Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Числа. Целые числа. Свойства целых чисел. Составление системы уравнений

Целые числа - это натуральные числа , а также противоположные им числа и нуль.

Целые числа — расширение множества натуральных чисел N , которое получается путем добавления к N 0 и отрицательных чисел типа − n . Множество целых чисел обозначают Z .

Сумма , разность и произведение целых чисел дают снова целые числа, т.е. целые числа составляют кольцо относительно операций сложения и умножения.

Целые числа на числовой оси:

Сколько целых чисел? Какое количество целых чисел? Самого большого и самого маленького целого числа нет. Этот ряд бесконечен. Наибольшее и наименьшее целое число не существует.

Натуральные числа еще называются положительными целыми числами , т.е. фраза «натуральное число» и «положительное целое число» это одно и то же.

Ни обыкновенные, ни десятичные дроби не являются целыми числами. Но существуют дроби с целыми числами.

Примеры целых чисел: -8, 111, 0, 1285642, -20051 и так далее.

Говоря простым языком, целые числа - это (∞... -4,-3,-2,-1,0,1,2,3,4...+ ∞) - последовательность целых чисел. То есть те, у которых дробная часть ({}) равна нулю. Они не имеют долей.

Натуральные числа - это целые, положительные числа. Целые числа, примеры : (1,2,3,4...+ ∞).

Операции над целыми числами.

1. Сумма целых чисел.

Для сложения двух целых чисел с одинаковыми знаками, необходимо сложить модули этих чисел и перед суммой поставить итоговый знак.

Пример:

(+2) + (+5) = +7.

2. Вычитание целых чисел.

Для сложения двух целых чисел с разными знаками, необходимо из модуля числа, которое больше вычесть модуль числа, которое меньше и перед ответом поставить знак большего числа по модулю.

Пример:

(-2) + (+5) = +3.

3. Умножение целых чисел.

Для умножения двух целых чисел, необходимо перемножить модули этих чисел и перед произведением поставить знак плюс (+), если исходные числа были одного знака, и минус (-) - если разного.

Пример:

(+2) ∙ (-3) = -6.

Когда умножаются несколько чисел, знак произведения будет положительным, если число неположительных сомножителей чётное, и отрицателен, если нечётное.

Пример:

(-2) ∙ (+3) ∙ (-5) ∙ (-3) ∙ (+4) = -360 (3 неположительных сомножителя).

4. Деление целых чисел.

Для деления целых чисел, необходимо поделить модуль одного на модуль другого и поставить перед результатом знак «+», если знаки чисел одинаковые, и минус, - если разные.

Пример:

(-12) : (+6) = -2.

Свойства целых чисел.

Z не замкнуто относительно деления 2-х целых чисел (например, 1/2 ). Ниже приведенная таблица показывает некоторые основные свойства сложения и умножения для любых целых a, b и c .

Свойство

сложение

умножение

замкнутость

a + b — целое

a × b — целое

ассоциативность

a + (b + c ) = (a + b ) + c

a × (b × c ) = (a × b ) × c

коммутативность

a + b = b + a

a × b = b × a

существование

нейтрального элемента

a + 0 = a

a × 1 = a

существование

противоположного элемента

a + (−a ) = 0

a ≠ ±1 1/a не является целым

дистрибутивность

умножения относительно

сложения

a × (b + c ) = (a × b ) + (a × c )

Из таблицы можно сделать вывод, что Z - это коммутативное кольцо с единицей относительно сложения и умножения.

Стандартное деление не существует на множестве целых чисел, но есть т.н деление с остатком : для всяких целых a и b , b≠0 , есть один набор целых чисел q и r , что a = bq + r и 0≤r<|b| , где |b| — абсолютная величина (модуль) числа b . Здесь a — делимое, b — делитель, q — частное, r — остаток.

Отрицательные числа располагаются слева от нуля . Для них, как и для положительных чисел, определено отношение порядка , позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля: n + (− n ) = 0 . Оба числа называются противоположными друг для друга. Вычитание целого числа a равносильно сложению с противоположным для него: -a .

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М.: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе . - М.: Просвещение, 1964. - 376 с.

Ссылки

Wikimedia Foundation . 2010 .

