Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Как правильно рассчитать дебит скважины? Расчет лифта газовых скважин. Выработка рекомендаций Статический и динамический уровни воды

Одной из характеристик пробуренной скважины является скорость поступления из пробуренного подземного пласта или отношение объема к определенному временному промежутку. Получается, что дебит скважины – это её работоспособность, измеряющаяся в м 3 /час (секунда, сутки). Значение дебита скважины необходимо знать при выборе производительности скважинного насоса .

Факторы, определяющие скорость наполнения:

  • Объем водоносного слоя;
  • Скорость его истощения;
  • Глубина залегания грунтовых вод и сезонные изменения уровня воды.
  • Дебит: методы расчета

    Мощность насоса для артезианской скважины должна соответствовать её продуктивности. Перед бурением нужно рассчитать объем, требуемый для водоснабжения, и сравнить полученные данными с показателями разведки геологической службы в отношении глубины залегания пласта и его объема. Определяют дебит скважины предварительным расчетом статистических и динамических показателей относительно уровня воды.

    Низкодебитными считаются скважины с продуктивностью меньше 20 м 3 /сутки.

    Причины небольшого дебита скважины:

  • естественная гидрогеологическая характеристика водоносного горизонта;
  • сезонные изменения в грунтовых водах;
  • засорение скважинных фильтров;
  • разгерметизация или засорение труб, подающих воду на поверхность;
  • механический износ насосной части насоса.
  • Расчет дебита скважины производится на этапе определения глубины залегания водоносного горизонта, составления конструкции скважины , выбора типа и марки насосного оборудования. По окончанию бурения производят опытно-фильтрационные работы с занесением показателей в паспорт. Если при вводе в эксплуатацию получен неудовлетворительный результат, то это означает, что допущены ошибки в определении проектной или подборе оборудования.

    Маленький дебит скважины, что делать? Есть несколько вариантов:

  • увеличение глубину скважины для вскрытия следующего водоносного горизонта;
  • увеличения дебита путем применения различных методов опытной откачки;
  • применение механического и химического воздействия на водовмещающий горизонт;
  • перенос скважины на новое место.
  • Основные параметры для расчета дебита

  • Статический уровень, Hст – расстояние от верхнего слоя почвы до уровня подземных вод.
  • Динамический уровень, Hд – определяется при откачке воды насосом и замера уровня воды, которая генерируется природным путем.
  • Формула расчета дебита базируется на точном математическом расчете:

    D = H x V/(Hд – Hст) , метр:

  • D – дебит;
  • V – производительность насоса;
  • H – высота водного столба;
  • Hд, Hст – уровни по динамике и статике.
  • Пример расчета дебита скважины:

  • глубина водозабора – 50 м;
  • производительность насоса (V) – 2 м 3 /час;
  • статический уровень (Hст) – 30 м;
  • динамический уровень (Hд) – 37 м;
  • высота водного столба (H) 50 – 30 = 20 м.
  • Подставив данные, получаем расчетный дебит - 5,716 м 3 /ч.

    Для проверки используется пробная откачка насосом большей мощности, который улучшит показания динамического уровня.

    Второй расчет нужно выполнять по вышеуказанной формуле. Когда оба значения дебита будут известны, узнается удельный показатель, который дает точное понятие того, насколько нарастает производительность при росте динамического уровня на 1 метр. Для этого применяется формула:

    Dуд = D2 – D1/H2 – H1 , где:

  • Dуд - удельный дебит;
  • D1, H1 - данные первого опыта;
  • D2, H2 - данные второго опыта.
  • Изобретение относится к газодобывающей промышленности, в частности к технологии измерения дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием типового диафрагменного измерителя критического течения (ДИКТа). Технический результат заключается в получении результатов измерений с достоверностью в диапазоне от минус 5,0 до плюс 5,0% без наличия явно выраженных систематических ошибок, которые характерны для известных способов. Способ включает: организацию движения потока природного газа газовой скважины в режиме критического истечения через диафрагму ДИКТа, измерение с использованием средств измерений утвержденного типа температуры и давления для потока природного газа в корпусе ДИКТа перед диафрагмой, отбор пробы потока природного газа, определение компонентного состава для отобранной пробы потока природного газа. Формирование массива исходных данных для определения термобарических, термодинамических и газодинамических параметров потока природного газа, используемых при нахождении дебита по газу для газовой скважины, который включает сведения: материал, из которого изготовлена используемая диафрагме в ДИКТе, температурный коэффициент линейного расширения материала диафрагмы; материал, из которого изготовлена линейная часть корпуса используемого ДИКТа, температурный коэффициент линейного расширения материала корпуса ДИКТ; диаметр внутреннего отверстия используемой диафрагмы в ДИКТе при 20°C; внутренний диаметр цилиндрической части корпуса используемого ДИКТа при 20°C; температура и давление газового потока в линейной части корпуса ДИКТа перед диафрагмой; компонентный состав потока природного газа, проходящего через ДИКТ. Определение термобарических, термодинамических и газодинамических параметров потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой и в месте максимального сжатия его струи за диафрагмой ДИКТа, нахождение дебита по газу для газовой скважины с учетом ε - коэффициента сжатия струи газового потока в месте максимального сжатия его струи за диафрагмой ДИКТа, доли ед.; d - диаметра отверстия диафрагмы ДИКТа, м; z 1 и z 2 - коэффициентов сжимаемости газа перед диафрагмой ДИКТа и в месте максимального сжатия его струи за диафрагмой ДИКТа, ед.; z CT - коэффициента сжимаемости газа при стандартных условиях, ед.; р 1 - абсолютного давления газа перед диафрагмой ДИКТа, МПа; р СТ - давления, соответствующего стандартным условиям р СТ =1,01325⋅10 5 Па; Т СТ - температуры, соответствующей стандартным условиям Т СТ =293,15 К; T 1 - абсолютной температурой газа перед диафрагмой ДИКТа, К; R - молярной газовой постоянной R=8,31 Дж/(моль⋅К); М - молярной массы газа, кг/моль; k - показателя адиабаты газа, ед.; β - относительного диаметра отверстия диафрагмы ДИКТа (β=d/D), доли ед.; D - внутреннего диаметра цилиндрической части корпуса ДИКТа перед сужающим устройством, при этом коэффициент сжатия струи газового потока в месте максимального ее сужения за диафрагмой ДИКТа определяют с учетом приведенной температуры газа перед диафрагмой ДИКТа и приведенного давления газа перед диафрагмой ДИКТа. 8 ил., 3 табл.

    Изобретение относится к газодобывающей промышленности, в частности к технологии измерения дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием типового диафрагменного измерителя критического течения (ДИКТа).

    Достоверное определение дебита по газу для газовых скважин оказывает значимое влияние на контроль процесса разработки газовых месторождений, формирование комплекса мероприятий по его совершенствованию и оценку эффективности капитальных ремонтов скважин.

    Измерение дебита (расхода) по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа осуществляется путем:

    Измерения термобарических параметров потока перед диафрагмой ДИКТа с использованием средств измерений температуры и давления;

    Определения или принятия компонентного состава газового потока для расчета необходимых термобарических параметров рассматриваемого потока, которые будут использоваться в выражении для определения дебита по газу для газовой скважины;

    Расчета необходимых термодинамических параметров для газового потока на основе известного его компонентного состава и термобарических параметров;

    Расчета дебита (расхода) по газу для газовых скважин по функциональным зависимостям взаимосвязи расхода рассматриваемого потока с его термобарическими, термодинамическими и газодинамическими параметрами, соответствующими режиму критического истечения потока через ДИКТ, которые основываются на совместном решении уравнений неразрывности потока среды и Первого начала термодинамики.

    В описанной последовательности измерения существенное влияние на точность получаемого значения дебита по газу для газовых скважин оказывает выбор:

    Используемого расчетного выражения для его определения;

    Способов нахождения необходимых термодинамических и газодинамических параметров для потока природного газа, значения которых используются в выбранном расчетном выражении для определения дебита.

    Известен способ расчета дебита по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа по изложенному в работе Е.Л. Роулинса и М.А. Шелхардта выражению (приложение 2, с. 120)

    С - коэффициент расхода (дебита), ед.;

    р - абсолютное давление потока газа перед диафрагмой ДИКТа, МПа;

    Т - абсолютная температура потока газа перед диафрагмой ДИКТа, К.

    Относительная плотность газа по воздуху, доли ед.

    Входящий в выражение (1) коэффициент расхода (C) определяется по эмпирически табулированной функции от диаметра отверстия диафрагмы ДИКТа, приведенной в работе Е.Л. Роулинса и М.А. Шелхардта (таблица 26 приложения 2, с. 122).

    К недостаткам известного способа определения дебита по газу с использованием выражения (1) относится:

    Табулированность коэффициента расхода (С) (нет данных о значениях коэффициента расхода (С) не представленных в таблице 26 приложения 2, с. 122 работы Е.Л. Роулинса и М.А. Шелхардта );

    Зависимость коэффициента расхода (С) входящего в выражение (1), в виде табулированной функции от диаметра отверстия диафрагмы ДИКТа , где dim d=L, не может охватить весь спектр изменения термодинамических и газодинамических параметров потока природного газа, оказывающих влияние на результат расчета его дебита, так как размерность коэффициента (C), выведенная из выражения (1), составляет
    ;

    Малая апробация расчетного выражения при его формировании (апробация проведена на одной скважине);

    Отсутствие поправки на отклонение свойств природного газа от законов идеального состояния;

    Отсутствие в явном виде учета термодинамических и газодинамических параметров в месте максимального сжатия струи газового потока за диафрагмой ДИКТа;

    Описанные недостатки приводят к получению систематически заниженного результата измерения дебита (расхода) по газу для газовых скважин при гидродинамических исследования с использованием ДИКТа в диапазоне от минус 14,0 до минус 1,5% в зависимости от изменения относительного отверстия используемой диафрагмы. Данное заключение сделано на основе сопоставления результатов измерения дебита по газу для газовых скважин по изложенному известному способу в работе Е.Л. Роулинса и М.А. Шелхардта с результатами измерения данного параметра с использованием средств измерения расхода утвержденного типа, базирующихся на известном способе измерения расхода газа, изложенном в ГОСТ 5.586.5-2005 [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений. - М.: Стандартинформ, 2007. - 94 с.]. Рассматриваемое сопоставление выполнено для ряда газовых скважин полуострова Ямал. Его обобщенные результаты приведены на фиг. 1.

