабильный преобразователь “аналог – частота”, время преобразования которого составляет 20 мс или 40 мс и устанавливается программно.

Преобразователь “аналог – частота” линейно преобразует входное напряжение (0–10)В в частоту (0–250) кГц. Выработанное преобразователем количество импульсов за установленное время записывается в счетчик импульсов, входящий в состав однокристальной ЭВМ аналогового модуля. Таким образом, зафиксированное в счетчике цифровое значение является необработанным цифровым значением аналогового входного сигнала.

Однокристальная ЭВМ модуля производит обработку полученных цифровых значений:
– линеаризацию,
– компенсацию температурного дрейфа,
– смещения (если необходимо),
– проверку аналоговых датчиков на обрыв.

Необходимые данные для реализации вышеперечисленных функций хранятся в электрически перезаписываемом ПЗУ модуля.

Обрабатываемые цифровые значения аналоговых сигналов помещаются в двухпортовую память, доступную для модуля CPU по шине расширения.

Обмен по шине расширения с модулем CPU обеспечивается через двухпортовые ОЗУ по принципу “команда – ответ”. Модуль CPU записывает в двухпортовое ОЗУ аналогового модуля код команды передачи аналоговых данных и номер канала аналогового ввода. Однокристальная ЭВМ аналогового модуля считывает из двухпортового ОЗУ полученную команду, и, при условии полной обработки запрошенного сигнала, помещает в двухпортовое ОЗУ код ответа. При получении кода ответа модуль CPU переписывает обработанное цифровое значение запрошенного аналогового канала в свой буфер и переходит к запросу и вводу следующего канала.

После ввода последнего аналогового канала модуль CPU запрашивает “статусный” регистр аналогового модуля, в котором отображаются состояния внутренних устройств модуля, а также исправность аналоговых датчиков, и только после этого переходит ко вводу первого аналогового канала. “Статусный” регистр сохраняется в памяти модуля CPU. Кроме того, в памяти CPU хранится содержимое EEPROM аналогового модуля, которое переписывается однократно, при включении питания, а также регистр “управления”, включающий ввод аналоговых данных. Все данные, относящиеся к аналоговому модулю доступны для считывания программным обеспечением верхнего уровня, например, программой “Справочник”.

Модуль дискретного ввода – вывода

Модуль дискретного ввода/вывода предназначен для преобразования дискретных входных сигналов постоянного тока от внешних устройств в цифровые данные. Передачу их по шине расширения в процессорный модуль (CPU), а также для преобразования цифровых данных, поступающих от процессорного модуля, в бинарные сигналы, их усиления и вывод на выходные разъемы для управления подключенным к ним устройствам.

Все входы и выходы гальванически развязаны с внешними устройствами.


Основные технические характеристики

Число входов — 16 Число выходов — 16
Тип гальванической развязки:
— по входам — групповая; один общий провод на каждые четыре входа
— и выходам — один общий провод на каждые восемь входов
Параметры входов:
питание входных цепей — внешний источник (24–36)В,
— уровень логической единицы — >15В
— уровень логического нуля — <9В
Параметры выходов:
— номинальный входной ток — 10 мА
— питание выходных цепей — внешний источник (5–40)В
— максимальный выходной ток — 0,2A
Напряжение питания модуля — +5В
Ток потребления — 150 мA
Наработка на отказ — 100 000 час.
Рабочий диапазон температуры — от -30°С до +60°С
Относительная влажность окружающего воздуха — не более 95% при 35°С
Степень защиты от воздействия окружающей среды — IP-44

Пульт оператора

Пульт оператора ОР-04 (далее пульт) предназначен для реализации человеко-машинного интерфейса (MMI) в системах контроля и управления, выполненных на базе контроллеров МИКРОКОНТ-Р2 или иных, имеющих свободно программируемый интерфейс RS232 или RS485.

Технические характеристики

Интерфейс связи — RS232 или RS485;
Скорость связи — программируемая из ряда: 300, 600, 1200, 2400, 4800, 9600, 28800,57600;
Число строк ЖК индикатора — 2;
Число знаков в строке — 20;
Высота знака в строке — 9,66 мм;
Цифровая клавиатура — 18 клавиш;
Степень защиты — IP56;
Напряжение питания — +10–30 В (нестабилиз.); или 5 В (стабилиз.);
Потребляемая мощность — не более 2,0 Вт;
Наработка на отказ — 100 000 час;
Температура окружающей cреды — от -10° до +60°С;
Средний срок службы — 10 лет;


Пульт состоит из:

 ЦПУ фирмы ATMEL.

 ОЗУ объемом 32 кБайт.

 микросхемы интерфейса типа ADM241 (DD2) или ADM485 для согласования уровня ТТЛ процессора с интерфейсом RS232 или RS485 соответственно.

 источника питания на базе микросхемы LT1173-5.

 регистра с SPI интерфейсом для сканирования клавиатуры и управления LCD. ЦПУ управляет обменом с внешними устройствами, сканирует клавиатуру и выводит информацию на жидкокристаллический дисплей. Жидкокристаллический дисплей имеет две строки по 20 символов. Подключаемая клавиатура имеет 24 клавиши: 6 скан-линий * 4 линии данных. При нажатии на любую клавишу формируется прерывание INT0 на ЦПУ. ОР – 04 позволяет управлять LCD на базе контроллера HD44780 фирмы HITACHI. В ОР-04 использован 4-х битный интерфейс связи с LCD модулем. ОР-04 сопрягается с внешним устройством посредством RS232 или RS485 интерфейса. В первом случае устанавливается микросхема (ADM241), во втором – (ADM485).

В соответствие с технологией работы парового котла и техническими данными системы автоматизации Микроконт–Р3 принимаем к установке следующие модули:

модуль процессора МП-320;
модуль дискретного ввода/вывода — Bi/o16 DC24;
модуль дискретного вывода Bo32DC24;
модуль аналогового ввода — Ai-NOR/RTD 254;

Для обеспечения контроля за работой котловых агрегатов контроллеры соединяем в локальную сеть по протоколу RS-485 на верхнем уровне которого находится IBM совместимый компьютер, с установленной Windows и программой СТАЛКЕР предназначенной для сбора данных, контроля и управления системой автоматизации.

Системой сталкер обеспечивается:

Контроль несанкционированного доступа к управлению и информации станции;
Управление вводом/выводом данных полевого уровня, поступающих из локальной сети;
Работа системы контроля и управления в реальном времени;
Преобразование сигналов полевого уровня в события точек контроля системы;
Динамическая интеграция новых устройств во время эксплуатации системы;
Сигнализация неисправности локальной сети или устройств сбора данных и фиксация недостоверности данных;
Возможность резервирования каналов связи и защиты от сбоев;
Возможность резервирования компьютеров;
Возможность подключения клиентов к рабочей станции посредством сети EtherNet;
Обработка данных полевого уровня;
Динамическое управление (включение/выключение) обработкой данных;
Трансляция аппаратных значений полевого уровня, поступающих из локальной сети, в физические значения точек контроля;
Контроль достоверности значений точек контроля;
Анализ уровня тревоги точек контроля;
Вычисления и анализ значений точек контроля по заданным алгоритмам управления, обеспечивающим выполнение математических, логических, специальных функций;
Регистрация;
Динамическое управление (включение/выключение) регистрацией; Непрерывная регистрация последовательности событий всех точек контроля;
Непрерывная регистрация тенденций изменения средних значений аналоговых данных в широких временных диапазонах;
Регистрация непредвиденных или планируемых ситуаций для последующего анализа с использованием неравномерной шкалы времени;
Регистрация истории течения технологического процесса и долговременное сохранение ее в архиве.

Графический интерфейс с пользователем

Оперативное представление процесса на детализированных рисунках, позволяющих наблюдать и вмешиваться в протекающие процессы в реальном времени. Рисунки размещаются на пультах и панелях, представляемых в виде стандартных окон Windows. Управление окнами пультов и панелей (открытие, закрытие, работа с меню, ввод текстов, перемещение и т.д.) осуществляется с использованием стандартного интерфейса Windows Пульт – графическая оконная форма, включаемая функциональной клавишей с алфавитно-цифровой клавиатуры или графической клавишей с другого пульта или панели.

Панель - графическая оконная форма, принадлежащая по технологическому или какому-либо другому признаку пульту и включаемая только графической клавишей с пульта или другой панели (рис.8)



Рис.8 Мнемоническая схема работы парового котла

Представление тенденций изменения средних значений аналоговых данных на панелях в виде гистограмм и графиков.

Представление на панелях списков событий и текущих состояний точек контроля.

Сигнализация об отклонениях от нормального течения процесса.

Печать данных системы и графических форм, отображаемых на пультах и панелях.

Поддержка существующих и проектирование новых графических панелей во время эксплуатации системы.

4. ДАТЧИКИ, ИСПОЛЬЗУЕМЫЕ В СИСТЕМЕ АВТОМАТИЗАЦИИ ПАРОВОГО КОТЛА

Для измерения уровня воды в верхнем барабане используем уровнемеры радиоволновые взрывозащищенного исполнения УР 203Ех предназначенные для бесконтактного непрерывного измерения уровня жидких, сыпучих и кусковых продуктов, в технологических резервуарах, танках, силосах, бункерах и т.п.стационарных объектах, а также для обмена информацией с другими техническими средствами автоматизированных систем управления (АСУ). Принцип действия уровнемера основан на измерении времени распространения, излученного прибором радиосигнала до поверхности контролируемой среды и обратно. В результате обработки сигнала формируются цифровой (кодовый) и токовый выходные сигналы, пропорциональные текущему значению измеряемого уровня.

Возможность демонтажа измерительной части прибора без разгерметизации емкости.

Отсутствует необходимость перепроверки показаний при регламентных работах за счет привязки частоты излучения к частоте эталонного генератора.

Настройка и калибровка осуществляется дистанционно через интерфейс цифровой коммуникации.

ТЕХНИЧЕСКИЕ ДАННЫЕ

Диапазон измерения:
-УР 203Ех-30 0,5 -30 м
Параметры контролируемой среды:
-давление до 1,6 МПа
-температура от -40 до +150 °С
Напряжение питания постоянного или переменного тока 24 ± 2,4 В
Потребляемая мощность, В А, не более 5
Выходные сигналы
-цифровой по стандарту RS 485(протокол Modbus)
-токовый 4 -20 мА
-сопротивление нагрузки, не более 0,5 кОм
Длина кабельной линии связи для передачи выходных сигналов до 1000 м
Пределы допускаемой основной погрешности ±1 см
Степень защиты от пыли и воды, обеспечиваемая оболочкой IP65
Взрывозащита:
-вид взрывонепроницаемая оболочка
-маркировка 1ЕхdIIВT3
Показатели надежности:
наработка на отказ, не менее 105 ч
средний срок службы 14 лет

Для измерения давления применим приборы серии Сапфир-22, в которых для преобразования силового воздействия давления в электрический сигнал используется сапфировая мембрана с напыленными кремниевыми резисторами.

