Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Чем характеризуется вид и состояние глинистых грунтов. Пылевато-глинистых грунтов. Классификация песчаных грунтов по степени влажности

Сравнение естественной влажности грунта с влажностью на границе раскатывания позволяет устанавливать его состояние по показателю текучести

, (1.11)

по которому глинистые грунты подразделяются на следующие разновидности:

твердая...................
< 0

пластичная.............от 0 до 1 включительно

текучая....................>1

Суглинки и глины:

твердые................................
< 0

полутвердые........................от 0 до 0,25

тугопластичные..................от 0,25 до 0,5

мягкопластичные................от 0,5 до 0,75

текучепластичные...............от 0,75 до 1

текучие.................................>1

        Максимальная плотность и оптимальная влажность грунта

В процессе возведения земляных сооружений и планировки территорий приходится уплотнять грунты. При этом повышается прочность грунта, понижаются его водопроницаемость и капиллярность. Максимальная степень уплотнения необходима в верхних слоях насыпи, в которых возникают наибольшие напряжения от внешних нагрузок.

Степень уплотнения оценивается величиной коэффициента уплотнения. Уплотняя грунты с разной влажностью одной и той же работой уплотнения, получают различные значения величины плотности сухого грунта. Влажность, при которой достигается максимальная плотность сухого грунта
при стандартном уплотнении, называетсяоптимальной W opt .

В лабораторных условиях W opt и
определяют, используя прибор Союздорнии (рис. 1.7). Метод заключается в установлении зависимости плотности сухого грунта от его влажности при уплотнении образцов грунта с постоянной работой уплотнения и последовательном увеличении влажности грунта. Проводят не менее 5 – 6 опытов при разной влажности грунтов. Грунт уплотняют в стакане прибора послойно ударами груза массой 2,5 кг, падающего с высоты 30 см. Каждый слой грунта (всего 3 слоя) уплотняют 40 ударами. После уплотнения в каждом опыте определяюти
и строят график зависимости
(рис. 1.8).

По графику определяют влажность, при которой стандартным уплотнением достигается максимальная плотность сухого грунта
. Степень уплотнения земляного сооружения оценивается величиной коэффициента уплотнения

, (1.12)

где
– коэффициент уплотнения грунта земляного сооружения;– плотность сухого грунта;
– максимальная плотность того же сухого грунта при стандартном уплотнении. Величина
задается проектом земляного сооружения в диапазоне от 0,92 до 1,00.

Контрольные вопросы

1.Определение грунта по ГОСТ 25100-95.

2.Какие существуют генетические типы континентальных отложений?

3.Из чего состоят грунты?

4.Что понимается под структурой и текстурой грунта?

5.Каковы особенности глинистых минералов?

6.В каком виде в грунтах встречается вода?

7.Какие структурные связи существуют в грунтах?

8.Каковы размеры крупнообломочных, песчаных, пылеватых и глинистых частиц?

9.Что называется гранулометрическим составом грунта?

10.Как определить коэффициент неоднородности грунта?

11.Какие физические характеристики грунта являются основными?

12.Как классифицируются песчаные грунты?

13.Что называется числом пластичности?

14.Как классифицируются связные грунты?

15.Что такое показатель текучести? В каких пределах он изменяется?

16.Для чего служит метод стандартного уплотнения грунта?

Если в грунте содержится достаточно большое количество глинистых частиц, то он называется глинистым. Глинистые грунты обладают свойством связанности, которое выражается в способности грунта сохранять форму благодаря наличию глинистых частиц.
Если глинистых частиц немного (меньше 10% по весу), грунт называют супесью . Супесь обладает небольшой связанностью и часто практически не отличается от песка. Супесь трудно скатать в жгут или шарик. Если супесь растереть на влажной ладони, то можно увидеть частицы песка, после стряхивания грунта на ладони видны следы от глинистых частиц. Комки супеси в сухом состоянии легко рассыпаются и крошатся от удара. Супесь непластична, в ней преобладают песчаные частицы, почти не скатываются в жгут. Шар, скатанный из увлажненного грунта, при легком давлении рассыпается.
Грунт, в котором содержание глинистых частиц достигает 30% от веса, называют суглинком . Суглинок обладает большей связанностью, чем супесь и способен сохраняться в крупных кусках, не распадаясь на мелкие кусочки. Куски супеси в сухом состоянии менее тверды, чем глина. При ударе рассыпаются на мелкие куски. Во влажном состоянии мало пластичны. При растирании чувствуются песчаные частицы, комки раздавливаются легче, присутствуют более крупные песчинки на фоне более мелкого песка. Жгут, раскатанный из сырого грунта, получается коротким. Шар, скатанный из увлажненного грунта, при нажатии образует лепешку с трещинами по краям.
При содержании в грунте глинистых частиц больше 30%, грунт называют глиной . Глина имеет большую связанность.Глина в сухом состоянии — твердая, во влажном — пластичная, вязкая, прилипает к пальцам. При растирании пальцами песчаных частиц не чувствуется, раздавить комки очень трудно. Если кусок сырой глины разрезать ножом, то срез имеет гладкую поверхность, на которой не видно песчинок. При сдавливании шарика, скатанного из сырой глины , получается лепёшка, края которой не имеют трещин.
Наибольшее влияние на свойства глинистых грунтов оказывает присутствие глинистых частиц, поэтому грунты принято классифицировать по содержанию глинистых частиц и числом пластичности. Число пластичности I p — разность влажностей, соответствующая двум состояниям грунта: на границе текучести W L и на границе раскатывания W p , W L и W p определяют по ГОСТ 5180.
Таблица 1. Классификация глинистых грунтов по содержанию глинистых частиц.