    Известен способ расчета дебита по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа по изложенному в работе Д.Л Катца [Д.Л. Катц. Руководство по добыче, транспорту и переработке природного газа. - М.: Недра, 1965. - 677 с.] выражению (формула VIII. 28, с. 320)

    где Q - объемный расход (дебит) газа, приведенный к абсолютному давлению 1,033 am и температуре 15,6°C, м 3 /ч;

    z l и z 2 - коэффициенты сжимаемости газа в сечениях до и после диафрагмы ДИКТа, ед.;

    F 2 - площадь поперечного сечения отверстия диафрагмы ДИКТа, мм 2 ;

    С р - удельная теплоемкость газа, ккал/(кг⋅°C);

    р 1 - абсолютное давление перед диафрагмой ДИКТа, am;

    T 1 - абсолютная температура газа перед диафрагмой ДИКТа, К.

    Входящие в состав выражения (2) термодинамические параметры потока природного газа определяются по номограммным зависимостям от приведенных термобарических параметров, которые представлены в Д.Л. Катц [Д.Л. Катц. Руководство по добыче, транспорту и переработке природного газа. - М.: Недра, 1965. - 677 с.], а именно

    Показатель адиабаты по номограмме, приведенной на рис. IV. 56, с. 124;

    Коэффициент сжимаемости по номограмме, приведенной на рисунках IV. 16 и IV. 17, с. 98;

    Удельная теплоемкость газа по номограмме, приведенной на рис. IV. 55, с. 125.

    Используемые приведенные термобарические параметры потока природного газа при нахождении его термодинамических параметров определяются на основе известных:

    Относительной плотности газа по воздуху;

    Термобарических параметров, при которых определяются термодинамические параметры потока природного газа;

    Критических термобарических параметров для рассматриваемого потока.

    К недостаткам известного способа определения дебита по газу с использованием выражения (2) относится:

    Отсутствие учета влияния на результат скорости движения газового потока в прямолинейном участке корпуса ДИКТа перед диафрагмой;

    Принятие площади поперечного сечения потока в месте максимального его сжатия за диафрагмой ДИКТа, равной площади поперечного сечения отверстия используемого сужающего устройства, что приводит к отсутствию учета влияния на результат коэффициента сжатия струи рассматриваемого потока при критическом истечении через диафрагму;

    Описанные недостатки приводят к получению систематически заниженного результата определения дебита (расхода) по газу для газовых скважин при гидродинамических исследования с использованием ДИКТа в диапазоне от минус 17.5 до минус 12,5% в зависимости от изменения относительного отверстия используемой диафрагмы. Данное заключение сделано на основе сопоставления результатов измерения дебита по газу для газовых скважин по изложенному известному способу в работе Д.Л Катца [Д.Л. Катц. Руководство по добыче, транспорту и переработке природного газа. - М.: Недра, 1965. - 677 с.] с результатами измерения данного параметра с использованием средств измерения расхода утвержденного типа, базирующихся на известном способе измерения расхода газа, изложенном в ГОСТ 5.586.5-2005 [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений. - М.: Стандартинформ, 2007. - 94 с.]. Рассматриваемое сопоставление выполнено для ряда газовых скважин полуострова Ямал. Его обобщенные результаты приведены на фиг. 2.

    Известен способ расчета дебита по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа по изложенному в работе Дж. П. Брилла и X. Мухерджи [Дж. П. Брилл, X. Мукерджи. Многофазный поток в скважинах. - Москва-Ижевск: Институт компьютерных исследований, 2006. - 384 с.] выражению (формула 5.3, с. 195):

    где q SC - объемный расход (дебит) газового потока, приведенный к стандартным условиям, тыс. ст. м 3 /сут;

    C n - коэффициент подачи, ед.;

    p 1 - абсолютное давление газа перед диафрагмой ДИКТа, МПа;

    d ch - диаметр отверстия диафрагмы ДИКТа, м;

    Относительная плотность газа по воздуху, доли ед.;

    z 1 - коэффициент сжимаемости газа перед диафрагмой ДИКТа, доли ед.;

    k - показатель адиабаты газа, ед.;

    y - отношение давлений газового потока после и до диафрагмы ДИКТа, доли ед.

    Входящие в выражение (3) величины, согласно работы Дж. П. Брилла и X. Мухерджи [Дж. П. Брилл, X. Мукерджи. Многофазный поток в скважинах. - Москва-Ижевск: Институт компьютерных исследований, 2006. - 384 с.], определяются:

    Коэффициент подачи по формуле (формула 5.4 с. 195):

    где C s - переводной коэффициент, зависящий от применяемой системы единиц измерения, доли ед.;

    C D - коэффициент подачи, доли ед.;

    T SC - значение абсолютной температуры при стандартных условиях, К;

    p SC - значение давления при стандартных условиях, МПа;

    Отношение давлений газового потока после и до диафрагмы ДИКТа по формуле (формула 5.5 с. 195):

    где p 2 - давление газа за диафрагмой ДИКТа, МПа.

    Термобарические параметры потока газа по представленным номограммам в работе Д.Л. Катца [Д.Л. Катц. Руководство по добыче, транспорту и переработке природного газа. - М.: Недра, 1965. - 677 с.] или по уравнениям состояния Соава-Редлиха-Квонга и Пенга-Робинсона.

    Входящие в формулу (4) величины принимаются:

    C S , T SC и P SC из таблицы 5.1, приведенной на с. 195 в зависимости от используемой системы единиц измерений;

    C D из диапазона от 0,82 до 0,90 (с. 196).

    К недостаткам известного способа определения дебита по газу с использованием выражения (3) относится:

    Отсутствие учета скорости движения газового потока перед диафрагмой ДИКТа;

    Отсутствие учета коэффициента сжатия струи газового потока в месте максимального сжатия его струи за диафрагмой ДИКТа;

    Использование эмпирического коэффициента подачи (C D), без представления рекомендаций по выбору его значения для применения;

    Отсутствие сведений о точностных характеристиках получаемого результата измерения дебита по газу для газовых скважин.

    Описанные недостатки приводят к систематическому отклонению результата определения дебита (расхода) по газу для газовых скважин при гидродинамических исследования с использованием ДИКТа в диапазоне от плюс 3,0 до минус 15,5% в зависимости от изменения относительного отверстия используемой диафрагмы и принимаемого значения коэффициента подачи (C D). Данное заключение сделано на основе сопоставления результатов измерения дебита по газу для газовых скважин по изложенному известному способу в работе Дж. П. Брилла и X. Мухерджи [Дж. П. Брилл, X. Мукерджи. Многофазный поток в скважинах. - Москва-Ижевск: Институт компьютерных исследований, 2006. - 384 с.] с результатами измерения данного параметра с использованием средств измерения расхода утвержденного типа, базирующихся на известном способе измерения расхода газа, изложенном в ГОСТ 5.586.5-2005 [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений. - М.: Стандартинформ, 2007. - 94 с.]. Рассматриваемое сопоставление выполнено для ряда газовых скважин полуострова Ямал. Его обобщенные результаты приведены на фиг. 3.

    Известен способ расчета дебита по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа по изложенному в работе А.И. Гриценко, З.С. Алиева, О.М. Ермилова, В.В. Ремизова, Г.А. Зотова [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.] выражению (формула 177.3, с. 169):

    где Q - объемный расход (дебит) газа, тыс.ст.м 3 /сут;

    C - коэффициент расхода, ед.;

    δ - поправочный коэффициент для учета изменения показателя адиабаты реального газа, ед.;

    P D - абсолютное давление перед диафрагмой ДИКТа, ата;

    Относительная плотность газа по воздуху, доли ед.;

    T D - абсолютная температура газа перед диафрагмой ДИКТа, К.

    Z - коэффициент сжимаемости газа перед диафрагмой ДИКТа, доли ед.

    Входящий в выражение (6) коэффициент расхода (С), зависящий от диаметров диафрагм и измерительной линии, определяется расчетным путем или из рисунка 67 работы А.И. Гриценко, З.С. Алиева, О.М. Ермилова, В.В. Ремизова, Г.А. Зотова [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. -М.: Наука, 1995. - 523 с.]. Для ДИКТа с диаметром корпуса 50,8⋅10 -3 м в диапазоне изменения диаметра диафрагм 1,59⋅10 -3 ≤d≤12,7⋅10 -3 м величину коэффициента расхода (С) следует определять по формуле (формула 178.3 с. 169 [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]):

    где d - диаметр отверстия диафрагмы ДИКТа, мм.

    В диапазоне изменения диаметра диафрагм 12,7⋅10 -3 ≤d≤38,1⋅10 -3 м значение коэффициента расхода (С) должно быть вычислено по формуле (формула 179.3 с. 169 [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]):

    Для ДИКТа с диаметром корпуса 101,6⋅10 -3 м значение коэффициента расхода (С) в диапазоне изменения диаметра диафрагмы 6,35⋅10 -3 ≤d≤76,2⋅10 -3 м должно быть вычислено по формуле (формула 180.3 с. 169 [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995.-523 с.]):

    Входящий в выражение (6) поправочный коэффициент (δ) по формуле (формула 181.3 с. 170 [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]):

    где k - показатель адиабаты газа, ед.

    Если значение показателя адиабаты газа (k) неизвестно, то величина (δ) может быть определена графически из рисунка 68 работы А.И. Гриценко, З.С. Алиева, О.М. Ермилова, В.В. Ремизова, Г.А. Зотова [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.] при различных приведенных давлениях и температурах по формуле (формула 182.3 с. 171 [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]):

    Приведенное давление перед диафрагмой ДИКТа, ед.