  • Отрицательные формы рельефа
  • Отрицательный и положительный нуль

Смотреть что такое "Отрицательные числа" в других словарях:

    Отрицательные числа - действительные числа, меньшие нуля, например 2; 0,5; π и т. п. См. Число … Большая советская энциклопедия

    Положительные и отрицательные числа - (величины). Результат последовательных сложений или вычитаний не зависит от порядка, в котором эти действия производятся. Напр. 10 5 + 2 = 10 +2 5. Здесь переставлены не только числа 2 и 5, но и знаки, стоящие перед этими числами. Согласились… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    числа отрицательные - Числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами. Тематики бухгалтерский учет … Справочник технического переводчика

    ЧИСЛА, ОТРИЦАТЕЛЬНЫЕ - числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами … Большой бухгалтерский словарь

    Целые числа - Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из… … Википедия

    Натуральные числа - числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… … Википедия

    ЭЙЛЕРОВЫ ЧИСЛА - коэффициенты Е n в разложении Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е 1)n=0, E0 =1. При этом Е 2п+1=0, E4n положительные, E4n+2 отрицательные целые числа для всех n=0, 1, . . .; E2= 1, E4=5, E6=61, E8=1385 … Математическая энциклопедия

    Отрицательное число - Отрицательное число элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате… … Википедия

    История арифметики - Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Арифметика - Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Книги

  • Математика. 5 класс. Учебная книга и практикум. В 2 частях. Часть 2. Положительные и отрицательные числа , . Учебная книга и практикум для 5 класса входят в состав УМК по математике для 5-6 классов, разработанного авторским коллективом под руководством Э. Г. Гельфман и М. А. Холодной в рамках…

В названиях арабских чисел каждая цифра принадлежит своему разряду, а каждые три цифры образуют класс. Таким образом, последняя цифра в числе обозначает количество единиц в нем и называется, соответственно, разрядом единиц. Следующая, вторая с конца, цифра обозначает десятки (разряд десятков), и третья с конца цифра указывает на количество сотен в числе – разряд сотен. Дальше разряды точно также по очереди повторяются в каждом классе, обозначая уже единицы, десятки и сотни в классах тысяч, миллионов и так далее. Если число небольшое и в нем нет цифры десятков или сотен, принято принимать их за ноль. Классы группируют цифры в числах по три, нередко в вычислительных приборах или записях между классами ставится точка или пробел, чтобы визуально разделить их. Это сделано для упрощения чтения больших чисел. Каждый класс имеет свое название: первые три цифры – это класс единиц, далее идет класс тысяч, затем миллионов, миллиардов (или биллионов) и так далее.

Поскольку мы пользуемся десятичной системой исчисления, то основная единица измерения количества – это десяток, или 10 1 . Соответственно с увеличением количества цифр в числе, увеличивается и количество десятков 10 2 ,10 3 ,10 4 и т.д. Зная количество десятков можно легко определить класс и разряд числа, например, 10 16 – это десятки квадриллионов, а 3×10 16 – это три десятка квадриллионов. Разложение чисел на десятичные компоненты происходит следующий образом – каждая цифра выводится в отдельное слагаемое, умножаясь на требуемый коэффициент 10 n , где n – положение цифры по счет слева направо.
Например: 253 981=2×10 6 +5×10 5 +3×10 4 +9×10 3 +8×10 2 +1×10 1

Также степень числа 10 используется и в написании десятичных дробей : 10 (-1) – это 0,1 или одна десятая. Аналогичным образом с предыдущим пунктом, можно разложить и десятичное число, n в таком случае будет обозначать положение цифры от запятой справа налево, например: 0,347629= 3×10 (-1) +4×10 (-2) +7×10 (-3) +6×10 (-4) +2×10 (-5) +9×10 (-6)

Названия десятичных чисел. Десятичные числа читаются по последнему разряду цифр после запятой, например 0,325 – триста двадцать пять тысячных, где тысячные – это разряд последней цифры 5 .