Основным достоинством преобразователей «Сапфир-22» является использование небольших деформаций чувствительных элементов, что повышает их надежность и стабильность характеристик, а также обеспечивает виброустойчивость преобразователей. При осуществлении тщательной температурной компенсации предельная погрешность приборов может быть снижена до 0,1 %.

Для измерения давления топлива перед горелкой принимаем Сапфир-22МП-Вн-2050-09 с характеристиками:


материалы — Титан ВТ-1-0

масса — 2.5кг

выходной сигнал — (4-20)мА

Для измерения давления в газопроводе в режиме проверки герметичности клапанов принимаем Сапфир-22МП-Вн-2050-09 с характеристиками:
максимальный показатель абсолютного давления — 0.25МПа
безопасность — взрывонепроницаемая оболочка
материалы — Титан ВТ-1-0
предел допускаемой основной погрешности — 0.1
масса — 2.5кг
схема включения — 2-х проводная
выходной сигнал — (4-20)мА

Для измерения разряжения принимаем Сапфир-22МП-Вн-2350-09 с характеристиками:
максимальный показатель абсолютного давления — 40кПа
безопасность — взрывонепроницаемая оболочка
материалы — Титан ВТ-1-0
предел допускаемой основной погрешности — 0.1
масса — 2.5кг
схема включения — 2-х проводная выходной сигнал — (4-20)мА

Для измерения температуры мазута и отходящих газов берем термопреобразователи из числа предлагаемых в комплекте с модулем ввода аналоговых сигналов (таб.2).

Для розжига и контроля наличия пламени в топке котла применяем устройство контроля пламени Факел-3М-01 ЗЗУ.


Это устройство предназначено для контроля наличия факела в топке котла и для дистанционного розжига горелок с помощью запального устройства имеющего ионизационный датчик собственного пламени.

Факел-3М-01 состоит из сигнализатора, фотодатчика, запального устройства с ионизационным датчиком и блока искрового розжига. Блок искрового розжига на выходе дает импульсное напряжение до 25кВ, достаточное для поджога газа подаваемое в запальное устройство.

Для обеспечения безопасности при возможном появлении природного или угарного газа примем к установке систему автоматического контроля загазованности САКЗ – DN40.

Данная модульная система автоматического контроля загазованности САКЗ-М предназначена для непрерывного автоматического контроля содержания топливного углеводородного (CnHm; далее — природного) и угарного (моноксида углерода CO) газов в воздухе помещений c выдачей световой и звуковой сигнализации и перекрытием подачи газа в предаварийных ситуациях. Область применения: обеспечение безопасной эксплуатации газовых котлов, газонагревательных приборов и другой газоиспользующей аппаратуры в котельных, газоперекачивающих станциях, производственных и бытовых помещениях.

Применение системы значительно повышает безопасность эксплуатации газового оборудования и является необходимым в соответствии с предписывающими документами Госгортехнадзора.

5. СТОИМОСТЬ АВТОМАТИЗАЦИИ


Выполнять монтаж оборудования будет бригада из 4 человек с окладом 15000 руб./мес. и сроками в 2 недели (коэф. для монтажа 5.71=4(человека)*0.5(2-недели или пол месяца)/0.35(фонд оплаты труда)). Следовательно, сумма монтажа оборудования составит 85714 руб. Настройка и пуско-наладка должны быть произведены в течение 1 месяца в составе 2-х человек с окладом 35000руб (коэф для пуско-наладки (здесь оплата труда повременная за месяц) 5.71=2(человека)*1 (4-недели или 1 месяц)/0.35(фонд оплаты труда)). И в итоге составит 200000 руб. Данную систему сможет обслуживать 1 оператор с заработной платой 30000 руб. Сдача объекта Госгортехнадзору 85714 руб (коэф для согласования в Госгортехнадзоре (здесь оплата труда сдельная за результат) 2.86=1/0.35(фонд оплаты труда)).

6. КРАТКОЕ ОПИСАНИЕ РАБОТЫ СИСТЕМЫ АВТОМАТИЗАЦИИ РАБОТЫ ПАРОВОГО КОТЛА.

Автоматизация работы парового котла ведется по четырем параметрам: поддержание давления пара на заданном уроне, поддержание соотношения газ-воздух, поддержание разряжения в топке котла и уровня воды в барабане.

Регулирование давления происходит за счет изменения подачи топлива в горелку. Технически это выполняется изменением положения заслонки снабженной электроприводом. В следствии этого происходит изменение давления топлива, которое регистрируется манометром, силовое воздействие которого преобразуется в электрический сигнал и поступает на вход модуля ввода аналоговых сигналов. Там этот сигнал подвергается оцифровке и в виде кодовой комбинации поступает в модуль центрального процессора и обрабатывается по заранее запрограммированному алгоритму. А так как мы имеем требование поддержания соотношения газ-воздух в пределах 1,1 то подается сигнал на на блок дискретного ввода-вывода на изменение положения шибера воздуходувки, пока не будет достигнуто заданное соотношение.

Данное соотношение давления газа и воздуха подбирается опытным путем во время пусконаладочных работ.

Разряжение в топке котла отслеживается самостоятельно и поддерживается на уровне 5мм.рт. столба.

Также поддерживается уровень воды в барабане путем открытия или закрытия клапана подпиточной воды.

Розжиг котла происходит в следующем порядке:

— сперва проветривается топка котла при включенном дымососе и воздуходувке, чтобы не произошло взрыва газовоздушной смеси;

— потом при закрытых клапане безопасности и клапане-отсекателе проводится контроль отсутствия давления газа (датчик давления разомкнут) в течение 5 мин;

— открывается клапан-отсекатель на время 2с;

— при закрытых клапане-безопасности и клапане-отсекателе проводится контроль наличия давления газа (датчик давления замкнут) в течение 5 мин;

— открывается клапан безопасности на 5с;

— проводится контроль отсутствия давления газа (датчик давления разомкнут);

— после проверки герметичности газопровода подается сигнал на открытие клапана запальной горелки и подаются импульсы на катушку зажигания. При розжиге факела запальной горелки подается устойчивый сигнал с электрода контроля пламени запальника, вследствие чего открывается клапан основной горелки и котел выводится в рабочий режим. Также данная система автоматизации обеспечивает прекращение подачи топлива при следующих аварийных режимах при упуске воды; при остановке дымососа; при остановке воздуходувки; при снижении давления в топливопроводе; при взрыве газа в топке котла; при срабатывании датчика загазованности; при резком повышении давления пара.

7. СХЕМЫ ПОДКЛЮЧЕНИЯ ДАТЧИКОВ И АВТОМАТИЗАЦИИ






8. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. http://www.referat.ru/pub/item/21163 (Сопов С. «Автоматизация парового котла ДКВР 20 – 13 2005» г., Пермь, Пермский государственный технический университет, кафедра электрификации и автоматизации)

2. http://www.syst.ru/mkr2/charact.htm#ppkp (Описание контроллера Микроконт-Р3)

3. http://www.ump.mv.ru/f-3m.htm (Описание устройства контроля наличия факела в топке котла «Факел-3М»)

4. http://www.manometr.com/ (Описание датчиков Сапфир-МП)

5. http://www.energiatlt.ru/ener_2.htm (Описание уровнемера радиоволнового УР 203Ех)

6.http://eurogaz.ru/index.php?option=com_content&task=view&id=9&Itemid=36 (Прайс системы контроля загазованности)

7. http://home.overta.ru/users/cit/SAKZ/SAKZ.html (Описание системы контроля загазованности)

8. http://www.syst.ru/mkr2/in_out.htm#ainor-rtd (Описание модулей Bo32DC24, Ai-NOR/RTD, 254 Bi/o16 DC24)

Замена автоматики управления и защиты двух паровых (ДКВР-20/13) и двух водогрейных котлов ПТВМ-30 на ОАО «Рославльский вагоноремонтный завод» (г. Рославль Смоленской области).

ОАО «Рославльский вагоноремонтный завод» на протяжении многих лет работает в сфере ремонта железнодорожного подвижного состава, нового вагоностроения, изготовления вагонных запасных частей и комплектующих. Основанный в 1868 году сегодня Рославльский ВРЗ по праву считается одним из лидеров среди предприятий железнодорожной отрасли.

Для реализации и внедрения проекта по разработке автоматики котлов была привлечена компания «Центромонтажавтоматика» (г. Смоленск).

К новой автоматике котлов были выдвинуты следующие условия:

  1. Привязать новую автоматику к ранее установленным блокам контроля герметичности газовых клапанов БКГ;
  2. Полностью автоматизировать розжиг растопочной группы горелок котлов ПТВМ-30;
  3. Привязать новую автоматику к существующим частотным приводам, управляющих дымососами и дутьевыми вентиляторами;
  4. Сделать автоматику максимально понятной для обслуживающего персонала.

Реализация проекта

Для управления и защиты котлов ПТВМ-30 и ДКВР-20/13 были разработаны щиты автоматики на базе приборов двух фирм-производителей: ОВЕН и МЗТА. По желанию заказчика, на базе приборов МЗТА в автоматике котлов были реализованы следующие функции:

Для котлов ПТВМ-30:

  1. Регулятор разряжения в топке
  2. Регулятор давления газа
  3. Контроль пламени горелок

Для котлов ДКВР-20/13:

  1. Регулятор соотношения газ/воздух
  2. Регулятор разряжения в топке
  3. Регулятор давления газа
  4. Регулятор уровня воды в барабане котла
  5. Контроль пламени горелок

Основное же управление системой было организовано с применением оборудования ОВЕН. По мнению разработчиков, получился довольно неплохой симбиоз для реализации данной задачи. На базе приборов компании ОВЕН, а именно: с применением программируемого логического контроллера ПЛК100, были реализованы следующие функции:

Для котлов ПТВМ-30:

  1. Автоматическое выполнение строго определенной последовательности розжига котла (вентиляция топки, запуск программы контроля герметичности газовых клапанов, продувка газопровода, проверка исправности защит, розжиг запальника и первой горелки растопочной группы по команде оператора, розжиг запальника и второй горелки растопочной группы по команде оператора, розжиг последующих горелок по необходимости, прогрев котла, работа котла).
  2. Контроль необходимого количества включенных горелок для текущей нагрузки котла.
  3. Электронный самописец требуемых параметров котла на ПК оператора.

Для котлов ДКВР-20/13:

  1. Автоматическое выполнение строго определенной последовательности розжига котла (вентиляция топки, запуск программы контроля герметичности газовых клапанов, продувка газопровода, проверка исправности защит, розжиг запальника и первой из двух нижних горелок по команде оператора, розжиг запальника и второй из двух нижних горелок по команде оператора, розжиг верхней горелки по необходимости, прогрев котла, работа котла).
  2. Подключение по этапам необходимого набора защит.
  3. Диагностика исправности автоматики безопасности.
  4. Запоминание первопричины аварии котла.
  5. Диагностика исправности регуляторов, модулей ввода/вывода и программируемого логического контроллера ПЛК, управляющего автоматикой котла.
  6. Электронный самописец требуемых параметров котла на ПК.