Большинство глинистых грунтов в природных условиях в зависимости от содержания в них воды могут находиться в различном состоянии. Строительный стандарт (ГОСТ 25100-95 Классификация грунтов) определяет классификацию глинистых грунтов в зависимости от их плотности и влажности. Состояние глинистых грунтов характеризует показатель текучести I L — отношение разности влажностей, соответствующих двум состояниям грунта: естественному W и на границе раскатывания W p , к числу пластичности I p . В таблице2 приведена классификация глинистых грунтов по показателю текучести.
Таблица 2. Классификация глинистых грунтов по показателю текучести.

По гранулометрическому составу и числу пластичности I p глинистые группы подразделяют согласно таблице 3.
Таблица 3.

Разновидность глинистых грунтов Число пластичности
I p
Содержание песчаных
Частиц (2-0,5мм), % по массе
Супеси:
— песчанистая 1 — 7 50
— пылеватая 1 — 7 < 50
Суглинок:
— легкий песчанистый 7 -12 40
— легкий пылеватый 7 – 12 < 40
— тяжелый песчанистый 12 – 17 40
— тяжелый пылеватый 12 – 17 < 40
Глина:
— легкая песчанистая 17 – 27 40
— легкая пылеватая 17 — 27 < 40
— тяжелая > 27 Не регламентируется

По наличию твердых включений глинистые грунты подразделяют согласно таблице 4.

Таблица 4. Содержание твердых частиц в глинистых грунтах.

В таблице 5 приведены способы, с помощью которых можно визуально определить характеристики глинистых грунтов.
Таблица 5. Определение механического состава глинистых грунтов.

Среди глинистых грунтов должны быть выделены:
грунт заторфованный;
просадочные грунты;
набухающие (пучинистые) грунты.
Грунт заторфованный – песок и глинистый грунт, содержащий в своем составе в сухой навеске от 10 до 50 % (по массе) торфа.
По относительному содержанию органического вещества Ir глинистые грунты и пески подразделяют согласно таблице 6.
Таблица 6.

Грунт набухающий — грунт, который при замачивании водой или другой жидкостью увеличивается в объеме и имеет относительную деформацию набухания (в условиях свободного набухания) больше 0,04.
Грунт просадочный — грунт, который под действием внешней нагрузки и собственного веса или только от собственного веса при замачивании водой или другой жидкостью претерпевает вертикальную деформацию (просадку) и имеет относительную деформацию просадки e sl ³ 0,01.
Грунт пучинистый — дисперсный грунт, который при переходе из талого в мерзлое состояние увеличивается в объеме вследствие образования кристаллов льда и имеет относительную деформацию морозного пучения e fn ³ 0,01.
По относительной деформации набухания без нагрузки e sw глинистые грунты подразделяют согласно таблице 7.
Таблица 7.

По относительной деформации просадочности e sl глинистые грунты подразделяют согласно таблице 8.
Таблица 8.

Число пластичности и показатель текучести пылевато-глинистого грунта.

Для пылевато-глинистых грунтов первостепенное значение имеет не общий зерновой (гранулометрический) состав, а содержание мелких и мельчайших частиц (плоскочешуйчатых или тонкоигольчатых мономинеральных частиц размером не менее 0,005 мм ) и, главное, диапазон влажности, в котором грунт будет пластичным.

Этот диапазон влажности характеризуется так называемым числом пластичности J Р и равен разности между двумя влажностями, соответствующими двум состояниям грунта: на границе текучести W L и на границе раскатывания (пластичности) W P:

J Р = W L – W P .

Граница текучести W L соответствует влажности, при которой грунт переходит в текучее состояние, а граница раскатывания W P – влажности, при которой грунт теряет свою пластичность.

В зависимости от числа пластичности выделяются три типа пылевато-глинистых грунтов: супесь , суглинок и глина (таблица 2 ГОСТ 25100-82).