Таблица названий больших чисел, разрядов и классов

1-й класс единицы 1-й разряд единицы
2-й разряд десятки
3-й разряд сотни
1 = 10 0
10 = 10 1
100 = 10 2
2-й класс тысячи 1-й разряд единицы тысяч
2-й разряд десятки тысяч
3-й разряд сотни тысяч
1 000 = 10 3
10 000 = 10 4
100 000 = 10 5
3-й класс миллионы 1-й разряд единицы миллионов
2-й разряд десятки миллионов
3-й разряд сотни миллионов
1 000 000 = 10 6
10 000 000 = 10 7
100 000 000 = 10 8
4-й класс миллиарды 1-й разряд единицы миллиардов
2-й разряд десятки миллиардов
3-й разряд сотни миллиардов
1 000 000 000 = 10 9
10 000 000 000 = 10 10
100 000 000 000 = 10 11
5-й класс триллионы 1-й разряд единицы триллионов
2-й разряд десятки триллионов
3-й разряд сотни триллионов
1 000 000 000 000 = 10 12
10 000 000 000 000 = 10 13
100 000 000 000 000 = 10 14
6-й класс квадриллионы 1-й разряд единицы квадриллионов
2-й разряд десятки квадриллионов
3-й разряд десятки квадриллионов
1 000 000 000 000 000 = 10 15
10 000 000 000 000 000 = 10 16
100 000 000 000 000 000 = 10 17
7-й класс квинтиллионы 1-й разряд единицы квинтиллионов
2-й разряд десятки квинтиллионов
3-й разряд сотни квинтиллионов
1 000 000 000 000 000 000 = 10 18
10 000 000 000 000 000 000 = 10 19
100 000 000 000 000 000 000 = 10 20
8-й класс секстиллионы 1-й разряд единицы секстиллионов
2-й разряд десятки секстиллионов
3-й разряд сотни секстиллионов
1 000 000 000 000 000 000 000 = 10 21
10 000 000 000 000 000 000 000 = 10 22
1 00 000 000 000 000 000 000 000 = 10 23
9-й класс септиллионы 1-й разряд единицы септиллионов
2-й разряд десятки септиллионов
3-й разряд сотни септиллионов
1 000 000 000 000 000 000 000 000 = 10 24
10 000 000 000 000 000 000 000 000 = 10 25
100 000 000 000 000 000 000 000 000 = 10 26
10-й класс октиллион 1-й разряд единицы октиллионов
2-й разряд десятки октиллионов
3-й разряд сотни октиллионов
1 000 000 000 000 000 000 000 000 000 = 10 27
10 000 000 000 000 000 000 000 000 000 = 10 28
100 000 000 000 000 000 000 000 000 000 = 10 29

Если к ряду натуральных чисел приписать слева число 0, то получится ряд положительных целых чисел :

0, 1, 2, 3, 4, 5, 6, 7, ...

Целые отрицательные числа

Рассмотрим небольшой пример. На рисунке слева изображён термометр, который показывает температуру 7° тепла. Если температура понизится на 4°, то термометр будет показывать 3° тепла. Уменьшению температуры соответствует действие вычитания:

Если температура понизится на 7°, то термометр будет показывать 0°. Уменьшению температуры соответствует действие вычитания:

Если же температура понизится на 8°, то термометр покажет -1° (1° мороза). Но результат вычитания 7 - 8 нельзя записать с помощью натуральных чисел и нуля.

Проиллюстрируем вычитание на ряде целых положительных чисел:

1) От числа 7 отсчитаем влево 4 числа и получим 3:

2) От числа 7 отсчитаем влево 7 чисел и получим 0:

Отсчитать в ряду положительных целых чисел от числа 7 влево 8 чисел нельзя. Чтобы действие 7 - 8 стало выполнимым, расширим ряд положительных целых чисел. Для этого влево от нуля запишем (справа налево) по порядку все натуральные числа, добавляя к каждому из них знак - , показывающий, что это число стоит слева от нуля.

Записи -1, -2, -3, ... читают минус 1 , минус 2 , минус 3 и т. д.:

5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

Полученный ряд чисел называют рядом целых чисел . Точки слева и справа в этой записи означают, что ряд можно продолжать неограниченно вправо и влево.

Справа от числа 0 в этом ряду расположены числа, которые называют натуральными или целыми положительными (кратко - положительными ).

Слева от числа 0 в этом ряду расположены числа, которые называют целыми отрицательными (кратко - отрицательными ).

Число 0 целое, но не является ни положительным, ни отрицательным числом. Оно разделяет положительные и отрицательные числа.

Следовательно, ряд целых чисел состоит из целых отрицательных чисел, нуля и целых положительных чисел .

Сравнение целых чисел

Сравнить два целых числа - значит узнать какое из них больше, какое меньше, или определить, что числа равны.