Также использовались температурные датчики типа дТС и преобразователи давления ПД100 компании ОВЕН.

В качестве измерителей разряжения в топке котла, давления воздуха и газа использовались измерители типа АДР и АДН от КБ «Агава»

Для измерения перепада давления на измерительных диафрагмах, а так же уровня воды в барабанах котлов ДКВР использовались преобразователи давления Сапфир-22МТ завода «Манометр».

Для регистрации требуемых параметров котлов были применены два модуля ввода аналоговых сигнала МВА8, работающих от того же источника бесперебойного питания, что и ПК оператора. По линии RS-485 через адаптер интерфейсов АС3-М измеряемые параметры передаются на ПК оператора, на котором установлена SCADA-система Simp Light.

С помощью модулей МВА8 контролируются и фиксируются SCADA-системой следующие параметры:

1. Температура воды котлов ПТВМ-30

2. Давление воды котлов ПТВМ-30

3. Давление газа котлов ПТВМ-30

4. Расход воды котлов ПТВМ-30 (методом переменного перепада давления на диафрагме с последующим вычислением в SCADA-системе)

5. Уровень воды в барабане котлов ДКВР

6. Давление пара котлов ДКВР

7. Температура пара котлов ДКВР

8. Расход пара котлов ДКВР (методом переменного перепада давления на диафрагме с последующим вычислением в SCADA-системе)


Щит управления котлом ПТВМ-30


Из схемы видно, что на котле имеется 6 горелок. Каждая из них оборудована отсечным клапаном (Y4.1 - Y4.6). На растопочных горелках дополнительно после отсечных клапанов установлены краны, оборудованные исполнительными механизмами МЭО (Y5.1 и Y5.6). Также на растопочных горелках установлены отсечные газовые клапаны запальников (Yз.1 и Yз.2).

В соответствии с требованиями безопасности последовательно с группой горелок установлен дополнительный газовый отсечной клапан Y1 и свеча безопасности Y3. Для регулирования подачи газа установлена электрифицированная заслонка Y2.

Для подачи воздуха используются два вентилятора (основной и резервный) оборудованных частотными приводами. Так же после каждого из вентиляторов имеются регулируемые воздушные заслонки (Y6.1 и Y6.2). На растопочных горелках воздушные шиберы оборудованы МЭО (Y7.1 и Y7.6).

Для удаления продуктов сгорания так же используется два дымососа (основной и резервный) оборудованных частотными приводами и заслонками (Y8.1 и Y8.2).

В общем виде функциональная схема щита управления котла ПТВМ-30 выглядит следующим образом.


Щит управления котлом ПТВМ-30 выполняет следующие основные функции:

  1. Осуществляет выполнение строго определенной последовательности предпусковых операций котла (запуск вентиляторов, дымососов, проверка герметичности газовых клапанов, продувка газового тракта, вентиляция топки котла);
  2. Автоматический плавный розжиг горелок растопочной группы;
  3. Поддержание заданного разрежения в топке котла;
  4. Регулирование подачи газа в зависимости от изменяющейся нагрузки котла;
  5. Регулирование соотношения газ/воздух;
  6. Прогрев котла малым пламенем в течение заданного времени;
  7. Контроль оптимального количества включенных горелок котла для данной нагрузки;
  8. Контроль исправности защит котла перед пуском;
  9. Контроль исправности регуляторов котла;
  10. Контроль исправности модулей ввода/вывода;
  11. Контроль исправности ПЛК;
  12. Сервисная и аварийная сигнализация;
  13. Возможность как автоматического так ручного управления регуляторами котла;
  14. Возможность как местной, так и дистанционной принудительной остановки котла оператором при возникновении аварийной ситуации;
  15. Контроль аварийных параметров котла с последующей его остановкой.

Автоматикой котла ПТВМ-30 контролируются следующие аварийные параметры:

  1. Давление воды (максимум/минимум)
  2. Герметичность газовых отсечных клапанов
  3. Температура воды (максимум)
  4. Отсутствие пламени горелок 1 и 6
  5. Отсутствие пламени запальников 1 и 6
  6. Авария частотных приводов дымососов и вентиляторов
  7. Авария регуляторов газа, разряжения в топке, соотношения газ/воздух
  8. Давление газа на общем коллекторе (минимум/максимум)
  9. Давление газа на горелках 1 - 6 (минимум)
  10. Разряжение в топке (минимум)
  11. Давление воздуха на коллекторе (минимум)
  12. Давление воздуха на горелках 1 - 6 (минимум)
  13. Неисправность основного блока питания защит
  14. Отключение блока контроля исправности ПЛК
  15. Проток воды через котел (минимум)
  16. Авария модулей ввода/вывода
  17. Авария датчика температуры дымовых газов
  18. Авария датчика расхода воды

Щит управления котлом ДКВР

В упрощенном виде схема котла выглядит следующим образом:


Из схемы видно, что на котле имеется 3 горелки. Каждая из них оборудована отсечным клапаном (Y4.1 - Y4.3). Так же на растопочных горелках установлены отсечные газовые клапаны запальников (Yз.1 и Yз.2).

В соответствие с требованиями безопасности последовательно с группой горелок установлен дополнительный газовый отсечной клапан Y1 и свеча безопасности Y3. Для регулирования подачи газа установлена электрифицированная заслонка Y2.

Для подачи воздуха используются один вентилятор, оборудованный частотным приводом. После вентилятора имеется регулируемая воздушная заслонка (Y6).

Для удаления продуктов сгорания используется дымосос, оборудованный частотным приводом и заслонкой (Y7).

В отличие от котлов ПТВМ-30 полного автоматического розжига растопочных горелок заказчику не требовалось, поэтому установка газовых кранов, оборудованных исполнительными механизмами МЭО, перед растопочными горелками, а также установка МЭО на воздушные заслонки не производилось.

В общем виде функциональная схема щита управления ДКВР выглядит следующим образом.

Щит управления котлом ДКВР выполняет следующие основные функции:

  1. Осуществляет выполнение строго определенной последовательности предпусковых операций котла (запуск вентиляторов, дымососов, проверка герметичности газовых клапанов, продувка газового тракта, вентиляция топки котла).
  2. Полуавтоматический розжиг горелок растопочной группы.
  3. Поддержание заданного разрежения в топке котла.
  4. Регулирование подачи газа в зависимости от изменяющейся нагрузки котла.
  5. Регулирование соотношения газ/воздух.
  6. Регулирование уровня воды в барабане котла.
  7. Прогрев котла малым пламенем в течение заданного времени.
  8. Контроль оптимального количества включенных горелок котла для данной нагрузки.
  9. Контроль исправности защит котла перед пуском.
  10. Контроль исправности регуляторов котла.
  11. Контроль исправности модулей ввода/вывода.
  12. Контроль исправности ПЛК.
  13. Сервисная и аварийная сигнализация.
    1. В результате внедрения проекта была получена система автоматики водогрейных и паровых котлов, удовлетворяющая всем требованиям их безопасной эксплуатации.
    2. Новая автоматика позволяет минимизировать участие оператора и эксплуатирующего персонала в розжиге и дальнейшей эксплуатации котлов.
    3. Исключена возможность обойти какой-либо этап розжига котлов.
    4. Контроль исправности защит и блоков автоматики также исключает возможность эксплуатации котлов при их неисправности.
    5. Наличие ручного режима управления регуляторами котлов добавляет гибкости к их эксплуатации.
    6. Применение отдельных модулей ввода аналоговых сигналов МВА8 с подключением их к ПК оператора вместо традиционных бумажных самописцев позволили не только снизить затраты на реализацию данной задачи, но и осуществлять хранение и представление полученной информацию в гораздо более удобном виде.
    7. Реализованная автоматика на базе программируемых логических контроллеров (ПЛК) позволяет в будущем без каких-либо серьезных технических изменений перевести на полное управление с ПК оператора.

Министерство по образованию и науки Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

Южно-Уральский государственный университет

Филиал в г. Усть-Катаве

Факультет Автоматизация технологических процессов и производств

Кафедра ТП и ОМП

Пояснительная записка к курсовому проекту

по дисциплине:Автоматизация технологических процессов и производств

на тему: Проектирование автоматизации водогрейного котла


Аннотация

Ахметшин Р.Р. Проектирование автоматизации водогрейного котла КВ-МГ-10.

Усть-Катав: ЮУрГУ, 2010, 45 с.

Библиография литературы – 10 наименований. 3 листа чертежей ф. А3, 1 лист чертежа ф. А4.

Проведены характеристики объекта автоматизации, технологического оборудования, применяемых в процессе материалов, затем описано обоснование выбора: регулируемых величин и каналов внесения регулирующих воздействий, контролируемых и сигнализируемых величин, средств автоматизации.

В результате был автоматизирован водогрейный котёл КВ-ГМ-10, для которого была разработана система автоматического контроля и регулирования температуры прямой воды, также описана работа электрических схем импульсной сигнализации и защиты водогрейного котла. Проведены расчеты автоматических устройств.

теплообменный автоматизация водогрейный котел


5.1Спецификация на приборы и средства автоматизации

7.2 Описание работы принципиальной электрической схемы защиты водогрейного котла

8.3 Расчет измерительной схемы потенциометра

Литература и нормативно-техническая документация

ообменный автоматизация водогрейный котел


Введение

Современное промышленное производство невозможно без автоматизации. Широта автоматизации управления различными процессами на том или ином предприятии или объекте во многом характеризует общий уровень и культуру производства на данном предприятии, или же уровень и совершенство данного технического объекта. Передовые области промышленности и энергетики немыслимы без широкой и полной автоматизации управления. Облегчая труд человека, повышая культуру человеческого труда во всех ее видах, устраняя различия между физическим и умственным трудом. Автоматизация в то же время в сотни раз повышает производительность труда, позволяет полнее удовлетворять многообразные потребности человека. Автоматизация делает практически осуществимым целый ряд таких производств и новых видов технологий, которые без нее были бы невозможны.

При автоматизации котельной автоматизируются все основные и вспомогательные технологические процессы. Это ведет к освобождению обслуживающего персонала от необходимости регулировать эти процессы вручную. Внедрение специальных автоматических устройств способствует безаварийной работе оборудования, исключает случаи травматизма, предупреждает загрязнение атмосферного воздуха. В последние годы все большее внимание уделяется вопросам комплексной автоматизации промышленных котельных. И это не случайно: в какой энергетике сжигается свыше 50% всего топлива, добываемого в стране. Учитывая, что автоматизация процессов горения дает до 10% экономии топлива, становится ясным повышенный интерес к комплексной автоматизации котельных.