Характерные влажности достаточно хорошо определяют физическое состояние пылевато-глинистых грунтов, которое в зависимости от содержания воды меняется в значительных пределах и может быть твердым, пластичным и текучим. Характеристикой состояния является консистенция, под которой понимается густота и в известной мере вязкость глинистых грунтов, обуславливающие их способность сопротивляться пластическому изменению формы. Числовой характеристикой консистенции является показатель текучести – J L , определяющий выражением

где W – влажность грунта в естественном состоянии.

Разновидность пылевато-глинистых грунтов по показателю текучести определяется по таблице 2 ГОСТ 25100-82.

Показателем текучести пользуются при выборе глубины заложения фундаментов, определении условного расчетного давления на грунты оснований по таблицам СНиП и в других случаях.

Необходимое оборудование и материалы:

o грунт (сухой и влажный);

o эксикатор, шпатель (нож);

o колба с водой, бюксы – 2 шт;

o балансирный конус;

o стандартный металлический стаканчик с подставкой;

o технический вазелин, чашка;

o весы с разновесами.

Подготовительные работы

Проба грунта была высушена до воздушно-сухого состояния, размельчена в фарфоровой ступке пестиком с резиновым наконечником и просеяна через сито с отверстиями 1 мм . Часть грунта была увлажена водой до состояния густого теста при перемешивании шпателем и выдержана в эксикаторе не менее 2 часов для равномерного распределения влаги.

Определение границы текучести

Граница текучести характеризуется влажностью (в долях единицы) грунтового теста, при которой стандартный конус погружается в него под собственным весом на глубину 10 мм за 5 секунд . Определение границы текучести и состоит в подборе такой влажности грунта.

Балансирный конус (рис. 3) с углом при вершине 30 °С имеет на расстоянии 10 мм от острия круговую риску. К основанию конуса прикреплено балансирное устройство в виде двух металлических грузов на концах стального прута. Общий вес прибора составляет 76 г .

Рисунок 3 - Приборы для определения границы текучести

Ход работы:

1. Грунтовое тесто тщательно перемешивают шпателем и укладывают небольшими порциями (без образования пустот) в металлический стаканчик; поверхность грунта выравнивают шпателем в уровень с краями стаканчика, который затем устанавливают на подставку.

2. К поверхности грунта подносят острие конуса, смазанное тонким слоем вазелина, и опускают, позволяя ему погрузиться в грунт в течение 5 с под собственным весом.

3. Погружение конуса за 5 сек на глубину менее 10 мм показывает, что влажность грунта еще не достигла границы текучести. В этом случае грунтовое тесто перекладывают в чашку и после добавления воды и тщательного перемешивания повторяют опыт. Если конус погрузился в глубину более 10 мм , следует добавить сухого грунта, перемешать его и повторить опыт.

Пылевато-глинистые грунты в зависимости от количества содержащейся в них воды могут иметь консистенцию (густоту теста) от твердой до текучей. Для определения консистенции находят характерные влажности пылевато-глинистых грунтов, которые называются границей раскатывания и границей текучести .

Границей раскатывания называется влажность грунта, при которой он теряет способность раскатываться в шнур диаметром 2..3 мм.

Границей текучести называется влажность грунта, при которой стандартный конус погружается в образец на глубину 10 мм.

Рис. 1.4. Определение границы раскатывания грунтов

Числом пластичности грунта называется разность между границей текучести и границей раскатывания:

(1.18)

Консистенция пылевато-глинистого грунта оценивается по показателю текучести :

(1.19)

Таблица 1.5. Состояние глин и суглинков

Для супесей вследствие малой точности определения значений и различают только три состояния: твердое, пластичное и текучее.

Таблица 1.6. Состояние супесей

В группе пылевато-глинистых грунтов выделяются лессовые грунты и илы - обладают специфическими неблагоприятными свойствами.

Лессовые грунты содержат более 50% пылеватых частиц с наличием солей, в основном карбоната кальция, обладают преимущественно макропористой структурой и относятся к категории структурно-неустойчивых просадочных грунтов. Просадкой называется быстро развивающаяся осадка, вызванная резким изменением структуры грунта. Значительные осадки при нарушении структуры просадочных грунтов обусловлены тем, что в природных условиях они бывают недоуплотненными. В процессе их образования не происходит полного уплотнения от действия собственного веса вследствие образования новых структурных связей. Такие грунты становятся макропористыми и при некоторых внешних воздействиях (замачивание, вибрация), разрушающих возникшие связи, могут доуплотняться, что вызывает их значительные осадки. Возможность проявления просадочных свойств грунтов предварительно оценивается степенью их влажности и показателем просадочности , который определяется по формуле:

где: е - коэффициент пористости природного грунта; - коэффициент пористости, соответствующий влажности на границе текучести (1.16).

Похожие публикации