Сравнивать целые числа можно с помощью ряда целых чисел, так как числа в нём расположены от меньшего к большему, если двигаться по ряду слева направо. Поэтому в ряду целых чисел можно заменить запятые на знак меньше:

5 < -4 < -3 < -2 < -1 < 0 < 1 < 2 < 3 < 4 < 5 < ...

Следовательно, из двух целых чисел больше то число, которое в ряду стоит правее, и меньше то, которое стоит левее , значит:

1) Любое положительное число больше нуля и больше любого отрицательного числа:

1 > 0; 15 > -16

2) Любое отрицательное число меньше нуля:

7 < 0; -357 < 0

3) Из двух отрицательных чисел больше то, которое в ряду целых чисел стоит правее.

Содержание статьи

Понятие числа в математике может относиться к объектам различной природы: натуральным числам, используемым при счете (положительным целым числам 1, 2, 3 и т.д.), числам, являющимся возможными результатами (идеализированных) измерений (это такие числа, как 2/3, – их называют действительными числами), отрицательным числам, мнимым числам (скажем, к ) и к другим более абстрактным классам чисел, используемым в высших разделах математики (например, к гиперкомплексным и трансфинитным числам). Число необходимо отличать от его символа, или обозначения, которое его представляет. Мы рассмотрим логические отношения между различными классами чисел.

Такие загадки легко разрешаются, если принять во внимание, что различные классы чисел имеют совершенно различный смысл; хотя у них достаточного много общего, чтобы их всех можно было называть числами, не следует думать, что все они будут удовлетворять одним и тем же правилам.

Положительные целые числа.

Хотя мы все усваиваем положительные целые числа (1, 2, 3 и т.д.) в раннем детстве, когда вряд ли приходит в голову задумываться об определениях, тем не менее такие числа могут быть определены по всем правилам формальной логики. Строгое определение числа 1 заняло бы не один десяток страниц, а формула типа 1 + 1 = 2, если записать ее во всех подробностях без каких-либо сокращений, протянулась бы на несколько километров. Однако любая математическая теория вынуждена начинаться с некоторых неопределяемых понятий и аксиом или постулатов относительно них. Так как положительные целые числа хорошо известны и трудно определить их с помощью чего-то более простого, мы примем их за исходные неопределяемые понятия и будем считать, что основные свойства этих чисел известны.

Отрицательные целые числа и нуль.

Отрицательные числа в наши дни вещь обыденная: их используют, например, для того, чтобы представить температуру ниже нуля. Поэтому кажется удивительным, что еще несколько столетий назад какой-либо конкретной интерпретации отрицательных чисел не было, а возникающие по ходу вычислений отрицательные числа назывались «воображаемыми». Несмотря на то, что интуитивная интерпретация отрицательных чисел сама по себе полезна, пытаясь понять такие «правила», как (–4)ґ(–3) = +12, мы должны определить отрицательные числа с помощью положительных. Для этого нам нужно построить множество таких математических объектов, которые будут вести себя в арифметике и алгебре именно так, как можно было бы ожидать от отрицательных чисел. Один из способов построить такое множество состоит в рассмотрении упорядоченных пар положительных чисел (a ,b ). «Упорядоченность» означает, что, например, пара (2,3) отлична от пары (3,2). Такие упорядоченные пары можно рассматривать как новый класс чисел. Теперь мы должны сказать, когда два таких новых числа равны и что означает их сложение и умножение. Наш выбор определений обусловлен желанием, чтобы пара (a ,b ) действовала как разность (a b ), которая пока что определена, лишь когда a больше b . Так как в алгебре (a – b ) + (c – d ) = (a + c ) – (b + d ), мы приходим к необходимости определить сложение новых чисел как (a ,b ) + (c ,d ) = (a + c , b + d ); т.к. (a b )ґ(c d ) = ac + bd – (bc + ad ), мы определяем умножение равенством (a ,b )ґ(c ,d ) = (ac + bd , bc + ad ); а так как (a – b ) = (c – d ), если a + d = b + c , мы определяем равенство новых чисел соотношением (a ,b ) = (c ,d ), если a + d = b + c . Таким образом,

Используя определения равенства пар, можно записать сумму и произведение пар в более простом виде:

Все пары (a ,a ) равны (по определению равенства пар) и действуют так, как по нашим ожиданиям должен действовать нуль . Например, (2,3) + (1,1) = (3,4) = (2,3); (2,3)ґ(1,1) = (2 + 3, 2 + 3) = (5,5) = (1,1). Пары (a ,a ) мы можем обозначить символом 0 (который до сих пор не использовали).