1. Характеристика объекта автоматизации

1.1 Описание технологического процесса

Водогрейный котел КВ-ГП-10 предназначен для нагрева воды, которая используется для горячего водоснабжения и отопления. Вода, идущая к потребителю, называется прямой , а возвращающая обратно от потребителя в котел – обратной . Вода используется химически очищенная, так как содержащиеся в природной воде растворимые газы (кислород и углекислота) разрушают металл котельного агрегата и трубопроводы. Также использование природной воды приводит к отложению накипи, которая вызывает перегрев металла в следствии ухудшения отвода тепла. Для восполнения неизбежных потерь воды, требуется вода для подпитки обратной воды. Питательная вода применяется химически очищенная. Нагрев воды происходит за счет тепла, выделяющегося при сжигании топлива. Вода в котел (поз.7 рис. 1.1.) поступает с температурой 750С и нагревается до температуры 1500С.

Горение – это процесс химической реакции соединений горючих элементов газа с кислородом, способствовавшему повышению температуры и происходящему с выделением тепла. Процесс горения газообразного топлива состоит из образования горючей смеси, нагревании ее до температуры воспламенения и горения.

К горелке котла подводятся газ и воздух. Воздух подается дутьевым вентилятором (поз.1, рис.1.1) Горючая смесь, которая образуется в горелке, воспламеняется и отдает тепло в топочную камеру. В результате процесса горения образуются газообразные продукты – дымовые газы. Их отсасывает дымосос, а затем выбрасывает в атмосферу (поз. 3 рис. 1.1). Сжигание осуществляется факельным способом. При сжигании газового топлива необходимо обеспечить: хорошее предварительное перемешивание газа с воздухом, ведение процесса с малыми избытками воздуха, разделение потока смеси на отдельные струи. Подогрев газовоздушной смеси и химическая реакция горения протекают очень быстро. Основным фактором длительности горения является время, затраченное на перемешивание газа с воздухом в горелке. От быстроты и качества перемешивания газа с необходимым количеством воздуха, зависит скорость и полнота сгорания газа, длина факела топки и температура пламени. Для процесса горения дымососом создается необходимое разряжение и обеспечивается полное удаление продуктов сгорания. Если достигнуть соотношения расхода воздуха в соответствии с подачей топлива, процесс сжигания будет осуществляться с максимальной экономичностью.

1.2 Характеристика технологического оборудования

Водогрейный котел КВ-ГН-10 представляет собой теплообменное устройство с принудительной циркуляцией воды, оборудованный отдельным дымососом типа ДН12,5У и вентилятором ВДН10У.

Теплопроизводительность 10 Гкал/ч.

Площадь поверхности нагрева:

радиационная 89 м2;

конвективная 141,9 м2.

Температура воды:

на входе в котел 75 0С;

на выходе из котла 150 0С.

Давление воды:

на входе 16 кгс/см2;

на выходе 10 кгс/см2.

Давление газа перед горелками 2330 кгс/м2.

Ширина котла 3,84 м

Длина 4,90 м

Высота 4,75 м.

Масса металлической части 11,8 т.

Особенностью конструкции котла является наличие трех ступенчатых экранов, которые делят топку на четыре отсека. Кроме того, в топке размещены боковые и потолочные экраны, последний переходит частичново фронтовой экран. Ширина отсеков 740 мм.Топка котла выполнена в виде прямоугольной шахты. Плотное экранирование позволило применить печную натрубную обнуровку. Котлы отличаются сильно развитой поверхностью нагрева. Конвективная поверхность нагрева размещена в газоходе и представляет змеевиковый экономайзер, состоящий из 16 секций. Секции набирают таким образом, чтобы змеевики располагались параллельно фронту котла в шахматном порядке. Для сжигания газа установлены горелки с прямой щелью, заканчивающейся расширением. Горелки размещены между вертикальными топочными экранами. Продукты горения поступают из топки в конвективный газоход через проем высотой 100 мм в верхней части, под разделительной стенкой.

1.3 Характеристика применяемых в процессе материалов

Исходные продукты – вода, воздух, газ. Готовый продукт – горячая вода.

Вода – жидкость, не имеющая цвета и запаха. Химическая формула – H2O. Вода, поступающая в котел, проходит химическую очистку и деаэрацию, и не должна содержать соли, газы. Основные показатели воды после очистки поступающей в котел: жесткость не более 20 мкг.экв/кг, солесодержание 245 мг/кг, щелочность pH=7, содержание углекислоты недопустимо, содержание O2 до 30 мкг/кг, вязкость μ=0,135 спз, плотность ρ=1006,7 кг/м3.

Газ используется природный. Газовое топливо представляет собой смесь горючих и негорючих газов (метан, этан, пропан, бутан, водород, окись углерода, азот, углекислый газ, кислород). Основным элементов газовой смеси является метан. Это газ без цвета, почти без запаха, практически нерастворим в воде, химически малоактивен. Химическая формула CH4.

Жаропроизводительность газа2040 0С. Плотность газа – в 2 раза легче воздуха. Теплота сгорания: QH=8500 ккал/м3, QВ=9500 ккал/м3. Пределы воспламенения: нижний 5%, верхний 15%.

В состав воздуха входят:

кислород 20,95%;

инертные газы 0,94%;

углекислый газ 0,03%.

Готовым продуктом является вода с температурой 1500С, расходом 123,5 т/ч. Эта вода используется для горячего водоснабжения и отопления.

2. Обоснование выбора регулируемых величин и каналов внесения регулирующих воздействий

Из многих параметров характеризующих процесс, необходимо выбрать те, которые подлежат регулированию и изменением которых целесообразно вносить регулирующее воздействие. Для этого необходимы результаты анализа целевого назначения процесса. Исходя из результатов, анализа выбирают критерий управления, его заданное значение и параметры, изменением которых наиболее целесообразно на него воздействовать. Последнее осуществляется на основе статических и динамических характеристик процесса, дающих представление о взаимозависимости параметров.

Показателем эффективности работы водогрейного котла является температура прямой воды. На нее действуют следующие возмущения:

· расход воды через котел;

· расход топлива;

· расход воздуха;

· разряжение;

· температура обратной воды.

Стабилизировать, т.е. устранить все возмущения нельзя, т.к. расход топлива, расход воздуха и разряжение взаимосвязаны. Устранить можно только одно возмущение – расход воды через котел. Расход воды стабилизируется при помощи подпитки обратной воды химически-очищенной водой. Кроме того, температура прямой воды должна изменяться в зависимости от температуры наружного воздуха. Анализируя эти возмущения, можно прийти к выводу, что экономически целесообразным будет использование в качестве регулирующего воздействия изменение подачи топлива. В котельной одновременно работают 2 котла, поэтому целесообразно использовать каскадно-связанное регулирование с главным регулятором. Он воспринимает изменение температуры наружного воздуха и температуры прямой воды, т.е. в общем коллекторе. Воздействует главный регулятор на регуляторы топлива всех котлов. Кроме того, на регулятор топлива подается сигнал от датчика температуры воды за котлом и от датчика температуры обратной воды. Таким образом, подача топлива изменяется в зависимости от температуры наружного воздуха, температуры в общем коллекторе, температуры воды за котлом и температуры обратной воды. Воздух должен подаваться в таком количестве, чтобы обеспечить полное сжигание топлива. Если воздуха недостаточно, то кроме неполноты сжигания, т.е. экономических потерь будет загрязнение атмосферы. Если воздуха будет избыток, то будет унос тепла в трубу. Таким образом, необходимо регулировать соотношение "топливо-воздух". Топливо может идти разного качества, и расчетный коэффициент соотношения может оказаться не оптимальным. Для повышения качества необходимо контролировать полноту сжигания топлива по содержанию кислорода в дымовых газах. Таким образом, регулятор воздуха будет изменять подачу воздуха в зависимости от расхода топлива, расхода воздуха, с коррекцией по содержанию кислорода в дымовых газах. В данном проекте изменение расхода воздуха затруднительно, так как сечение воздуховода прямоугольное. Тогда регулирование ведется по косвенному параметру – давлению воздуха.

Для процесса горения в топке должно быть создано разряжение, если оно будет недостаточным, то возможно погасание пламени. Если слишком велико, то отрыв пламени от горелки. Разряжение в проекте регулируется в зависимости от расхода воздуха, изменением производительности дымососа.

Итак, в проекте используются следующие САР:

1. САР температуры прямой воды с коррекцией по температуре обратной воды, температуры наружного воздуха изменением расхода топлива в зависимости от температуры в общем коллекторе;

2 САР давление воздуха с коррекцией по содержанию O2 в дымовых газах и по расходу топлива, изменением подачи воздуха;

3 САР разряжения в топке котла с коррекцией по расходу воздуха, изменением производительности дымососа;

4 САР обратной воды, подачей питательной воды.

3. Обоснование выбора контролируемых и сигнализируемых величин

Контролю подлежат те параметры, по значениям которых осуществляется оперативное управление технологическим процессом, а также его пуск и остановка. К таким параметрам относятся все режимные и выходные параметры, а также входные параметры, при изменении которых в объект будут поступать возмущения. Обязательному контролю подлежат параметры, значения которых регламентируются технологической картой.

Контролю подлежат все регулируемые параметры:

· расход обратной воды;

· температура обратной воды;

· температура прямой воды;

· давление воздуха;

· концентрация кислорода в дымовых газах;

· разряжение в топке котла;

· температура воды в коллекторе.

Кроме регулируемых параметров контролю подлежат следующие:

· расход газа;

· давление воды на входе и выходе из котла;

· расход воды в коллекторе и расход прямой воды;

· температура дымовых газов за котлом;

· давление воздуха после дутьевого вентилятора;

· давление газа;

· разряжение перед дымососом;

· наличие пламени.

Контроль расхода газа и расхода воды необходим для расчета технико-экономических показателей.

Контроль давления воды необходим для того, чтобы определить, есть ли расход воды через котел. При уменьшении расхода давление понижается. Контроль давления воздуха после дутьевого вентилятора необходим для определения работы вентилятора. Понижение давления воздуха происходит в случае отключения вентилятора или закрытия его направляющего аппарата при неисправности регулятора воздуха. При понижении давления воздуха может произойти отрыв факела или его погасание. Так как в момент отключения вентилятора воздух в топку не поступает, разряжение увеличивается, происходит отрыв факела.

Понижение давления газа ниже допустимого приводит к погасанию факела. Поэтому давление топлива необходимо контролировать.

При повышенных разряжениях в газоходе будет велик присос наружного воздуха через всякого рода неплотностях в обмуровке, это ухудшит условия теплопередачи, снизится производительность за счет повышенной потери с отходящими газами. Поэтому необходим контроль разряжения перед дымососом.

Метан в смеси с воздухом создают взрывоопасную газовоздушную смесь, взрывающуюся от источника открытого огня. Она действует на человека удушающе и отравляюще, поэтому необходимо контролировать содержание метана CH4 в помещении.