    Приведенные давления и температуры определяются согласно раздела 2.2 работы А.И. Гриценко, З.С. Алиева, О.М. Ермилова, В.В. Ремизова, Г.А. Зотова [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]

    К недостаткам известного способа определения дебита по газу с использованием выражения (6) относится:

    Зависимость коэффициента расхода (С) входящего в выражение (6), в виде эмпирической полиномиальной зависимости от диаметра отверстия диафрагмы ДИКТа , где dimd=L, не может охватить весь спектр изменения термодинамических и газодинамических параметров потока природного газа, оказывающих влияние на результат расчета его дебита, так как размерность коэффициента (C) выведенная из выражения (6) составляет
    ;

    Отсутствие сведений о точностных характеристиках получаемого результата измерения дебита по газу для газовых скважин.

    Описанные недостатки приводят к получению систематического отклонения результата определения дебита (расхода) по газу для газовых скважин при гидродинамических исследованиях с использованием ДИКТа в диапазоне от плюс 55,0 до минус 10,0% в зависимости от:

    Изменения относительного отверстия используемой диафрагмы;

    Выбора расчетного выражения из (8) и (9) для нахождения поправочного коэффициента (δ).

    Данное заключение сделано на основе сопоставления результатов измерения дебита по газу для газовых скважин по изложенному известному способу в работе А.И. Гриценко, З.С. Алиева, О.М. Ермилова, В.В. Ремизова, Г.А. Зотова [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.] с результатами измерения данного параметра с использованием средств измерения расхода утвержденного типа, базирующихся на известном способе измерения расхода газа, изложенном в ГОСТ 5.586.5-2005 [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений. - М.: Стандартинформ, 2007. - 94 с.]. Рассматриваемое сопоставление выполнено для ряда газовых скважин полуострова Ямал. Его обобщенные результаты приведены на фиг. 4.

    Известен способ расчета дебита по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа по изложенному в работе З.С. Алиева, Г.А. Зотова [Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. З.С. Зотова, Г.А. Алиева. - М.: Недра, 1980. - 301 с.] выражению (формула VI. 8, с. 201)

    где Q - объемный расход (дебит) газа, тыс. ст. м 3 /сут;

    C - коэффициент расхода, ед.;

    Δ - поправочный коэффициент, ед.;

    p - абсолютное давление перед диафрагмой ДИКТа, МПа;

    Относительная плотность газа по воздуху, доли ед.;

    Т - абсолютная температура газа перед диафрагмой ДИКТа, К.

    z - коэффициент сжимаемости газа перед диафрагмой ДИКТа, ед.

    Входящие в выражение (12) коэффициент расхода (С) предлагается определять по эмпирически табулированной функции от диаметра отверстия используемой диафрагмы в ДИКТе, приведенной в таблице VI. 9 работы З.С. Алиева, Г.А. Зотова [Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. З.С. Зотова, Г.А. Алиева. - М.: Недра, 1980. - 301 с.], а поправочный коэффициент (Δ) по рисунку VI. 23 работы З.С. Алиева, Г.А. Зотова [Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. З.С. Зотова, Г.А. Алиева. - М.: Недра, 1980. - 301 с.] или по формуле (формула VI. 9, с. 204 [Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. З.С. Зотова, Г.А. Алиева. - М.: Недра, 1980. - 301 с.]):

    где T np - приведенная температура газа перед диафрагмой ДИКТа, ед.;

    p np - приведенное давление перед диафрагмой ДИКТа, ед.

    Приведенные температура и давление определяются согласно главе II работы З.С. Алиева, Г.А. Зотова [Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. З.С. Зотова, Г.А. Алиева. - М.: Недра, 1980. - 301 с.].

    К недостаткам известного способа определения дебита по газу с использованием выражения (12) относится:

    Зависимость коэффициента расхода (C) входящего в выражение (12), в виде эмпирической полиномной зависимости от диаметра отверстия диафрагмы ДИКТа , где dimd=L, не может охватить весь спектр изменения термодинамических и газодинамических параметров потока природного газа, оказывающих влияние на результат расчета его дебита, так как размерность коэффициента (С) выведенная из выражения (12) составляет
    ;

    Отсутствие учета влияния на результат определения дебита термодинамических параметров газового потока и коэффициента сжатия струи в месте максимального сжатия струи рассматриваемого потока за диафрагмой ДИКТа;

    Отсутствие сведений о точностных характеристиках получаемого результата измерения дебита по газу для газовых скважин.

    Описанные недостатки приводят к получению систематического завышения результата определения дебита (расхода) по газу для газовых скважин при гидродинамических исследований с использованием ДИКТа в диапазоне от 30 до 70% в зависимости от изменения относительного отверстия используемой диафрагмы. Данное заключение сделано на основе сопоставления результатов измерения дебита по газу для газовых скважин по изложенному известному способу в работе З.С. Алиева, Г.А. Зотова [Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. З.С. Зотова, Г.А. Алиева. - М.: Недра, 1980. - 301 с.] с результатами измерения данного параметра с использованием средств измерения расхода утвержденного типа, базирующихся на известном способе измерения расхода газа, изложенном в ГОСТ 5.586.5-2005 [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений. - М.: Стандартинформ, 2007. - 94 с.]. Рассматриваемое сопоставление выполнено для ряда газовых скважин полуострова Ямал. Его обобщенные результаты приведены на фиг. 5.

    Технической проблемой, решаемой при применении заявляемого технического решения, является разработка способа определения дебита (расхода) по газу для газовых скважин при гидродинамических исследованиях на установленных режимах фильтрации с использованием ДИКТа, который повысит достоверность получаемого результата.

    Технический результат заключается в повышении достоверности определения дебита (расхода) по газу для газовых скважин с использованием ДИКТа до диапазона от минус 5,0 до плюс 5,0% путем исключения причин возникновения систематических ошибок при использовании известных способов расчета рассматриваемого показателя, изложенных в работах .

    Указанный технический результат достигается тем, что предлагаемый способ определения дебита (расхода) по газу для газовых скважин с применением ДИКТа предполагает использование:

    а) средств измерений давления и температуры утвержденного типа с установленной допустимой погрешностью измерений для измерения термобарических параметров потока природного газа, движущегося по прямолинейному участку корпуса ДИКТа до диафрагмы;

    б) стандартизированных в сфере обеспечения единства измерений РФ методов (методик) измерений для отбора проб потока природного газа и определения его компонентного состава;

    в) стандартизированных в системе обеспечения единства измерений РФ расчетных методик (методов) измерений при определении термодинамических параметров потока природного газа (плотности при стандартных условиях, молекулярной массы, коэффициента сжимаемости при стандартных условиях и термобарических параметрах в линейной части корпуса ДИКТа и в месте максимального сжатия потока за диафрагмой ДИКТа, показателя адиабаты);

    г) расчетного выражения для нахождения дебита по газу для газовых скважин, базирующегося на совместном решении уравнений неразрывности потока среды и Первого начала термодинамики, которым учитываются:

    Отклонения термодинамических свойств потока природного газа от законов идеального газа путем включения в выражение в качестве его составляющих плотности при стандартных условиях, молекулярной массы, коэффициента сжимаемости при стандартных условиях и термобарических параметрах в линейной части корпуса ДИКТа и в месте максимального сжатия потока за диафрагмой ДИКТа, показателя адиабаты;

    Формируемая структура гидродинамического режима прохождения потоком природного газа диафрагмы ДИКТа в режиме критического истечения путем включения в выражение в качестве его составляющих относительного диаметра отверстия диафрагмы и коэффициента сжатия струи рассматриваемого потока за диафрагмой ДИКТа при его выходе в атмосферу и рассмотрения в качестве не исключаемой величины скорости движения газового потока в линейной части корпуса ДИКТа при выводе расчетного выражения;

    д) расчетного метода определения коэффициента сжатия струи потока природного газа за диафрагмой ДИКТа, входящего в расчетное выражение нахождения дебита по газу для газовых скважин, базирующегося на взаимосвязи рассматриваемого показателя с термодинамическими параметрами потока (приведенными температурой и давлением потока природного газа при его термобарических параметрах в линейной части корпуса ДИКТа перед диафрагмой и показателем адиабаты);

    е) стандартизированных в системе обеспечения единства измерений РФ способов оценки точности методов (методик) измерений, базирующихся на формировании багажа неопределенности измерений на основе рассмотрения неопределенностей составляющих принимаемой функции измерений.

    Способ поясняется иллюстративными материалами, где:

    на фиг. 1 представлен вид зависимости относительного отклонения определяемого дебита (расхода) по газу для газовых скважин по выражению (1) от измеренного с использованием методики, изложенной в ГОСТ 8.586.5-2005 при изменении относительного отверстия используемой диафрагмы в ДИКТе при проведении газодинамических исследований;

    на фиг. 2 - вид зависимости относительного отклонения значений определяемого дебита (расхода) по газу для газовых скважин по выражению (2) от измеренных значений по методике, изложенной в ГОСТ 8.586.5-2005 при изменении относительного отверстия используемой диафрагмы в ДИКТе при проведении газодинамических исследований;

    на фиг. 3 - вид зависимости относительного отклонения определяемого дебита (расхода) по газу для газовых скважин по выражению (3) от измеренных значений по методике, изложенной в ГОСТ 8.586.5-2005 при изменении относительного отверстия используемой диафрагмы в ДИКТе при проведении газодинамических исследований и принимаемого значения коэффициента подачи (C D);

    на фиг. 4 - вид зависимости относительного отклонения определяемого дебита (расхода) по газу для газовых скважин по выражению (6) от измеренных значений по методике, изложенной в ГОСТ 8.586.5-2005 от изменения относительного отверстия используемой диафрагмы в ДИКТе при проведении газодинамических исследований и выбора расчетного выражения из (8) и (9) для нахождения поправочного коэффициента (δ);

    на фиг. 5 - вид зависимости относительного отклонения определяемого дебита (расхода) по газу для газовых скважин по выражению (10) от измеренного по методике, изложенной в ГОСТ 8.586.5-2005 при изменении относительного отверстия используемой диафрагмы в ДИКТе при проведении газодинамических исследований;