Пары (a ,b ), где b больше a , ведут себя так, как должны были бы действовать отрицательные числа, и мы можем обозначить пару (a ,b ) символом –(b a ). Например, -4 – это (1,5), а -3 – это (1,4); (–4)ґ(–3) = (21,9), или (13,1). Последнее число хотелось бы обозначить как 12, но это заведомо не то же самое, что положительное целое число 12, поскольку обозначает пару положительных целых чисел, а не одно положительное целое число. Необходимо подчеркнуть, что поскольку пары (a ,b ), где b меньше a , действуют как положительные целые числа (a b ), мы будем записывать такие числа как (a b ). При этом надо забыть о положительных целых числах, с которых мы начали, и впредь пользоваться только нашими новыми числами, которые назовем целыми числами . То, что мы намереваемся использовать старые названия для некоторых новых чисел, не должно вводить в заблуждение относительно того, что в действительности новые числа представляют собой объекты иного рода.

Дроби.

Интуитивно мы представляем себе дробь 2/3 как результат разбиения 1 на три равные части и взятия двух из них. Однако математик стремится как можно меньше полагаться на интуицию и определять рациональные числа через более простые объекты – целые числа. Это можно сделать, если 2/3 рассматривать как упорядоченную пару (2,3) целых чисел. Для завершения определения необходимо сформулировать правила равенства дробей, а также сложения и умножения. Разумеется, эти правила должны быть эквивалентны правилам арифметики и, естественно, отличаться от правил для тех упорядоченных пар, которые мы определили как целые числа. Вот эти правила:

Нетрудно видеть, что пары (a ,1) действуют как целые числа a ; продолжая рассуждать так же, как в случае отрицательных чисел, мы обозначим через 2 дробь (2,1), или (4,2), или любую другую дробь, равную (2,1). Забудем теперь о целых числах и сохраним их лишь как средство записи определенных дробей.

Рациональные и иррациональные числа.

Дроби принято также называть рациональными числами, так как они представимы в виде отношений (от лат. ratio – отношение) двух целых чисел. Но если нам потребуется число, квадрат которого равен 2, то мы не сможем обойтись рациональными числами, т.к. не существует рационального числа, квадрат которого равен 2. То же самое выяснится, если поинтересоваться числом, выражающим отношение длины окружности к ее диаметру. Следовательно, если мы хотим получить квадратные корни из всех положительных чисел, то нам необходимо расширить класс рациональных чисел. Новые числа, называемые иррациональными (т.е. не рациональными), можно определять различными способами. Упорядоченные пары для этого не годятся; один из простейших способов состоит в том, чтобы определить иррациональные числа как бесконечные непериодические десятичные дроби.

Действительные числа.

Рациональные и иррациональные числа вместе называются действительными или вещественными числами. Геометрически их можно представить точками на прямой, при этом дроби оказываются в промежутках между целыми числами, а иррациональные числа – в промежутках между дробями, как показано на рис. 1. Можно показать, что система действительных чисел обладает свойством, известным как «полнота» и означающим, что каждой точке на прямой соответствует некоторое действительное число.

Комплéксные числа.

Так как квадраты положительных и отрицательных действительных чисел положительны, на прямой действительных чисел нет точки, соответствующей числу, квадрат которого был бы равен -1. Но если бы мы попытались решать квадратные уравнения типа x 2 + 1 = 0, то необходимо было бы поступать так, как если бы существовало некоторое число i , квадрат которого был бы равен -1. Но поскольку такого числа нет, нам не остается ничего другого, как воспользоваться «воображаемым», или «мнимым», числом. Соответственно, «число» i и его комбинации с обычными числами (типа 2 + 3i ) стали называться мнимыми. Современные математики предпочитают называть такие числа «комплéксными», поскольку они, как мы увидим, столь же «реальны», как и те, с которыми нам уже доводилось встречаться раньше. Долгое время математики свободно пользовались мнимыми числами и получали полезные результаты, хотя не до конца понимали то, что они делали. И до начала 19 в. никому и в голову не приходило «оживить» мнимые числа с помощью их явного определения. Для этого нужно построить некоторую совокупность математических объектов, которые с точки зрения алгебры вели бы себя как выражения a + bi , если условиться, что i 2 = –1. Такие объекты можно определить следующим образом. Рассмотрим в качестве наших новых чисел упорядоченные пары действительных чисел, сложение и умножение которых определяется формулами:

Назовем такие упорядоченные пары комплéксными числами. Пары частного вида (a ,0) со вторым членом, равным нулю, ведут себя как действительные числа, поэтому мы условимся обозначать их так же: например, 2 означает (2,0). С другой стороны, комплексное число (0,b ) по определению умножения обладает свойством (0,b )ґ(0,b ) = (0 – b 2 , 0 + 0) = (–b 2 ,0) = –b 2 . Например, в случае (0,1)ґ(0,1) мы находим произведение (-1,0); следовательно, (0,1) 2 = (–1,0). Мы уже условились записывать комплексное число (-1,0) как -1, поэтому если число (0,1) обозначить символом i , то мы получим комплексное число i , такое, что i 2 = –1. Кроме того, комплексное число (2,3) теперь можно записать в виде 2 + 3i .

Важное отличие такого подхода к комплексным числам от традиционного состоит в том, что в данном случае число i не содержит ничего загадочного или мнимого: оно представляет собой нечто, хорошо определяемое посредством уже существовавших ранее чисел, хотя, разумеется, и не совпадает ни с одним из них. Точно так же, действительное число 2 не является комплексным, хотя мы и используем символ 2 для обозначения комплексного числа. Так как на самом деле в мнимых числах нет ничего «мнимого», то неудивительно, что они широко используются в реальных ситуациях, например в электротехнике (где вместо буквы i обычно используют букву j , так как в электротехнике i – символ для текущего значения силы тока).

Алгебра комплексных чисел во многом напоминает алгебру действительных чисел, хотя имеются и существенные различия. Например, правило для комплексных чисел не выполняется: , поэтому , в то время как .

Сложение комплексных чисел допускает простую геометрическую интерпретацию. Например, сумма чисел 2 + 3i и 3 – i есть число 5 + 2i , которому соответствует четвертая вершина параллелограмма с тремя вершинами в точках 0, 2 + 3i и 3 – i .

Точку на плоскости можно задавать не только прямоугольными (декартовыми) координатами (x ,y ), но и ее полярными координатами (r ,q ), задающими расстояние от точки до начала координат и угол. Следовательно, комплексное число x + iy может быть записано и в полярных координатах (рис. 2,б ). Длина радиуса-вектора r равна расстоянию от начала координат до точки, соответствующей комплексному числу; величина r называется модулем комплексного числа и определяется по формуле . Часто модуль записывают в виде . Угол q называется «углом», «аргументом» или «фазой» комплексного числа. Такое число имеет бесконечно много углов, отличающихся на величину, кратную 360°; например, i имеет угол 90°, 450°, -270°, ј Так как декартовы и полярные координаты одной и той же точки связаны между собой соотношениями x = r cos q , y = r sin q , справедливо равенство x + iy = r (cos q + i sin q ).

Если z = x + iy , то число x – iy называется комплексно сопряженным с z и обозначается n z = re iq . Логарифм комплексного числа re iq , по определению, равен ln r + iq , где ln означает логарифм по основанию e , а q принимает все возможные значения, измеряемые в радианах. Таким образом, комплексное число имеет бесконечно много логарифмов. Например, ln (–2) = ln 2 + ip + любое целое кратное 2p . В общем виде степени можно теперь определить с помощью соотношения a b = e b ln a . Например, i –2i = e –2 ln i . Так как значения аргумента числа i равны p /2 (90°, выраженное в радианах) плюс целое кратное, то число i –2i имеет значения e p , e 3 p , e -p и т.д., которые все являются действительными.

Гиперкомплексные числа.

Комплексные числа были изобретены, чтобы иметь возможность решать все квадратные уравнения с действительными коэффициентами. Можно показать, что на самом деле комплексные числа позволяют сделать гораздо больше: с их введением становятся разрешимыми алгебраические уравнения любой степени даже с комплексными коэффициентами. Следовательно, если бы нас интересовали только решения алгебраических уравнений, то необходимость во введении новых чисел отпала бы. Однако для других целей необходимы числа, устроенные в чем-то аналогично комплексным, но с бóльшим количеством компонент. Иногда такие числа называют гиперкомплексными. Их примерами могут служить кватернионы и матрицы.

Похожие публикации