При погасании факела, топка котла и помещение заполняются газом, и может произойти взрыв.

Для предотвращения этого предусмотрен контроль по наличию пламени в топке котла.

Сигнализации подлежат все параметры, изменения которых могут привести к аварии, несчастным случаям или серьезному нарушению технологического режима. К ним относятся:

· понижение и повышение давления газа;

· понижение давления воды в обратном трубопроводе;

· наличие пламени;

· повышение метана CH4 в помещении;

· понижение давления воздуха;

· повышение разряжения дымовых газов;

· понижение расхода газа;

· повышение кислорода в дымовых газах.

Оперативный технологический персонал при оповещении его устройствами сигнализации о нежелательных событиях должен принять соответствующие меры по их ликвидации. Если эти меры окажутся не эффективными и параметр, характеризующий состояние ТОУ достигнет аварийного значения, должны сработать системы противоаварийной защиты, которые автоматически по заданной программе перераспределяют материальные и энергетические потоки, включают и отключают аппараты объекта с целью предотвращения взрыва, аварии, несчастного случая, выпуска большого количества брака.

Котел подлежит защите при отклонении следующих параметров:

· повышение температуры воды за котлом;

· повышение или понижение давления воды за котлом;

· понижение давления воздуха;

· повышение или понижение давления газа;

· уменьшение разряжения в топке котла;

· повышение давления обратной воды;

· погасание факела в топке котла.

Защита заключается в автоматическом прекращении подачи топлива при отклонении любого из вышеперечисленных параметров.

4. Обоснование выбора средств автоматизации

Средства автоматизации должны быть выбраны технически грамотно и экономически обосновано. Конкретный тип автоматического устройства выбирают с учетом особенностей объекта управления и принятой системы управления. При этом предпочтение следует отдавать однотипным, централизованным и серийно выпускаемым устройствам. Это значительно упростит поставку и эксплуатации. В связи с тем, что процесс нагрева воды не относится к числу пожаро- и взрыво-опасных, автоматизация осуществляется на основе использования электрических средств. Электрические приборы более точны и отличаются быстродействием по сравнению с пневматическими. Источники энергии у электрических средств автоматизации более просты и надежены. Также отсутствуют ограничения по расстоянию между усилителем и исполнительным механизмом. Электрические регуляторы позволяют легко суммировать различные импульсы. В проекте использованы приборы системы "Контур-2", так как они выпускаются НЗТА специально для тепловых процессов. Система построена по блочно-модульному принципу. Связь между блоками и модулями осуществляется с помощью сигналов постоянного тока, а точный сигнал легче преобразовать, суммировать и можно использовать многократно. Для регулирования используются регуляторы РС29. Они обладают высокой точностью и выполняют следующие функции: масштабирование сигнала от датчика, алгебраическое суммирование, введение сигнала задания, формируют и усиливают сигнал расслаивания, световую индикацию выхода. С регуляторами РС29 работают электрические исполнительные механизмы типа МЭО. Сигнал с регулятора на исполнительный механизм поступает через трехпозиционный усилитель У293Ь с электромагнитным тормозом. В качестве датчиков расхода и давления используются измерительные преобразователи типа "Сапфир-22" различных модификаций, так как они имеют тоновый сигнал на входе, который можно передавать и на регулятор и на вторичный прибор. Для питания стабилизированным напряжением постоянного тока 36В комплекса тензорезисторных измерительных преобразователей теплоэнергетических параметров "Сапфир-22" используется блок питания типа 22БП-36, восьмиканальный, учитывая что у датчиков 6. В качестве вторичных приборов лучше использовать регистрирующие приборы типа "Диск-250". Он работает с любыми датчиками и может измерять любые величины. Одновременно он может выполнять функции показания, регистрации, сигнализации, регулирования и преобразования. Модификации "Диск-250" выбираются в зависимости от назначения и типа датчика с которым он работает.

Для регулирования температуры прямой воды изменением расхода газа в зависимости от температуры в общем коллекторе, в качестве чувствительного элемента используется термопреобразователь сопротивления платиновый типа ТСП-1088гр100П (поз. 1-1, 1-9). Используется платиновый, а не медный, потому что нужна точность и измеряется высокая температура, так как температура прямой воды является показателем эффективности. Вторичным прибором выбирается прибор типа ДЖК-250-1231 (поз.1-2, 1-10). Главным регулятором выбран регулятор температуры типа РС 292.22 (поз.1-3). Выбран регулятор именно этой модификации, потому что он работает с ТСП градуировки 50 М, а также можно подключить датчики постоянного тока. Сигнал с регулятора подается на регулятор топлива, в качестве регулятора топлива выбирается РС 29.0.12 (поз.1-5). Для измерения температуры обратной воды, температуры окружающего воздуха, в качестве датчика используется ТСП типа ТСМ-1088 градуировки 50М (поз. 1-4, 1-11). Измеряется невысокая температура, не требуется высокая точность, поэтому выбирается медный термопреобразователь сопротивления. В качестве вторичного прибора выбран ДЖК 250-1231 (поз.1-12).

В качестве усилителя выбирается усилитель У29.3М (поз. 1-6). В качестве исполнительного механизма выбирается электрический однооборотный типа МЭО40/10-0,25 (поз.1-7). В качестве поворотно-регулирующей заслонки выбирается ПРЗ-150, которая выбирается в зависимости от давления и диаметра трубопровода. Для регулирования давления воздуха в зависимости от расхода топлива и содержания кислорода в дымовых газах, в качестве измерительного преобразователя давления воздуха используется преобразователь типа Сапфир-22 ДИ-2120 (поз. 4-1). Вторичный прибор, который работает в комплекте с преобразователем давления ДИСК-250-1221 (поз.4-2). Регулятором воздуха выбран регулятор типа РС 29.0.12 (поз.4-3). Выбран регулятор данного типа, потому что он принимает до 3 унифицированных сигналов постоянного тока. Для измерения кислорода в дымовых газах применяется анализатор кислорода ТДК-3М (поз. 4-7, 4-8, 4-9). Усилителем в этой системе выбран усилитель типа У293М, исполнительный механизм – механизм электрический однооборотный МЭО 40/10-0,25 (поз. 4-5). В качестве поворотно-регулирующей заслонки выбирается ПРЗ-150 (поз.4-6).

В системе автоматического регулирования разряжения в топке котла отводом дымовых газов в качестве преобразователя разряжения применяется преобразователь типа Сапфир-22ДВ-2220 (поз.6-1). Вторичный прибор работающий в комплекте с преобразователем разряжения ДИСК-250-1221 (поз.6-2). Регулятором разряжения выбран РС 29.0.12 (поз. 6-3). Усилителем – У29.3М (поз.6-4). В качестве исполнительного механизма выбран электрический однооборотный типа МЭО 40/10-0,25, поворотно-регулирующая заслонка выбирается типа ПРЗ-150. В системе автоматического регулирования расхода обратной воды изменением подачи питательной воды, датчиком является камерная диафрагма типа ДКС 10-150 (поз.16-1). Использование камерной диафрагмы обеспечивает большую точность, так как измеряет усредненное давление. Измерительным преобразователем выбран Сапфир-22 ДД-2441 (поз. 16-2). Для устранения квадратичной зависимости перепада давления от расхода и преобразования в линейную, после преобразователя стоит блок извлечения квадратного корня БИК-1 (поз16-3). В качестве вторичного прибора ДИСК-250-4321 с ПИ-регулятором (поз.16-4). В качестве усилителя выбирается У24.10 (поз. 16-5). Исполнительный механизм электрический однооборотный выбирается типа МЭО 16/63-0,25-80 (поз.16-6). В качестве клапана - клапан регулирующий поворотный 6с-8-1 (поз. 16-7).

В системе автоматического контроля и сигнализации расхода газа датчиком является камерная диафрагма типа ДКС 10-150 (поз. 17-1). Измерительный преобразователь типа Сапфир-22ДД-ВМ-2434 (поз.17-2) выполнен во взрывозащищенном исполнении. Он работает в комплекте со вторичным прибором типа ДИСК 250-1221 (поз. 17-4). Для устранения квадратичной зависимости перепада давления от расхода применяется блок извлечения квадратного корня БИК-1 (поз. 17-3). В системе автоматического контроля давления обратной воды, давления питательной воды, давления воздуха, давления газа и сигнализации давления обратной воды, давления воздуха, давления газа, контроль и сигнализация осуществляется манометром, показывающим сигнализирующим типа ДМ 2010С (поз. 7, 11, 13), так как нужен местный контроль с сигнализацией на щите оператора, и манометром МПЗ-У (поз.9).

В системе автоматического контроля и сигнализации разряжение перед дымососом используется вакуумметр, показывающий сигнализирующий типа ДВ2010Cr (поз.15). В системе автоматического контроля расхода питательной воды и расхода воды в коллекторе датчиком служит камерная диафрагма типа ДКС10-150 (поз. 11-1, 19-1). Измерительный преобразователь выбирается типа Сапфир-22ДД-2441 (поз. 18-2, 19-2). Для устранения квадратичной зависимости перепада давления от расхода применяется блок извлечения квадратного корня БИК-1 (поз. 18-3, 19-3). В качестве вторичного прибора выбирается ДЖК 250-1221 (поз. 18-4, 19-4). Датчиком в системе автоматического контроля температуры дымовых газов используется термопреобразователь сопротивления платиновый типа ТСП-1188-01 (поз. 21), прибор который работает с ТСП-милливольтметр типа Ш4540Н (поз. 2-2). Контроль и сигнализация концентрации метана в помещении котельной осуществляется с помощью оптико-акустического газоанализатора типа ГИАМ-14 (поз. 20-1, 20-2), так как нужен местный контроль с сигнализацией на щите оператора. С газоанализатором работает узкопрофильный микроамперметр М1730. Контроль и сигнализация наличия пламени в топке осуществляется с помощью прибора контроля пламени типа Ф34.2 (поз. 21-2). Фотодатчик выбирается типа ФД4 (поз. 21-1).

Для систем защиты выбираются датчики-реле. В качестве датчика-реле давление обратной воды, давление питательной воды, давление воздуха, давление газа – ДД-0,25 (РУПД) (поз. 8, 10, 12, 14).

В качестве датчика-реле разряжения в топке котла ДТ-40 (РУПД) (поз. 5).

В качестве датчика-реле температуры питательной воды – 31-03 (поз.3).

Для отсечки топлива в качестве клапана-отсекателя выбирается клапан типа ПКН-150.

5. Спецификация на средства автоматизации

5.1 Спецификация на приборы и средства автоматизации

Позиция

Наименование и техническая

характеристика оборудования и материалов,

завод-изготовитель

(для импортного оборудования –

страна, фирма)

Тип, марка оборудования обозначение документа и № опросного листа Единица измерения

завода-изготови-

Код оборудования Цена оборудования Количество Масса единицы оборудования
наиме-нова-ние код
1 2 3 4 5 6 7 8 9 10

гр 100П. Пределы измерения - 200¸500 0С, L=200мм.