    на фиг. 6 - показана схема критического истечения газового потока через диафрагму ДИКТа при проведении газодинамических исследований скважин, 0 - сечение, характеризующее режим движения газового потока в месте его входа в отверстие диафрагмы; I - сечение в прямолинейном участке трубопровода; II - сечение набольшего сужения струи газового потока; 8 - сужающее устройство - диафрагма; 9 - накидная гайка для крепления сужающего устройства к корпусу; 10 - прямолинейный участок корпуса ДИКТа; Q CT - объемный расход (дебит) по газу газовой скважины, приведенный к стандартным условиям; ρ - плотность газового потока; ω - линейная скорость движения газового потока; p - давление газового потока; T - абсолютная температура газового потока;

    на фиг. 7 показан вид зависимости относительного отклонения определяемого дебита (расхода) по газу для газовых скважин по выражению (14) от значений, измеренных по методике, изложенной в ГОСТ 8.586.5-2005 при изменении относительного отверстия используемой диафрагмы в ДИКТе при проведении газодинамических исследований;

    на фиг. 8 представлена схема сбора измерительной линии в типовой технологической кустовой обвязке газовых скважин для проведения газодинамических исследований при установившихся режимах фильтрации с применением ДИКТа. Цифрами обозначено: 1 - газовая скважина; 2 - трубопроводы технологической типовой кустовой обвязки газовой скважины; 3 - угловой штуцер-регулятор дебита скважины; 4 - запорная арматура скважины и технологической кустовой обвязки; 5 - ДИКТ; 6 - амбар дожига выходящего газового потока с ДИКТа в атмосферу; 7 - линии направления движения газового потока Т.1 и Т.2 - места измерения температуры и давления газового потока, при его движении по линейной части корпуса ДИКТа; Т.3 - место отбора пробы потока газа для определения его компонентного состава.

    Сущность способа определения дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований заключается в организации прохождения рассматриваемым потоком стандартного сужающего устройства (диафрагмы) в режиме критического истечения по приведенной схеме на фиг. 6. Для этого используется типовая конструкция диафрагменного измерителя критического течения (ДИКТа). Режим критического истечения природного газа через диафрагму ДИКТа обеспечивает достижение скорости движения потока в сечении II фиг. 6 значения локальной скорости звука, выходя из используемого технического устройства в атмосферу. При этом расход проходящего газового потока через ДИКТ и его термобарические параметры в месте максимального сжатия струи за диафрагмой (сечение II, фиг. 6) становятся зависимыми от термобарических параметров рассматриваемого потока в поперечном сечении корпуса используемого технического устройства перед сужающим устройством (сечение I, фиг. 6). В рассматриваемом случае значение расхода определяется по функциональной его взаимосвязи с термобарическими, термодинамическими и газодинамическими параметрами в сечениях до диафрагмы ДИКТа (сечение I, фиг. 6) и в месте максимального сжатия струи за сужающим устройством (сечение II, фиг. 6), которая выводится на основе совместного решения уравнений неразрывности потока среды и Первого начала термодинамики. Значение расхода газового потока рассчитывается по формуле, приведенной в работе М.С. Рогалева, Н.В. Саранчина, В.Н. Маслова, А.Б. Дерендяева [М.С. Рогалев, Н.В. Саранчин, В.Н. Маслов, А.Б. Дерендяев. Определение расхода газового потока при проведении гидродинамических исследований скважин // Известия вузов. Нефть и газ. - 2014. - №6. - С. 50-58.], имеющей алгебраический вид:

    где Q CT - объемный расход (дебит) газа, ст. м 3 /с;

    ε - коэффициент сжатия струи газового потока в месте максимального сжатия его струи за диафрагмой ДИКТа, доли ед.;

    p CT - давление, соответствующее стандартным условиям p CT =1,01325⋅10 5 Па;

    T CT - температура, соответствующая стандартным условиям T CT =293,15 К;

    T 1 - абсолютная температура газа перед диафрагмой ДИКТа, К;

    M - молярная масса газа, кг/моль;

    k - показатель адиабаты газа, ед.;

    D - внутренний диаметр цилиндрической части корпуса ДИКТа при рабочих условиях среды перед диафрагмой (используется при расчете относительного диаметра отверстия диафрагмы), м.

    Используемые термодинамические параметры природного газа в выражении (14) определяются с применением стандартизованных в системе обеспечения единства измерений РФ расчетных методов, базирующихся на известных:

    Термобарических параметрах потока в сечении перед диафрагмой ДИКТа (сечение I, фиг. 6) и в месте максимального сжатия его струи за диафрагмой ДИКТа (сечение II, фиг. 6);

    Компонентном составе потока.

    Для нахождения термодинамических параметров природного газа применяются стандартизированные в системе обеспечения единства измерений РФ расчетные методики (методы) измерений, в частности, для определения:

    Коэффициентов сжимаемости при необходимых термобарических параметрах, изложенная расчетная методика в разделе 4 на с. 3-8 ГОСТ 30319.2-2015 [Международная система стандартизации. Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода. - М.: Стандартинформ, 2016. - 16 с.], базирующаяся на формуле общего вида:

    где A 1 и A 2 коэффициенты уравнения состояния;

    Молекулярной массы, приведенная формула (6) на с. 6 ГОСТ 31369-2008 [Международная система стандартизации. Газ природный. Вычисление теплоты сгорания, относительной плотности и числа Воббе на основе компонентного состава. - М.: Стандартинформ, 2009. - 58 с.], имеющая следующий алгебраический вид.

    M j - молярная масса j-го компонента, входящего в состав природного газа, кг/моль;

    Коэффициент сжимаемости при стандартных условиях приведенная формула (3) на с. 5 ГОСТ 31369-2008 [Международная система стандартизации. Газ природный. Вычисление теплоты сгорания, относительной плотности и числа Воббе на основе компонентного состава. - М.: Стандартинформ, 2009. - 58 с.], имеющая следующий алгебраический вид

    где x j - молярная доля j-го компонента, входящего в состав природного газа, доли ед.;

    - коэффициент суммирования j-го компонента, входящего в состав природного газа, принимается из таблицы 2 раздела 10 на с. 12-13 ГОСТ 31369-2008, доли ед.;

    Плотности газа при стандартных условиях, приведенная формула (15) на с. 8 ГОСТ 31369-2008 [Международная система стандартизации. Газ природный. Вычисление теплоты сгорания, относительной плотности и числа Воббе на основе компонентного состава. - М.: Стандартинформ, 2009. - 58 с.], имеющая следующий алгебраический вид

    где ρ c - плотность реального газа при стандартных условиях, кг/м 3 ;

    Плотность идеального газа для стандартных условий, рассчитываемая по формуле (12), приведенной на с. 7 ГОСТ 31369-2008 и имеющей следующий алгебраический вид

    Показателя адиабаты изложенная расчетная методика в разделе 5 на с. 8-9 ГОСТ 30319.2-2015 [Международная система стандартизации. Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода. - М.: Стандартинформ, 2016. - 16 с.], базирующаяся на формуле общего вида

    где x а - молярная доля азота, доли ед.

    Необходимые параметры природного газа для нахождения его термодинамических свойств по описанным методикам определяются на основе:

    Молярных долей компонентов в потоке природного газа, принимаемых из полученного компонентного состава, определяемого на основе отобранных проб по изложенной методике в ГОСТ 31370-2008 (ИСО 10715:1997) [Международная система стандартизации. Газ природный. Руководство по отбору проб. - М.: Стандартинформ, 2009. - 47 с.] путем проведения хроматографических исследований по приведенной методике в ГОСТ 31371.7-2008 [Международная система стандартизации. Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Ч. 7. Методика выполнения измерений молярной доли компонентов. - М.: Стандартинформ, 2009. - 21 с.];

    Термобарических параметров (температуры (T 1) и давления (p 1)) потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой, определяемых путем прямых измерений средствами измерений температуры и давления;

    Термобарических параметров (температуры (T 2) и давления (p 2)) потока природного газа в месте максимального сжатия его струи за диафрагмой ДИКТа, определяемых по приведенным формулам в работе А.Д. Альтшуля, Л.С. Житовского, Л.П. Иванова [Гидравлика и аэродинамика: Учеб. для вузов / А.Д. Альтшуль, Л.С. Животовский, Л.П. Иванов. - М.: Стройиздат, 1987. - 414 с.: ил.], имеющим следующий алгебраический вид

    где p 2 - абсолютное давление газа в месте максимального сжатия его струи за диафрагмой ДИКТа, МПа;

    T 2 - абсолютная температура газа в месте максимального сжатия его струи за диафрагмой ДИКТа, К.

    Входящие в выражение (14) диаметр отверстия диафрагмы (d) и внутренний диаметр цилиндрической части корпуса ДИКТа перед сужающим устройством (D) находятся по формулам (5.4) и (5.5), приведенным на с. 20 в пункте 5.5 раздела 5 ГОСТ 8.586.1-2005 (ИСО 5167-1:2003) [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Ч. 1. Принцип метода измерений и общие требования. - М.: Стандартинформ, 2007. - 72 с.], имеющим следующий алгебраический вид

    где d 20 - диаметр отверстия диафрагмы ДИКТа при 20°C, м;

    K СУ - коэффициент температурного линейного расширения материала диафрагмы ДИКТа, доли ед.;

    D 20 - диаметр прямолинейного участка трубопровода перед сужающим устройством (диафрагмой) ДИКТа при 20°С, м;

    K T - коэффициент температурного линейного расширения материала прямолинейного участка трубопровода перед сужающим устройством (диафрагмы ДИКТа), доли ед.

    Входящие в выражение (23) и (24) коэффициент температурного линейного расширения материала диафрагмы ДИКТа (K СУ) и коэффициент температурного линейного расширения материала прямолинейного участка корпуса ДИКТа перед сужающим устройством (K T) находятся по формулам (5.6) и (5.7), приведенным на с. 20 в пункте 5.5 раздела 5 ГОСТ 8.586.1-2005 (ИСО 5167-1:2003) [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Ч. 1. Принцип метода измерений и общие требования. - М.: Стандартинформ, 2007. - 72 с.], имеющим следующий алгебраический вид:

    где α tСу - температурный коэффициент линейного расширения материала диафрагмы ДИКТа, 1/°C;

    α t T - температурный коэффициент линейного расширения материала прямолинейного участка корпуса ДИКТа, 1/°C.