Защитная арматура ст. 08*13.

ПО "Электротермия". г.Луцк

ТУ25-7363.032-89

шт 976 225647 4211419719 2

Прибор регистрирующий. Шкала

0-2000С, гр.100П. Uпит-220В. Выходной сигнал 0-5мА. Класс точности 0,5. Кировоканский завод "Автоматика". г.Кировокан.

Диск-250-1231

ТУ25-0521.1104-85

шт 976 225961 4217455000 2
1-3 Прибор регулирующий контактный с импульсным выходом. Uпит-220В. Выходной сигнал ±24В. d от 10 до 500%, время интегрирования от 5 до 500 сек., время демпфирования от 0 до 500 сек. МЗТА г.Москва

ТУ311-0225542.

шт 976 225542 4218413303 1

Термопреобразователь сопротивления медный, гр. 50М, L=200 мм. Пределы измерения –

500С +1200С. Защитная арматура ст.12х18 Н10Т.

ПО "Электротермия". г.Луцк

ТУ25-7363.024-88

шт 976 225647 4211432002 2
Прибор регулирующий контактный с импульсным выходом. Uпит-220В, Iвых=±24В, r=10-500%, время интегрирования от 5 до 500 сек., время демпфирования от 0 до 500 сек. МЗТА г.Москва

ТУ311-0225542.

шт 976 225542 4218418292 3
Усилитель мощности трехпозиционный. Uпит=220В. МЗТА, г.Москва

ТУ311-9225542.

шт 976 225542 4218218108 3

Механизм исполнительный электрический однооборотный. Uпит=220В, номинальный крутящий момент 40 Н.м, полный ход выходного вала 0,25 оборота, номинальное время полного хода выходного вала 10 с.

Чебоксарское ПО "Промприбор", г.Чебоксары

ТУ25-7504.014-86

шт 976 225542 4218513420 3
Поворотно-регулирующая заслонка Р=2,5МПа, рабочий угол поворота 900, Материал – сталь 25П. Завод "Теплоприбор" г.Улан-Уде. ПРЗ-150 шт 976 367815 23167545113 3
1-12

Прибор регистрирующий. Шкала

0-1000С, гр.50П. Uпит=220В. Выходной сигнал 0-5мА. Класс точности 0,5. Кировоканский завод "Автоматика". г.Кировокан.

Диск-250-1231

ТУ25-0521.1104-85

шт 976 225961 4217455000 1
2-1

Термопреобразователь сопротивления платиновый,

гр 50П. Пределы измерения –

50¸+500 0С, L=200мм.

Защитная арматура ст. 08х12Н10Т.

ПО "Электротермия". г.Луцк

ТУ25-7363.042-89

шт 976 225647 4211419562 1
2-2 Милливольтметр для измерения температуры, шкала 0…3000С, гр.50П, погрешность ±1,0%. Выходной сигнал 0-5мА. Uпит=220В. г.Москва Ш4540/1 шт 976 227618 423250614 1
Датчик-реле температуры типа 31-03. Пределы установок 400…2000С, зона возврата 120С, погрешность +8%. "Промприбор", г.Орел

ТУ311-0227450.

шт 976 227450 4218712541 1
4-1 Преобразователь измерительный давления. Пределы измерения 0-1,6 кПа. Погрешность ±0,5%. Выходной сигнал 0-5 мА. Uпит=220В. ПО "Теплоконтроль" г.Казань "Сапфир-22ДИ"-2120 ТУ25-02.100431-85 шт 976 225626 421281 1
4-2

Прибор регистрирующий. Шкала

0-10МПа, Uпит=220В. Выходной сигнал 0-5мА. Класс точности 0,5. г.Челябинск

Диск-250-1221

ТУ25-0521.1104-85

шт 976 225961 4217455000 1
Анализатор кислорода. Пределы измерения 0-21%, погрешность 2%,. Uпит=220В, частота 50Гц. НПФ "Циркон" г.Москва шт 976 226347 421511 1
4-9 Вторичный прибор. Пределы измерения 0-21%, погрешность 2%,. Uпит=220В, частота 50Гц. НПФ "Циркон" г.Москва "Оксимес" шт 976 226347 421511 1
5

Датчик-реле разряжения. Пределы уставок 0,4-40кПа. Uпит=220В. Погрешность ±1%.

"Теплоприбор". г.Улан-Уде.

шт 976 225610 4218721412 1
6-1 Преобразователь измерительный давления. Пределы измерения 0-10 кПа. Погрешность ±0,5%. Выходной сигнал 0-5 мА. Uпит=220В. АО "Манометр" г.Москва "Сапфир-22ДВ"-2220 ТУ25-02.100431-85 шт 976 227508 4212814788 1
6-2

Прибор регистрирующий. Шкала

0-10 МПа, гр.50П. Uпит=220В. Входной сигнал 0-5мА. Выходной сигнал 0-5мА. Класс точности 0,5. Кировоканский завод "Автоматика". г.Челябинск.

Диск-250-1211

ТУ25-0521.1104-85

шт 976 225961 4217455000 1
Манометр показывающий сигнализирующий. Пределы измерения 0-1,6МПА, Uвых=220В, класс точности 1,5. Томский манометрический завод, г.Томск

ТУ311-0225591.

шт 976 225591 4212148078 3
Датчик-реле давления. Пределы уставок 0-25МПа, Uвых=220В, погрешность ±1%. "Теплоприбор". г.Улан-Уде. шт 976 225610 4218721415 4
15 Вакуумметр показывающий сигнализирующий. Пределы измерения 0-0,1 МПа, Uвых=220В, класс точности 1,5. Томский манометрический завод, г.Томск

ТУ311-0225991.

шт 976 225591 4212148079 1

ПО "Госфизприбор".

г.Ивано-Франковск

шт 976 5782913 4212921201 3
Преобразователь измерительный разности давления. Пределы измерения 0-1,6 кПа. Погрешность ±0,5%. Выходной сигнал 0-5мА. ПО "Теплоконтроль". г.Казань

"Сапфир-22ДД"-2441

ТУ25-02.720122-81

шт 976 225626 421281 3
Блок извлечения квадратного корня. Uвых=220В, выходной сигнал 0-5 мА, погрешность 0,5%. "Промприбор" г. Ивано-Франковск

ТУ25-02.72122-81

шт 976 225652 4218210401 4
16-4 Прибор регистрирующий. Пределы измерения 0-160+14. Выходной сигнал 0-5 мА, Uвых=220В, класс точности 0,5. Входной сигнал 0-5 мА. Пи-регулятор d=0,5-20%, т.и. 20-200 сек. г.Челябинск

Диск-250-4321

ТУ25-0521.1104-85

шт 976 225961 4217455000 1
18-5 Усилитель мощности теристорный. Мощность 15ВА. МЗТА. г.Москва У24.10 шт 976 225342 4218218108 1
16-6 Механизм электрический однооборотный. Номинальный момент на выходном валу 16Н.м. Полный ход выходного вала 0,25 оборота, время полного хода 63 с. ПО "Промприбор" г.Чебоксары

МЭО16/63-025-80

ТУ25-7504.014-86

шт 976 5784910 4218513420 1
16-7 Клапан регулирующий (поворотный). Ру=6,4 МПа, Кu=150м3/ч, рабочий угол поворота рычага 900. Котельный завод г.Барнаул. 6С-8-1 шт 976 1
17-1

Камерная диафрагма. Материал сталь 12х18 Н10Т. Давление 10МПа. Диаметр 150 мм.

ПО "Госфизприбор".

г.Ивано-Франковск

шт 976 5782913 4212921201 3
17-2 Преобразователь измерительный разности давления. Пределы измерения 0-25 кПа. Погрешность ±0,5%. Выходной сигнал 0-5мА. Uвых=220В. ПО "Теплоконтроль". г.Казань

"Сапфир-22ДД"-ВМ-2434

ТУ25-02.100431-85

шт 976 225626 421281 1
17-4 Прибор регистрирующий. Шкала 0-1600 м3/ч. Jвх=0-5мА, выходной сигнал 0-5мА. Uвых=220В, класс точности 0,5. г.Челябинск

Диск-250-1221

ТУ25-0521.1104-85

шт 976 225961 4217455000 1
Прибор регистрирующий. Шкала 0-160 т/ч. Jвх=0-5мА, выходной сигнал 0-5мА. Uвых=220В, класс точности 0,5. г.Челябинск

Диск-250-1221

ТУ25-0521.1104-85

шт 976 225961 4217455000 2
Газоанализатор оптико-акустический. Выходной сигнал 0-5 мА, Uвых=220В, погрешность ±5%. Смоленский завод средств автоматики. шт 976 5784952 4215140281 1
Миллиамперметр узкопрофильный, модификации-К. Шкала 5ккА-5А, погрешность ±1,0%. Ленинградское ПО "Вибратор" г.Санкт-Петербург

ТУ25-04.2111-77

шт 976 5755099 4223160235 1
21-1 Фотодатчик низкочастотный, входной сигнал 6-12 Гц, выходной сигнал 0…10В. Uвых=27В. МЗТА. г.Москва

ТУ25-0.2.05.0215-82

шт 976 225542 4218920773 1
21-2 Прибор контроля пламени и управления розжигом. Мощность 20ВА. МЗТА. г.Москва

ТУ25-0205.0214-87

шт 976 225342 4218780192 1
22 Клапан отсекатель. Диаметр 150 мм. ПКН-150 шт 976 1

Блок питания. Восьмиканальное исполнение. Uвых=220В. Мощность 26 ВА. ПО "Промприбор"

г.Ивано-Франковск

ТУ25-0.2720159-81

шт 976 225652 4218210927 1
9 Манометр показывающий. Пределы измерения 0,1-6 МПа, класс точности 1,5. "Теплоконтроль". г.Казань

ТУ25-70020045-87

шт 976 225626 4212131870 1

6. Система автоматического контроля и регулирования температуры прямой воды

Рис. 6.1. САР и САК температуры прямой воды

1-1 Термопреобразователь сопротивления платиновый ТСП-1088 гр 100П;

1-2 Прибор регистрирующий ДИСК-250-1231;

1-3 Прибор регулирующий контактный с импульсным выходом РС 29.2.22;

1-4 Термопреобразователь сопротивления медный ТСМ-1088 гр 50Н;

1-5 Прибор регулирующий контактный с импульсным выходом РС 29.0.12;

1-6 Усилитель мощности трехпозиционный У29.3.П;

1-7 Механизм исполнительный электрический однооборотный МЭО-40/10-0,25;

1-8 Поворотно-регулирующая заслонка ПР3-150;

1-9 Термопреобразователь сопротивления платиновый ТСП-1088 гр 100П;

1-10 Прибор регистрирующий ДИСК 250-1231;

1-11 Термопреобразователь сопротивления медный ТСМ-1088 гр. 50Н.

1-12 Прибор регистрирующий ДИСК 250-1231.

Если температура воды в коллекторе увеличилась, увеличивается сопротивление термопреобразователя сопротивления типа ТСП-1088 (поз. 1-1). Оно измеряется вторичным прибором типа ДИСК 250-1231 (поз. 1-2), с него унифицированный сигнал постоянного тока подается на главный регулятор РС 29.2.22 (поз. 1-3).

С главного регулятора сигнал идет на регулятор топлива типа РС29.0.12 (поз. 1-5). В нем формируется управляющий сигнал в соответствии с ПИ-законом регулирования. Этот сигнал усиливается усилителем 129.3.М (поз. 1-6) и подается на исполнительный механизм типа МЭО-40/10-0,25, который поворачивает поворотно-регулирующую заслонку ПРЗ-150 и она уменьшает подачу топлива.

Если увеличится температура наружного воздуха, увеличится сопротивление термопреобразователя сопротивления типа ТСМ-1088 (поз. 1-4). С него сигнал идет на регулятор РС29.1.22 (поз. 1-3), а с него сигнал идет на регулятор РС 29.0.12 (поз 1-5). В нем формируется управляющий сигнал в соответствии с ПИ-законом регулирования. Этот сигнал усиливается усилителем У29.3М (поз. 1-6) и подается на исполнительный механизм типа МЭО-40/10-0,25 (поз. 1-7), который уменьшает подачу топлива при помощи поворотно-регулирующей заслонки типа ПРЗ-150 (поз. 1-8).

Если температура прямой воды увеличилась, увеличивается сопротивление термопреобразователя сопротивления типа ТСП-1088 (поз. 1-9). Оно измеряется вторичным прибором типа ДИСК-250-1231 (поз. 1-10) и с него унифицированный сигнал постоянного тока подается на регулятор РС29.0.12 (поз. 1-5). В нем формируется управляющий сигнал в соответствии с ПИ-законом регулирования. Этот сигнал усиливается усилителем У29.3М (поз. 1-6) и подается на исполнительный механизм типа МЭО-40/10-0,25, который уменьшает подачу топлива, изменяя положение поворотно-регулирующей заслонки ПРЗ-150 (поз. 1-8).

Если температура обратной воды увеличилась, увеличивается сопротивление термопреобразователя сопротивления типа ТСМ-1088 (поз. 1-11). Оно измеряется вторичным прибором типа ДИСК 250-1231 (поз. 1-12) и с него токовый сигнал подается на регулятор РС29.0.12 (поз.1-5). В нем формируется управляющий сигнал в соответствии с ПИ-законом регулирования. Этот сигнал усиливается усилителем У29.3М (поз. 1-6) и подается на исполнительный механизм типа МЭ0-40/10-0,25 (поз. 1-7), который уменьшает подачу топлива, изменяя положение поворотно-регулирующей заслонки ПРЗ-150 (поз. 1-8). Температура питательной воды сигнализируется.

7. Описание принципиальной электрической схемы

7.1 Описание работы принципиальной электрической схемы импульсной сигнализации водогрейного котла

Правильно построенные схемы обеспечивают четкую сигнализацию, способствуют предотвращению аварий и несчастных случаев. Схема сигнализации должна обеспечивать одновременную подачу светового и звукового сигналов, съем звукового сигнала, повторность срабатывания исполнительного устройства звуковой сигнализации после его отключения нажатием кнопочного выключателя; проверку исполнительного устройства сигнализаторов от одного кнопочного выключателя.

В проекте сигнализация осуществляется с помощью схемы импульсной сигнализации. Пусть, например, температура прямой воды стала выше допустимого значения, замыкается контакт Р1, загорается лампа ML1 и начинается заряжаться конденсатор C1. Импульс тока зарядки заставляет кратковременно сработать реле K2; контакт К2 (строка 4) включает реле К1. Контакт К1 (строка 3) ставит реле К1 на самоблокировку, а контакт К1 (строка 2) включит звонок НА. После импульса тока реле К2 обесточится и будет готово принять сигнал от других датчиков. Для отключения звонка необходимо нажать кнопочный выключатель SB2, реле К1 обесточиться и контакты К1 (строки 3 и 2) разомкнуться. Первый контакт предотвратит включение реле К1 после опускания выключателя SNB2, а второй выключит звонок. Для проверки исправности звонка и ламп нажимают кнопочный выключатель SB1. Резистор Р1 позволяет конденсатору C1 разрядиться при размыкании контакта Р1 с тем, чтобы цепь была готова вновь сработать при повторном замыкании контакта Р1. Диод UD1 предотвращает включение всех остальных ламп, кроме лампы HL1, если замкнется только контакт Р1. Диод VD2 служит для выпрямления тока. Лампа HL11 сигнализирует о наличии напряжения питания в схеме.


Автоматика безопасности предназначена для контроля за основными параметрами котла и отключения его при отклонении этих параметров за пределы допустимых значений. Действие защиты сводится к отсечке газа, подаваемого в топку котла, этим самым предотвращается возможное развитие аварии.

Пусть температура прямой воды стала выше заданного, контакт Р11 (строка 36) замыкается, под напряжением обмотка реле К3 (строка 36), оно срабатывает. Замыкается его контакт К3 (строка 44), под напряжением обмотка реле защиты К11 (строка 48), оно срабатывает. Контакт К11 (строка 54) размыкается, обмотка клапана отсекателя К12 (строка 54) обесточивается. Его затвор под действием собственного веса и возвратной пружины падает, прекращая подачу газа. Кнопка SB3 необходима для осуществления отсечки газа вручную, независимо от изменения параметра. Для остановки котла нажимают кнопку SB3, реле защиты К11 под напряжением, его контакт К11 (строка 54) размыкается, обмотка реле клапана-отсекателя К12 обесточивается, клапан закрывается, прекращая подачу. Если необходимо осуществить пуск котла независимо от изменения параметра, нажимают кнопку SB4, обмотка реле К12 под напряжением, сердечник втягивается, открывая клапан.

8. Расчеты автоматических устройств

8.1 Расчет сужающего устройства

При выборе типа сужающего устройства обычно руководствуются правилами:

Потери давления (энергетические потери) в сужающих устройствах увеличивается в определённой последовательности: труба Вентури, короткое сопло Вентури, сопло-диафрагма;

При прочих режимных условиях и одинаковых значениях mи Ар сопла позволяют измерять большие расходы потоков и обеспечивают более высокую точность измерения по сравнению с диафрагмами, особенно при малых значениях т;

В процессе эксплуатации диафрагмы закрепляются в большей степени, чем сопла и изменяют коэффициенты расхода, а, следовательно, площади поперечного сечения измерительного трубопровода у диска и степень притупления остроты кромки;

При выполнение расчётов стандартных сужающих устройств, связанных изменением расхода потоков, решают четыре задачи.

1. Определение диаметра d20 отверстие диафрагмы, сопла, сопла Вентури, если известны расходы потока, его физико-химические параметры и размеры цилиндрического участка трубопровода. В этом случае основанное уравнение расхода потока содержит три неизвестных а, ε, d20. Возможен путь последовательных приближений, при котором произвольное значение задаётся d, соответствующим какому либо стандартному значению т, определяют в первой приближении а, полотая ориентировочное значение ε по отношению Δp/р. Исходя из первого приближения а, находим коэффициент mи по таблице коэффициентов расхода, например, для диафрагмы с угловым отбором перепада давления, определяют соответствующее значение dyпри определенном числе Рейнольдса обычно при (Re=1000000) после постановки dyв управление расхода находят, а во втором приближении. Расчёт продолжают до тех пор, пока d20 не будет отличаться более чем на 0,1% .

2. 0пределение диаметра d20 отверстие сужающего устройства при свободном выборе предельного перепада давление Δрпр. Выбирает так, чтобы относительная площадь устройства mбыла невелика. При средних скоростях потоков измерительных трубопроводах 10-25м/с значения mдолжны соответствовать перепадом давления, лежащем в пределах 0,016-0,063 МПа.

Применение сужающего устройства с относительной m0,35 связью следующими преимуществами уменьшается средняя квадратическая относительная погрешность при большей области измерения измеряемых расходов потока и влияние шероховатости измерительных трубопроводов до 300 мм; сокращается длина прямых измерительных установок трубопровода.

3. Определение перепада давления Δр, создаваемого диафрагмой, соплом, соплом Вентури или трубой при определённом расходе потока для выбора необходимого манометра

4. Определения расхода потока по измеряемому перепаду давления на сужающем устройстве определяемого типа при известных конструктивных параметрах сужающего устройства измерительного трубопровода с учётом физико-химических показаний потока.

Исходные данные:

вещество – вода

абсолютное давление Р=3,5 кгс/см2

максимальный объемный расход Q0max=20м3/ч

минимальный объемный расход Q0min=10м3/ч

допустимая норма давления Рn=1 кгс/см2

имеющийся прямой участок трубы перед диафрагмой

Температура t=100С Расчет:

Из таблицы определяются необходимые для расчета плотность и динамическая вязкость ρ=999,7 кг/м3, μ=1,3077 .

Выбирается сужающее устройство – диафрагма.

Выбирается тип дифманометра – мембранный.

Определяется

максимальный массовый расход.

=20 · 999,7=19994 кг/ч

Из стандартного ряда чисел по максимальному расходу выбирается число большее заданного на 20-25% и принимается за максимальный расход при расчете

=25000 кг/ч

По одной из формул вычисляется число Рейнольдса, соответствующее максимальному расходу

Из графика определяется для каких модулей диафрагмы выполняется условие Remin>Reгр.

Из графика видно, что условие Remin>Reгр выполняется при m<0,31.

Определяется число mα для трех соседних ΔРHвзятых из стандартного ряда чисел по одной из формул.

,
- кг/ч

Дтр – мм, ΔРH– кгс/см2, ρ – кг/м2.

Таблица 1

ΔРH, кгс/м2 6300 10000 16000
0,344 0,253 0,200014
α 0,76 0,672 0,653
m 0,48 0,375 0,31
l1/Дтр 31 21 22,5
PH/ΔP 48,5 60 66,5
Pn, кгс/м2 3055,5 6000 10640

Для вычисления значений mαпо графику определяются величины mи αи заносятся в таблицу.

По значениям mиз графика потеря давления от установки диафрагмы и заносятся в таблицу. Из расчетной таблицы видно, что наиболее целесообразным является период давления на дифнамометре ΔРH=6300 кгс/м2, т.к. при этом располагаемый прямой участок трубопровода больше требуемого, потеря давления меньше допустимой и модуль близок к оптимальному.

Вычисляется диаметр отверстия диафрагмы:

Проводится проверка расчета по формуле:

Относительная погрешность при измерении расхода будет

Расчет выполнен верно, т.к. δ=2,6% и это не превышает допустимые 5%.