    Значения температурных коэффициентов линейного расширения для материалов диафрагмы и корпуса ДИКТа, входящих в выражения (25) и (26), рассчитываются по формуле (Г.1), приведенной на странице 25 в приложении Г ГОСТ 8.586.1-2005 (ИСО 5167-1:2003) [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Ч. 1. Принцип метода измерений и общие требования. - М.: Стандартинформ, 2007. - 72 с.], имеющей следующий алгебраический вид

    где а 0 , а 1 , а 2 - постоянные коэффициенты, определяемые в соответствии с таблицей Г. 1, приведенной на с. 25-26 приложения Г ГОСТ 8.586.1-2005 (ИСО 5167-1:2003) [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Ч. 1. Принцип метода измерений и общие требования. - М.: Стандартинформ, 2007. - 72 с.].

    Используемый в выражении (14) коэффициент сжатия струи газового потока в месте максимального ее сужения за диафрагмой ДИКТа предлагается рассчитывать по формуле

    где - приведенная температура газа перед диафрагмой ДИКТа, ед.;

    Приведенное давление газа перед диафрагмой ДИКТа, ед..

    Входящие в выражение (28) значения приведенных давления и температуры потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой рассчитываются по формулам (35) и (36), представленным на с. 10 в пункте 7.2 раздела 7 ГОСТ 30319.2-2015 [Международная система стандартизации. Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода. - М.: Стандартинформ, 2016. - 16 с.], имеющим следующий алгебраический вид

    где p ПК - псевдокритическое давление газа, МПа;

    T ПК - псевдокритическая температура газа, K.

    Входящие в выражение (29) и (30) значения псевдокритических давления (p ПК) и температуры (T ПК) потока природного газа рассчитываются по формулам (37) и (38), представленным на с. 11 в пункте 7.2 раздела 7 ГОСТ 30319.2-2015 [Международная система стандартизации. Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода. - М.: Стандартинформ, 2016. - 16 с.], имеющим следующий алгебраический вид

    где x а - молярная доля азота, доли ед.;

    x y - молярная доля углекислого газа, доли ед.

    Оценка относительной расширенной неопределенности измерений дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием ДИКТа по изложенному способу выполнена на основе приведенной методики в ГОСТ Р 54500.3-2011 [Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. - М.: Стандартинформ, 2012. - 107 с.]. Для этого использовано выведенное выражение для оценки относительной расширенной неопределенности измерений объемного расхода природного газа, приведенного к стандартным условиям, которое имеет следующий общий алгебраический вид:

    где - относительная расширенная неопределенность измерения объемного расхода газа приведенного к стандартным условиям, %;

    Относительная стандартная неопределенность определения давления газа перед диафрагмой, %;

    Относительная стандартная неопределенность определения внутреннего диаметра диафрагмы ДИКТа, %;

    Относительная стандартная неопределенность определения коэффициента сжимаемости газа при стандартных условиях, %;

    Относительная стандартная неопределенность определения молярной массы газа, %;

    Относительная стандартная неопределенность определения температуры газа перед диафрагмой ДИКТом, %;

    Относительная стандартная неопределенность определения коэффициента сжатия струи газа в месте максимального ее сжатия за диафрагмой ДИКТа, %;

    Относительная стандартная неопределенность определения коэффициента сжимаемости газа при термобарических параметрах перед диафрагмой ДИКТа, %;

    Относительная стандартная неопределенность определения коэффициента сжимаемости газа при термобарических параметрах в месте максимального сжатия струи за диафрагмой ДИКТа, %;

    Относительная стандартная неопределенность определения относительного диаметра диафрагмы ДИКТа, %;

    Относительная стандартная неопределенность определения показателя адиабаты газа при термобарических параметрах перед диафрагмой ДИКТа, %.

    Вывод выражения (33) основан на рассмотрении в качестве функции измерений выражение (14).

    Оцененная относительная расширенная неопределенность измерений дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием ДИКТа по изложенному способу находится в диапазоне от минус 5,0 до плюс 5,0% без наличия выраженной систематической ошибки. Данное заключение сделано на основе сопоставления результатов измерения дебита по газу для газовых скважин по изложенному способу с результатами измерения данного параметра с использованием средств измерения расхода утвержденного типа, базирующихся на известном способе измерения расхода газа, изложенном в ГОСТ 8.586.5-2005 [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений. - М.: Стандартинформ, 2007. - 94 с.]. Рассматриваемое сопоставление выполнено для ряда газовых скважин полуострова Ямал. Его обобщенные результаты приведены на фиг. 7.

    На основе изложенной сущности способа определения дебита (расхода) по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа он реализуется выполнением последовательности действий:

    а) организация движения потока природного газа газовой скважины в режиме критического истечения через диафрагму ДИКТа типовой конструкции в атмосферу по приведенной схеме на фиг. 6 путем сбора измерительной линии, представленной на фиг. 8;

    б) измерение с использованием средств измерений температуры и давления утвержденного типа термобарических параметров (температуры и давления) для потока природного газа в корпусе ДИКТа перед диафрагмой в точках Т.1 и Т.2 измерительной линии, представленной на фиг. 8;

    в) отбор пробы потока природного газа по изложенной методике в ГОСТ 31370-2008 (ИСО 10715:1997) [Международная система стандартизации. Газ природный. Руководство по отбору проб. - М.: Стандартинформ, 2009. - 47 с.] из точки Т.3 измерительной линии, представленной на фиг. 8;

    г) определение компонентного состава для отобранной пробы потока природного газа по изложенной методике в ГОСТ 31371.7-2008 [Международная система стандартизации. Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Ч. 7. Методика выполнения измерений молярной доли компонентов. - М.: Стандартинформ, 2009. - 21 с.];

    д) формирование массива исходных данных для определения термобарических, термодинамических и газодинамических параметров потока природного газа, используемых при нахождении дебита (расхода) по газу для газовой скважины, который включает сведения о:

    Материале, из которого изготовлена используемая диафрагме в ДИКТе, и о его температурном коэффициенте линейного расширения;

    Материале, из которого изготовлена линейная часть корпуса используемого ДИКТа, и о его температурном коэффициенте линейного расширения;

    Диаметре внутреннего отверстия используемой диафрагмы в ДИКТе при 20°C;

    Внутреннем диаметре цилиндрической части корпуса используемого ДИКТа при 20°C;

    Температурном коэффициенте линейного расширения материала используемой диафрагмы в ДИКТе;

    Температурном коэффициенте линейного расширения материала корпуса используемого ДИКТа;

    Температуре газового потока в линейной части корпуса ДИКТа перед диафрагмой;

    Давлении газового потока в линейной части корпуса ДИКТа перед диафрагмой;

    Компонентном составе потока природного газа, проходящего через ДИКТЖ

    е) определение термобарических, термодинамических и газодинамических параметров потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой и в месте максимального сжатия его струи за диафрагмой ДИКТа по формулам (15)-(32), необходимых для нахождения дебита (расхода) по газу для газовой скважины по выражению (14);

    ж) нахождение дебита (расхода) по газу для газовой скважины по выражению (14).

    На основе изложенной сущности способа определения дебита (расхода) по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа и описанного способа его реализации ниже приведен пример выполнения измерений.

    На первом этапе организуется движение потока природного газа по измерительной линии, представленной на фиг. 8, с прохождением диафрагмы ДИКТа в режиме критического истечения по приведенной схеме на фиг. 6.

    Затем проводятся измерения термобарических параметров (температуры и давления) для потока природного газа в корпусе ДИКТа перед диафрагмой в точках Т.1 и Т.2 измерительной линии, представленной на фиг. 8, с использованием средств измерений температуры и давления утвержденного типа с записью результатов, например:

    Значение температуры потока природного газа в корпусе ДИКТа (T 1) 282,87 К;

    Значение давления потока природного газа в корпусе ДИКТа (p 1) 6,34 МПа.

    Потом осуществляется отбор пробы потока природного газа по изложенной методике в ГОСТ 31370-2008 (ИСО 10715:1997) [Международная система стандартизации. Газ природный. Руководство по отбору проб. - М.: Стандартинформ, 2009. - 47 с.] из точки Т.3 измерительной линии, представленной на фиг. 8.

    Для отобранной пробы проводятся лабораторные хроматографические исследования по определения компонентного состава потока природного газа по изложенной методике в ГОСТ 31371.7-2008 [Международная система стандартизации. Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Ч. 7. Методика выполнения измерений молярной доли компонентов. - М.: Стандартинформ, 2009. - 21 с.]. Результат лабораторных хроматографических исследований представляется в табличной фирме по примеру, представленному таблицей 1.

    После проведения измерений термобарических параметров (температуры и давления) потока природного газа в корпусе ДИКТа перед диафрагмой и лабораторных хроматографических исследований по определению его компонентного состава формируется массив исходных данных для определения термобарических, термодинамических и газодинамических параметров потока, используемых при нахождении дебита (расхода) по газу для газовой скважины по формуле (14). Пример формируемого массива исходных данных приведен в таблице 2.

    По завершению формирования массива исходных данных проводится расчет термобарических, термодинамических и газодинамических параметров потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой и в месте максимального сжатия его струи за диафрагмой ДИКТа по формулам (15)-(32), необходимых для нахождения дебита (расхода) по газу для газовой скважины по выражению (14). Пример представления результатов расчета необходимых термобарических, термодинамических и газодинамических параметров потока природного газа для нахождения дебита (расхода) по газу для газовой скважины по выражению (14) приведен в таблице 3.