8.2 Расчет регулирующего клапана

Исполнительный механизм должен отвечать требованиям, выявленным при анализе принятого закона регулирования или управления системы, а также требованиям, определяющим совместную работу с выбранным регулирующим органом, т.е. должен удовлетворять требованиям заданных динамических и статических характеристик исполнительного устройства. Выбор исполнительного механизма производится на стадии проектирования системы регулирования в соответствии с конкретными условиями его работы. При этом исполнительный механизм должен:

1) обеспечивать необходимую скорость регулирования, определяемую динамикой системы;

2) обеспечивать линейную ходовую характеристику (статическую), т.е. постоянство коэффициента передачи по мощности во всем диапазоне изменения регулируемой величины, при этом ИМ не будет искажать выбранного закона регулирования;

3) сохранять равенство между перемещением выходного элемента и рабочим ходом затвора регулирующего органа. Если это равенство не выполняется, необходимо подобрать механическую связь между исполнительным механизмом и регулирующим органом. При этом коэффициент передачи связи должен быть учтен (как и всякого звена, входящего в систему автоматического регулирования).

При выборе исполнительных механизмов, кроме требований, предъявляемых системой регулирования, необходимо учитывать следующее:

1) желательно, чтобы виды энергии, создающей перестановочное усилие, и энергии командного сигнала от регулирующего блока системы были идентичны; в противном случае следует предусмотреть наличие соответствующих преобразователей;

2) ИМ должны применяться с учетом окружающих условий и иметь соответствующее исполнение (пыле-, брызго, - взрывозащищенное);

3) ИМ должны отвечать требованиям по энергетическим, эксплуатационным и экономическим показателям, а также требованиям надежности, предъявляемым в зависимости от степени ответственности регулируемой величины;

4) наименее важным фактором при выборе исполнительного механизма является его масса и габаритные размеры, однако в отдельных случаях эти показатели также следует учитывать, если этого требует специфика его применения.

Цель расчета: определение условной пропускаемой способности

; определение диаметра условного прохода Ду; выбор конкретного клапана.

Исходные данные:

вещество – вода

температура – 100С

внутренний диаметр трубы Дтр=50 мм

В состав автоматики котлов входит широкий спектр приборов КИПиА и другого оборудования. Среди предлагаемых нами средств котельной автоматики имеются:

  • приборы контроля пламени и управления розжигом . Это приборы котельной автоматики обеспечивающие безопасность работы котлов. Они контролируют наличие пламени в топке котла и отключают подачу топлива при пропадании факела, защищая котел от возможного взрыва. Наиболее популярными устройствами в этой области являются приборы котельной автоматики производства ОАО МЗТА: Ф34, ФДЧ, ФСП 1, ФЭСП 2
  • специализированные датчики измерения таги в топках котлов - тягомеры, напоромеры, тягонапоромеры . Эти приборы входят в состав КИПиА котельная автоматика. Они также используются для защиты котла. Кроме того, с их помощью ведется регулирование подачи топлива в котел для обеспечения обтимального режима его работы.
  • Графические панели управления , которые очень удобно использовать дляпри создании локальных систем автоматизации котельных.
  • контрольные электроды КЭ. Предназначены для работы в качестве чувствительного элемента в схемах защиты котлов и сигнализации комплектов автоматики котлов при погасании газового факела. Находят широкое применение в системах автоматизации котельных.
  • шкафы управления котлами. В этом разделе представлены готовые решения для автоматизации котлов и общекотельного оборудования. Имеются шкафы котловой автоматики для управления котлами типов ДЕ и ДКВР. Предлагаются средства комплексной автоматизации котельных .

Решения по автоматизации котлов и котельных

Примеры реализованных проектов автоматизации котлов и котельных можно посмотреть в разделе на данном сайте.

Программное обеспечение для автоматизации котлов и котельных

Для решения задач автоматизации котлов и котельный наиболее перспективным и проработанным является вертикально интегрированный и объектно ориентированный программный комплекс MasterSCADA . Для связи с контроллерами, не поддерживающими вертикальную интеграцию предлагается широкий набор OPC серверов как производства компании ИнСАТ, так и сторонних производителей, в частроности OPC серверы Kepware - одного из мировых лидеров в этой области.

Услуги по автоматизации котлов и котельных

Компания ИнСАТ может выполнить весь комплекс работ по внедрению систем управления и диспетчеризации любых объектов теплоэнергетиуи и ЖКХ. С перечнем оказываемых услуг можно познакомиться в разделе Услуги.


Анализ современных систем автоматизации котельных

Борисов Г.Б ., канд. техн. наук
ОАО «Московский завод тепловой автоматики»

В настоящее время существующий парк котельных активно обновляется и модернизируется, однако число требующих реконструкции объектов еще велико. В особенно удручающем состоянии находятся системы автоматизации.

Во многих регионах России износ газового оборудования, газоиспользующих установок, средств автоматизации котельных составляет 60...80 %, а по некоторым позициям, например автоматическим системам безопасности, в отдельных случаях может приближаться к 100 %.

Поскольку продолжительность эксплуатации оборудования существенно превысила запланированные сроки службы (по автоматическим системам безопасности в несколько раз), то особенно важным становится вопрос о дальнейшей безаварийной работе оборудования. Проблема усугубляется отсутствием запасных частей и комплектующих изделий, что крайне затрудняет поддержание оборудования в работоспособном состоянии. Разумеется, оптимальным решением судьбы изношенного оборудования была бы его полная замена на современное, однако из-за ограниченности средств этот вопрос часто решается с минимальными затратами: меняется только то, что уже больше не может работать.

Чтобы установить возможность дальнейшей эксплуатации технических средств котельной, необходимо провести диагностику оборудования. Для определения состояния котельной арматуры (секций, труб, задвижек и т.п.) существует несколько методов, например рентгеноскопический, позволяющий с достаточной степенью вероятности прогнозировать рэботоспособность указанного оборудования. Со средствами автоматики ситуация более тяжелая. Внедренная еще в 70-80-х годах прошлого века котельная автоматика кардинально не соответствует требованиям существующих на сегодняшний день СНиПов, ПБ и инструкций по безопасности .

Многие виды средств автоматики морально устарели и снимаются с производства. Не выполняются требования контроля герметичности газовых блоков, автоматического (без участия оператора) розжига горелок и котла, автоматического регулирования параметров. Такие системы часто работают в ручном режиме, что абсолютно недопустимо.

Таким образом, даже если тепломеханическая часть котельных может (при положительных результатах диагностики) эксплуатироваться дальше, то электрон­ные приборы автоматики однозначно нуждаются в за­мене. Отсутствие автоматики безопасности или ис­пользование ее устаревших конструкций нередко при­водит к тяжелым последствиям.

Экономический и социальный эффект внедрения средств автоматики

В современных рыночных условиях можно говорить об экономике безопасности. В результате снижения аварийности работы оборудования, оснащенного средствами автоматики безопасности, можно получить реальную выгоду. Денежные средства экономятся на штрафах, на ремонте оборудования и зданий, пострадавших от аварий, на компенсациях пострадавшему персоналу. Невосполнимыми остаются человеческие потери или утрата трудоспособности пострадавших от аварий людей. .

Благодаря применению современных технологий управления (интеллектуальные горелки, автоматическое ПИД-регулирование основных технологических параметров, частотное управление дымососом и вентилятором, коррекция соотношения топливо - воздух по содержанию кислорода в дымовых газах и др.) достигается снижение расхода топлива и электроэнергии. В условиях постоянного роста цен на энергоресурсы ло обеспечивает довольно быструю окупаемость новых средств автоматики.

Срок службы технологического оборудования можно увеличить с помощью усовершенствованных средств управления (например, автоматический пуск котла с функцией плавного прогрева) и современной автоматики безопасности, предотвращающей аварийные ситуации, приводящие к ускоренному износу оборудования.

Автоматическое регулирование основных технологических параметров и применение новейших горелок с микропроцессорным управлением позволяют оптимизировать процесс горения и снизить вредные выбросы окислов азота NOх. Соблюдение экологических норм приводит к экономии на денежных штрафах.

При комплексной автоматизации котлов радикально сокращается число трудоемких ручных операций (например, пуск котла вручную), появляется возможность управлять работой котельных без постоянного обслуживающего персонала. Раньше приходилось нанимать штат аварийных диспетчеров, которые посменно выполняли обход таких когельных. При организации удаленной центральной диспетчерской становится возможным оперативно наблюдать за состоянием целой сети подключенных к ней котельных и в случае необходимости направлять мобильные бригады для устранения неполадок в работе конкретного оборудования. Это позволяет сократить штат аварийных диспетчеров и обеспечить высокую оперативность реагирования на возникновение нештатных ситуаций.

Цели и задачи автоматизации паровых котлов

Первая и самая главная цель автоматизации - защита топливоиспользующего и котельного оборудования от возникновения аварийных ситуаций и обеспечение безопасности обслуживающего персонала. Именно поэтому этот класс приборов часто называют просто «автоматикой безопасности». Все остальные функции, несомненно, важны, но носят вторичный характер. Анализ аварий в котельных и на других газоиспользующих объектах показывает, что, в основном, они происходят при розжигах, а их причиной является так называемый человеческий фактор. Автоматика безопасности должна исключать подобные ситуации.

Вторая важная цель автоматизации - реализация алгоритмов энергоэффективного управления: поддержание оптимального разрежения, соотношения газ - воздух, давления пара и уровня воды. Паровой котел - это энергетическая установка, в процессе эксплуатации которой с высокой динамикой изменяются связанные между собой технологические параметры. Оптимизировать эти параметры по экономическим, экологическим, эргономическим и прочим показателям позволяет АСУ ТП . Поэтому главными задачами разработчиков, проектировщиков и наладчиков при создании описываемой системы являются:

  • обеспечение безопасного технологического режима котлов;
  • сокращение расходов топлива и электроэнергии;
  • увеличение срока службы технологического оборудования;
  • снижение вредных выбросов в атмосферу;
  • улучшение условий труда эксплуатационного персонала.

Функции шкафа автоматики

Автоматизированная система управления тепловыми процессами, реализованная в виде шкафа автоматики, позволяет решать следующие задачи:

  • автоматическая подготовка котла к розжигу;
  • автоматический розжиг горелок котла с переходом в режим минимальной мощности;
  • управление нагрузкой и оптимизация соотношения газ - воздух каждой из горелок котла;
  • управление тепловым режимом котла (регулирование разрежения в топке, расхода воздуха перед горелкой, уровня воды в баке);
  • автоматический останов котла (штатный и аварийный);
  • защита, сигнализация и блокировка работы котла при неисправностях;
  • обеспечение оперативного технологического персонала информацией о параметрах теплового режима и состоянии технологического оборудования (в том числе путем обмена информацией со станцией диспетчеризации).

Похожие публикации