    После определения параметров потока природного газа, приведенных в таблице 3, и с использованием измеренных термобарических параметров рассматриваемого потока в линейной части корпуса ДИКТа перед диафрагмой осуществляется расчет дебита (расхода) по газу для газовой скважины по выражению (14). Расчет дебита осуществляется путем подстановки найденных числовых значений измеренных величин из таблицы 2 и предварительно рассчитанных промежуточных величин из таблицы 3 в выражение (14)

    Способ определения дебита по газу для газовых скважин при гидродинамических исследованиях на установленных режимах фильтрации с использованием диафрагменного измерителя критического течения (ДИКТа), характеризующийся тем, что включает:

    организацию движения потока природного газа газовой скважины в режиме критического истечения через диафрагму ДИКТа типовой конструкции в атмосферу,

    измерение с использованием средств измерений утвержденного типа температуры и давления для потока природного газа в корпусе ДИКТа перед диафрагмой,

    отбор пробы потока природного газа,

    определение компонентного состава для отобранной пробы потока природного газа,

    формирование массива исходных данных для определения термобарических, термодинамических и газодинамических параметров потока природного газа, используемых при нахождении дебита по газу для газовой скважины, который включает сведения: материал, из которого изготовлена используемая диафрагме в ДИКТе, температурный коэффициент линейного расширения материала диафрагмы; материал, из которого изготовлена линейная часть корпуса используемого ДИКТа, температурный коэффициент линейного расширения материала корпуса ДИКТ; диаметр внутреннего отверстия используемой диафрагмы в ДИКТе при 20°C; внутренний диаметр цилиндрической части корпуса используемого ДИКТа при 20°C; температура и давление газового потока в линейной части корпуса ДИКТа перед диафрагмой; компонентный состав потока природного газа, проходящего через ДИКТ,

    определение термобарических, термодинамических и газодинамических параметров потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой и в месте максимального сжатия его струи за диафрагмой ДИКТа, нахождение дебита по газу для газовой скважины по выражению

    где Q СТ - объемный расход (дебит) газа, ст. м 3 /с;

    ε - коэффициент сжатия струи газового потока в месте максимального сжатия его струи за диафрагмой ДИКТа, доли ед.;

    d - диаметр отверстия диафрагмы ДИКТа, м;

    z 1 и z 2 - коэффициенты сжимаемости газа перед диафрагмой ДИКТа и в месте максимального сжатия его струи за диафрагмой ДИКТа, ед.;

    z CT - коэффициент сжимаемости газа при стандартных условиях, ед.;

    р 1 - абсолютное давление газа перед диафрагмой ДИКТа, МПа;

    р СТ - давление, соответствующее стандартным условиям р СТ =1,01325⋅10 5 Па;

    Т СТ - температура, соответствующая стандартным условиям Т СТ =293,15 К;

    T 1 - абсолютная температура газа перед диафрагмой ДИКТа, К;

    R - молярная газовая постоянная R=8,31 Дж/(моль⋅К);

    М - молярная масса газа, кг/моль;

    k - показатель адиабаты газа, ед.;

    β - относительный диаметр отверстия диафрагмы ДИКТа (β=d/D), доли ед.;

    D - внутренний диаметр цилиндрической части корпуса ДИКТа перед сужающим устройством,

    при этом коэффициент сжатия струи газового потока в месте максимального ее сужения за диафрагмой ДИКТа определяют по формуле

    где - приведенная температура газа перед диафрагмой ДИКТа, ед.;

    - приведенное давление газа перед диафрагмой ДИКТа, ед.

    Похожие патенты:

    Группа изобретений относится к нефтедобывающей отрасли промышленности и может быть применена для эксплуатации скважин на многопластовых залежах нефти. Установка включает верхний штанговый насос трубного исполнения с боковым всасывающим клапаном, отверстием и нагнетательным клапаном в цилиндре для отбора продукции верхнего пласта, нижний насос трубного исполнения с нагнетательным, всасывающим клапанами для отбора продукции нижнего пласта и приемным патрубком, проходящим через пакер, разделяющий пласты, полые штанги, соединенные с плунжером насоса.

    Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для оперативного учета дебитов продукции газоконденсатных месторождений и исследований работы многофазных расходомеров на реальной смеси газа, пластовой воды и нестабильного газового конденсата, получаемой непосредственно из скважины.

    Изобретение относится к газодобывающей промышленности, в частности к технологии измерения дебита по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием типового диафрагменного измерителя критического течения. Технический результат заключается в получении результатов измерений с достоверностью в диапазоне от минус 5,0 до плюс 5,0 без наличия явно выраженных систематических ошибок, которые характерны для известных способов. Способ включает: организацию движения потока природного газа газовой скважины в режиме критического истечения через диафрагму ДИКТа, измерение с использованием средств измерений утвержденного типа температуры и давления для потока природного газа в корпусе ДИКТа перед диафрагмой, отбор пробы потока природного газа, определение компонентного состава для отобранной пробы потока природного газа. Формирование массива исходных данных для определения термобарических, термодинамических и газодинамических параметров потока природного газа, используемых при нахождении дебита по газу для газовой скважины, который включает сведения: материал, из которого изготовлена используемая диафрагме в ДИКТе, температурный коэффициент линейного расширения материала диафрагмы; материал, из которого изготовлена линейная часть корпуса используемого ДИКТа, температурный коэффициент линейного расширения материала корпуса ДИКТ; диаметр внутреннего отверстия используемой диафрагмы в ДИКТе при 20°C; внутренний диаметр цилиндрической части корпуса используемого ДИКТа при 20°C; температура и давление газового потока в линейной части корпуса ДИКТа перед диафрагмой; компонентный состав потока природного газа, проходящего через ДИКТ. Определение термобарических, термодинамических и газодинамических параметров потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой и в месте максимального сжатия его струи за диафрагмой ДИКТа, нахождение дебита по газу для газовой скважины с учетом ε - коэффициента сжатия струи газового потока в месте максимального сжатия его струи за диафрагмой ДИКТа, доли ед.; d - диаметра отверстия диафрагмы ДИКТа, м; z1 и z2 - коэффициентов сжимаемости газа перед диафрагмой ДИКТа и в месте максимального сжатия его струи за диафрагмой ДИКТа, ед.; zCT - коэффициента сжимаемости газа при стандартных условиях, ед.; р1 - абсолютного давления газа перед диафрагмой ДИКТа, МПа; рСТ - давления, соответствующего стандартным условиям рСТ1,01325⋅105 Па; ТСТ - температуры, соответствующей стандартным условиям ТСТ293,15 К; T1 - абсолютной температурой газа перед диафрагмой ДИКТа, К; R - молярной газовой постоянной R8,31 Дж; М - молярной массы газа, кгмоль; k - показателя адиабаты газа, ед.; β - относительного диаметра отверстия диафрагмы ДИКТа, доли ед.; D - внутреннего диаметра цилиндрической части корпуса ДИКТа перед сужающим устройством, при этом коэффициент сжатия струи газового потока в месте максимального ее сужения за диафрагмой ДИКТа определяют с учетом приведенной температуры газа перед диафрагмой ДИКТа и приведенного давления газа перед диафрагмой ДИКТа. 8 ил., 3 табл.

    1

    Технологическая операция вертикального гидроразрыва пласта (ГРП) часто применяется на газодобывающих промыслах для интенсификации притока флюида к скважине. Широкое практическое применение ГРП стимулирует научные и промысловые исследования по изучению закономерностей фильтрации газа к скважинам с трещинами гидроразрыва . В предлагаемой статье выводится новая формула для расчета дебита газодобывающей скважины после ГРП, расчеты по которой осуществляются намного проще, нежели по формулам . В то же время предлагаемая авторами альтернативная формула дает результаты, отклоняющиеся от результатов в пределах не более 3-5%, что позволяет рекомендовать альтернативную формулу к практическому применению.

    1. Геометрическая модель призабойной зоны и трещины гидроразрыва

    Следуя работе Каневской Р.Д. и Каца Р.М. вертикальную трещину гидроразрыва пласта с конечной толщиной и проводимостью моделируем в виде эллипса с полуосями l и w (рис. 1).

    Рис. 1 . Схема области фильтрации:
    1 - пласт; 2 - трещина; 3 - призабойная зона пласта.
    a 2 - b 2 = l 2 - w 2 = f 2 ; f - фокусное расстояние конфокальных эллипсов;
    r c - радиус скважины. Приток флюида в скважину осуществляется только через трещину

    Границу призабойной зоны пласта (ПЗП) моделируем эллипсом, конфокальным к эллиптической трещине. Геометрические размеры и фокусное расстояние f этих двух конфокальных эллипсов будут связаны уравнением

    Проницаемости наполнителя трещины 2, призабойной зоны пласта 3 и незагрязненной (удаленной от скважины) части пласта ℓ будем обозначать соответственно как k 2 , k 3 и k 1 . Установившуюся фильтрацию флюида во всей области фильтрации на рис. 1, как и в , считаем подчиняющейся линейному закону Дарси. Вдоль эллиптических границ трещины и ПЗП давление принимается постоянным - названные границы при выводе формулы для дебита скважины принимаются за изобары.

    Для вывода формулы дебита скважины с трещиной ГРП предварительно рассчитаем фильтрационные потоки в каждой отдельной части области фильтрации на рис. 1.

    2. Расчет притока флюида в скважину через вертикальную трещину гидроразрыва

    При расчете притока флюида в скважину из вертикальной эллиптической трещины в в начале координат размещают точечный сток, мощность которого и определяет искомый дебит скважины с ГРП. Однако радиус скважины ≈ 10-15 см, а наибольшая толщина (раскрытие) трещины ≈ 1 см. При таком соотношении размеров радиуса скважины и толщины трещины, моделировать течение к скважине из трещины гидроразрыва при помощи точечного стока в начале координат проблематично, что, по-видимому, и привело авторов к сложному расчетному алгоритму.

    Чтобы избежать вычислительных трудностей, связанных с использованием точечного стока, в данной работе на этапе расчета притока флюида в скважину из трещины гидроразрыва последняя моделируется в виде двух одинаковых тонких протяженных прямоугольников с размерами ℓ′ (длина) и 2w′ (ширина). Прямоугольники непосредственно примыкают к скважине по разные стороны от нее и их оси расположены на одной прямой, проходящей через центр скважины. Эллиптическая трещина отождествляется с прямоугольной, если вне кругового контура скважины они обладают равными длинами и площадями поперечных сечений. Исходя из такого определения тождественности двух форм трещин, для геометрических параметров трещин получаем следующие уравнения связи:

    (2)

    Рассмотрим приток флюида к скважине через трещину гидроразрыва прямоугольной формы. Установившаяся плоскопараллельная фильтрация совершенного газа, как известно, описывается решениями уравнения Лапласа

    (3)

    относительно функции , где p - давление. Если решение уравнения (3) при соответствующих граничных условиях будет найдено, то поле скоростей найдется из закона Дарси по формуле

    В решаемой задаче расчетная область - прямоугольник на сторонах которого задаются следующие граничные условия:

    Решение краевой задачи (3)‒(6) строится стандартным методом Фурье и имеет вид

    Неопределенные коэффициенты A n в формуле (7) находим из последнего граничного условия (6). С помощью известных формул для коэффициентов ряда Фурье, получим, что

    (9)

    Подстановка коэффициентов A n из формул (9) в (7) приводит к следующему выражению для функции :

    В формуле (10) осталась лишь одна неизвестная величина - скорость фильтрации на границе x = 0 - на входе потока из трещины гидроразрыва в ствол скважины. Для определения неизвестной величины v вычислим среднее значение функции Ф(x, y) на границе x = 0. На основании формулы (10) для среднего значения

    (11)

    найдем, что

    (12)

    С другой стороны, на границе x = 0 давление должно быть равно забойному давлению и, следовательно, должно выполняться равенство . С учетом последнего замечания
    из (12) для неизвестной величины получим следующее значение:

    (13)

    где .

    Учитывая, что приток флюида в скважину (подсчитанный для атмосферного давления и пластовой температуры) через трещину гидроразрыва в пласте с толщиной b′ равен величине , для искомой величины дебита Q скважины окончательно получим выражение

    (14)

    3. Расчет притока флюида к вертикальной эллиптической трещине гидроразрыва от конфокальной границы ПЗП

    Рассмотрим теперь фильтрацию в области 3 между трещиной гидроразрыва и эллиптической границей призабойной зоны. На этом этапе исследования форму трещины примем в виде удлиненного эллипса с осями 2l (длина трещины) и 2w (параметр, характеризующий раскрытие трещины). Формула для притока совершенного газа от эллиптической границы ПЗП к эллиптической границе трещины хорошо известна и имеет вид:

    (15)

    4. Расчет притока флюида к эллиптической границе ПЗП от кругового контура питания

    Теперь рассмотрим фильтрацию в 1-й области между эллиптической границей призабойной зоны и круговым контуром питания с радиусом R. Формулу для притока флюида к эллиптической границе ПЗП можно получить методом ЭГДА, исходя из формулы (4)-(25) справочника по расчету электрических емкостей. Формула (4)-(25) в терминах рассматриваемой задачи фильтрации на основании ЭГДА запишется следующим образом:

    (16)

    где K(k) и K(k′) = K′(k) - полные эллиптические интегралы 1-го рода с модулями k и соответственно, а F(ψ; k) - неполный эллиптический интеграл первого рода. Модуль k и аргумент ψ вычисляются через параметры уравнений границ ПЗП и радиус R кругового контура питания по следующим формулам:

    (17)

    5. Вывод формулы для расчета дебита газодобывающей скважины с вертикальной трещиной гидроразрыва пласта

    Формулы (14), (15) и (16) дают систему трех линейных уравнений с тремя неизвестными - дебитом Q и давлениями P трщ и P ПЗП. Решая методом исключения эту систему уравнений, для расчета дебита скважины с вертикальной трещиной гидроразрыва в ПЗП получим следующую формулу:

    Составляя отношение дебита скважины после ГРП к дебиту этой же скважины без ГРП, для коэффициента эффективности ГРП получаем следующее выражение:

    Сопоставительные расчеты дебитов скважин с ГРП по формулам (18) и выявили, что максимальные относительные расхождения не превышают 3-5%. В то же время в вычислительном плане формула (18) для практики предпочтительнее, так как она имеет более простую программную реализацию.

    На практике формулы (18) и (19) позволяют рассчитать прогнозный дебит скважины, на которой планируется проведение операции гидроразрыва пласта, и, в конечном итоге, оценить ожидаемую технико-экономическую эффективность от проведения ГРП.

    СПИСОК ЛИТЕРАТУРЫ

    1. Технология проектирования гидроразрыва пласта как элемента системы разработки газоконденсатных месторождений / О.П. Андреев [и др.]. - М.: ООО «Газпром экспо», 2009. -
      183 с.
    2. Кадет В.В., Селяков В.И. Фильтрация флюида в среде, содержащей эллиптическую трещину гидроразрыва // Изв. вузов. Нефть и газ. - 1988. - № 5. - С. 54-60.
    3. Каневская Р.Д., Кац Р.М. Аналитические решения задач о притоке жидкости к скважине с вертикальной трещиной гидроразрыва и их использование в численных моделях фильтрации //
      Изв. РАН. МЖГ. - 1996. - № 6. - С. 59-80.
    4. Производительность скважин. Руководство Хеманта Мукерджи. - М.: 2001.
    5. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика. - Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с.
    6. Иоссель Ю.Я., Кочанов Э.С., Струнский М.Г. Расчет электрической емкости. - Л.: Энергоиздат, 1981. - 288 с.

    Библиографическая ссылка

    Гасумов Р.А., Ахмедов К.С., Толпаев В.А. РАСЧЕТ ДЕБИТА ГАЗОДОБЫВАЮЩЕЙ СКВАЖИНЫ С ВЕРТИКАЛЬНОЙ ТРЕЩИНОЙ ГИДРОРАЗРЫВА ПЛАСТА // Успехи современного естествознания. – 2011. – № 2. – С. 78-82;
    URL: http://natural-sciences.ru/ru/article/view?id=15932 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

    Министерство образования и науки Российской Федерации

    Российский государственный университет нефти и газа имени И.М. Губкина

    Факультет разработки нефтяных и газовых месторождений

    Кафедра разработки и эксплуатации газовых и газоконденсатных месторождений

    КОНТРОЛЬНАЯ РАБОТА

    по курсу «Разработка и эксплуатация газовых и газоконденсатных месторождений»

    на тему: «Расчет технологического режима эксплуатации - предельный безводный дебит на примере скважины Комсомольского газового месторождения».

    Выполнил Кибишев А.А.

    Проверил: Тимашев А.Н.

    Москва, 2014

    • 1. Краткая геолого-промысловая характеристика месторождения
    • 5. Анализ результатов расчетов

    1. Краткая геолого-промысловая характеристика месторождения

    Комсомольское газоконденсатнонефтяное месторождение расположено на территории Пуровского района Ямало-Ненецкого автономного округа, в 45 км южнее районного центра посёлка Тарко-Сале н 40 км восточнее посёлка Пурпе.

    Ближайшие месторождения с утверждёнными в ГКЗ СССР запасами нефти Усть-Харампурское (10 - 15 км к востоку). Ново-Пурпейское (100 км к западу).

    Месторождение открыто в 1967 году первоначально как газовое (С"еноманская затежь). Как нефтяное открыто в 1975 году. В 1980 году была составлена технологическая схема разработки, реализация которой началась в 1986 году.

    Действующий газопровод Уренгой - Новополоцк находится в 30 км к западу от месторождения. В 35 - 40 км к западу проходит трасса железной дороги Сургут - Уренгой.

    Территория представляет собой слегка всхолмленную (абсолютные отметки плюс 33, плюс 80 м), заболоченную, с многочисленными озерами равнину. Гидрографическая сеть представлена реками Пякупур и Айваседапур (притоки реки Пур). Реки судоходны лишь во время весеннего паводка (июнь), который длится один месяц.

    Комсомольское месторождение расположено в пределах структуры П порядка - Пякупуровского куполовидного поднятия, входящего в состав Северного мегавала.

    Пякупуровское куполовидное поднятие представляет приподнятую зону неправильной формы, ориентированную в юго-западно-северо-восточном направлениях, осложнённую несколькими локальными поднятиями III порядка.

    Анализ физико-химических свойств нефти, газа и воды позволяет подобрать наиболее оптимальное скважинное оборудование, режим работы, технологию хранения и транспортировки, тип операции по обработке призабойной зоны пласта, объем закачиваемой жидкости и многое другое.

    Физико-химические свойства нефти и растворенного газа Комсомольского месторождения изучались по данным исследований поверхностных и глубинных проб.

    Часть параметров определялась непосредственно на скважинах (замеры давлений, температур, и др.) Анализ проб проводился в лабораторных условиях в ТЦЛ. ООО "Геохим”, ООО "Реагент" г. Тюмени.

    Поверхностные пробы отбирались из выкидной линии при работе скважин на определённом режиме. Все исследования поверхностных проб нефти и газа проводились по методикам, предусмотренным Государственными стандартами.

    В процессе исследований был изучен компонентный состав нефтяного газа, результаты приведены в таблице 1.

    Таблица 1 - Компонентный состав нефтяного газа.

    К подсчету запасов рекомендуются параметры, определенные при стандартных условиях и способе, приближенном к условиям разгазирования нефти на промысле, то есть при ступенчатой сепарации. В связи с этим результаты исследований проб нефтяным методом дифференциального разгазирования в расчете средних значений не использовались.

    Свойства нефтей также изменяются по разрезу. Анализ результатов лабораторных исследований проб нефтей не позволяет выделить строгие закономерности, однако можно проследить основные тенденции изменения свойств нефтей. С глубиной плотность и вязкость нефти имеют тенденцию к уменьшению, такая же тенденция сохраняется н для содержания смол.

    Растворимость газов в воде гораздо ниже, чем в нефти. При увеличении минерализации воды растворимость газов в воде уменьшается.

    Таблица 2 - Химический состав пластовых вод.

    2. Конструкция скважин для месторождений, вскрывших пластовую воду

    В газовых скважинах может происходить конденсация парообразной воды из газа и поступление воды на забой скважины из пласта. В газоконденсатных скважинах к этой жидкости добавляется углеводородный конденсат, поступающий из пласта и образующийся в стволе скважин. В начальный период разработки залежи при высоких скоростях газового потока на забое скважин и небольшом количестве жидкости она практически полностью выносится на поверхность. По мере снижения скорости потока газа на забое и увеличения расхода жидкости, поступающей на забой скважины за счет обводнения проницаемых пропластков и увеличения объемной конденсатонасыщенности пористой среды, не обеспечивается полный вынос жидкости из скважины, происходит накопление столба жидкости на забое. Он увеличивает противодавление на пласт, приводит к существенному снижению дебита, прекращению притока газа из низкопроницаемых пропластков и даже полной остановке скважины.

    Предотвратить поступление жидкости в скважину можно поддержанием условий отбора газа на забое скважины, при которых не происходит конденсации воды и жидких углеводородов в призабойной зоне пласта, недопущением прорыва конуса подошвенной воды или языка краевой воды в скважину. Кроме того, можно предотвратить поступление воды в скважину изоляцией посторонних и пластовых вод.

    Жидкость с забоя скважин удаляется непрерывно или периодически. Непрерывное удаление жидкости из скважины осуществляется эксплуатацией ее при скоростях, обеспечивающих вынос жидкости с забоя в поверхностные сепараторы, отбором жидкости через спущенные в скважину сифонные или фонтанные трубы с помощью газлифта, плунжерного лифта или откачки жидкости скважинными насосами.

    Периодическое удаление жидкости можно осуществить остановкой скважины для поглощения жидкости пластом, продувкой скважины в атмосферу через сифонные или фонтанные трубы без закачки или с закачкой ПАВ (пенообразователей) на забой скважины.

    Выбор способа удаления жидкости с забоя скважин зависит от геолого-промысловой характеристики газонасыщенного пласта, конструкции скважины, качества цементирования заколонного пространства, периода разработки залежи, а также от количества и причин поступления жидкости в скважину. Минимальное выделение жидкости в призабойной зоне пласта и на забое скважины можно обеспечивать регулированием забойного давления и температуры. Количество воды и конденсата, выделяющихся из газа на забое скважины при забойных давлении и температуре, определяется по кривым влагоемкости газа и изотермам конденсации.

    Для предупреждения прорыва конуса подошвенной воды в газовую скважину ее эксплуатируют при предельных безводных дебитах, определяемых теоретически или специальными исследованиями.

    Посторонние и пластовые воды изолируются закачкой цементного раствора под давлением. Во время этих операций газонасыщенные пласты изолируют от обводненных пакерами. На подземных хранилищах газа отработан метод изоляции обводненных пропластков закачкой в них ПАВ, препятствующих поступлению воды в скважину. Опытно-промышленные испытания показали, что для получения устойчивой пены "концентрацию пенообразователя" (в пересчете на активное вещество) следует принять равной 1,5-2% объема закачиваемой жидкости, а стабилизатора пены - 0,5-1%. Для перемешивания ПАВ и воздуха на поверхности применяют специальное устройство - аэратор (типа "перфорированная труба в трубе"). Через перфорированный патрубок компрессором закачивают воздух в соответствии с заданной а, в наружную трубу закачивают водный раствор ПАВ насосом с расходом 2-3 л/с.

    Эффективность метода удаления жидкости обосновывается специальными исследованиями скважин и технико-экономическими расчетами. Для поглощения жидкости пластом скважину останавливают на 2-4 ч. Дебиты скважин после пуска возрастают, однако не всегда компенсируют потери в добыче газа вследствие простоя скважин. Поскольку столб жидкости не всегда уходит в пласт, а при низких давлениях приток газа может не возобновиться, этот метод применяют редко. Подключение скважины к газосборной сети низкого давления позволяет эксплуатировать обводненные скважины, отделять воду от газа, использовать газ низкого давления в течение длительного времени. Продувка скважин в атмосферу осуществляется в течение 15-30 мин. Скорость газа на забое должна при этом достигать 3-6 м/с. Метод прост и применяется, если дебит восстанавливается на длительный срок (несколько суток). Однако этому методу присущи многие недостатки: жидкость с забоя удаляется не полностью, возрастающая депрессия на пласт приводит к интенсивному поступлению новых порций воды, разрушению пласта, образованию песчаной пробки, загрязнению окружающей среды, потерям газа.

    Периодическая продувка скважин через НКТ диаметром 63-76 мм или через специально спущенные сифонные трубы диаметром 25-37 мм осуществляется тремя способами: вручную либо автоматами, установленными на поверхности или на забое скважины. От продувки в атмосферу этот метод отличается тем, что он применяется только после накопления определенного столба жидкости на забое.

    Газ из скважины вместе с жидкостью поступает в газосборный коллектор низкого давления, отделяется от воды в сепараторах и поступает на компримироваиие или сжигается в факеле. Автомат, установленный на устье, периодически приоткрывает клапан на рабочей линии. Команду на это автомат получает при возрастании до заданного перепада между давлениями в затрубном пространстве и в рабочей линии. Величина этого перепада зависит от высоты столба жидкости в НКТ.

    Автоматы, установленные на забое, также срабатывают при определенной высоте столба жидкости. Устанавливают один клапан на входе в НКТ или несколько пусковых газлифтных клапанов на нижнем участке НКТ.

    Для накопления жидкости на забое может использоваться внутрискважинная сепарация газожидкостного потока. Такой способ сепарации с последующей продавкой жидкости в нижележащий горизонт был испытан после предварительных лабораторных исследований на скв. 408 и 328 Коробковского месторождения. При этом методе существенно уменьшаются гидравлические потери давления в стволе скважины и расходы на сбор и утилизацию пластовых вод.

    Периодическое удаление жидкости можно осуществлять и при подаче ПАВ на забой скважины. При контакте воды с пенообразующим веществом и барботаже газа через столб жидкости образуется пена. Поскольку плотность пены существенно меньше плотности воды, даже сравнительно небольшие скорости газа (0,2-0,5 м/с) обеспечивают вынос пенообразной массы на поверхность.

    При минерализации вод менее 3--4 г/л применяется 3-5%-ный водный раствор сульфонола, при высокой минерализации (до 15-20 г/л) используют натриевые соли сульфокислот. Жидкие ПАВ периодически закачиваются в скважину, а из твердых ПАВ (порошки "Дон", "Ладога", Триалон и др.) изготовляют гранулы диаметром 1,5-2 см или стержни длиной 60-80 см, которые затем подают на забой скважин.

    Для скважин, имеющих приток воды до 200 л/сут, рекомендуется вводить до 4 г активного вещества ПАВ на 1 л воды, на скважинах с притоком до 10 т/сут это количество уменьшается.

    Ввод на отдельных скважинах Майкопского месторождения до 300-400 л растворов сульфонола или порошка "Новость" приводил к увеличению дебитов в 1,5-2,5 раза по сравнению с начальными, продолжительность эффекта достигала 10-15 сут. Присутствие конденсата в жидкости снижает активность ПАВ на 10-30%, а если конденсата больше, чем воды, пена не образуется. В этих условиях применяют специальные ПАВ.

    Непрерывное удаление жидкости с забоя происходит при определенных скоростях газа, обеспечивающих образование капельного двухфазного потока. Известно, что эти условия обеспечиваются при скоростях газа более 5 м/с в колоннах труб диаметром 63-76 мм при глубинах скважин до 2500 м.

    Непрерывное удаление жидкости применяется в тех случаях, когда пластовая вода непрерывно поступает на забой скважины, Диаметр колонны НКТ подбирается таким, чтобы получить скорости потока, обеспечивающие вынос жидкости с забоя. При переходе на меньший диаметр труб увеличиваются гидравлические сопротивления. Поэтому переход на меньший диаметр эффективен в том случае, если потери давления на трение меньше противодавления на пласт столба жидкости, которая не удаляется с забоя.

    Для удаления жидкости с забоя успешно применяются газлифтные системы с забойным клапаном. Газ отбирается по затрубному пространству, а жидкость удаляется через НКТ, на которых установлены пусковые газлифтные и забойные клапаны. На клапан действует сила сжатия пружины и разность давлений, создаваемых столбами жидкости в НКТ и в затрубье (вниз), а также сила, обусловленная давлением в за- трубном пространстве (вверх). При расчетном уровне жидкости в затрубном пространстве соотношение действующих сил становится таким, что клапан открывается и жидкость поступает в НКТ и далее в атмосферу или в сепаратор. После снижения уровня жидкости в затрубье до заданного входной клапан закрывается. Жидкость внутри НКТ накапливается до тех пор, пока не сработают пусковые газлифтные клапаны. При открытии последних газ из затрубного пространства поступает в НКТ и выносит жидкость на поверхность. После снижения уровня жидкости в НКТ пусковые клапаны закрываются, и внутри труб снова накапливается жидкость за счет перепуска ее из затрубья.

    В газовых и газоконденсатных скважинах применяют плунжерный лифт типа "летающий клапан”. В нижней части колонны НКТ устанавливают трубный ограничитель, а на фонтанной арматуре - верхний амортизатор. Плунжер помещают в фонтанные трубы, которые служат ему направляющим каналом - "цилиндром", а сам он выполняет роль "поршня”.

    Практикой эксплуатации установлены оптимальные скорости подъема (1-3 м/с) и падения (2-5 м/с) плунжера. При скоростях газа у башмака более 2 м/с применяют плунжерный лифт непрерывного действия.

    При низких пластовых давлениях в скважинах глубиной до 2500 м применяют скважинные насосные установки. В этом случае удаление жидкости не зависит от скорости* газа и может осуществляться до самого конца разработки залежи при снижении устьевого давления до 0,2-0,4 МПа. Таким образом, скважинные насосные установки применяют в условиях, когда другие способы удаления жидкости вообще нельзя применить либо их эффективность резко падает.

    Скважинные насосы устанавливают на НКТ, а газ отбирают через затрубное пространство. Чтобы исключить поступление газа на прием насоса, его размещают ниже зоны перфорации под буферным уровнем жидкости или над забойным клапаном, который пропускает в НКТ только жидкость.

    месторождение скважина дебит анизотропия

    3. Технологические режимы эксплуатации скважин, причины ограничения дебитов

    Технологический режим работы проектных скважин относится к числу наиболее важных решений, принимаемых проектировщиком. Технологический режим работы, наряду с типом скважины (вертикальная или горизонтальная), предопределяет их число, следовательно, наземную обвязку, а в конечном счете, капвложения на освоение месторождения при заданном отборе из залежи. Трудно найти проблему при проектировании которая имела бы, как технологический режим, многовариантное и сугубо субъективное решение.

    Технологический режим - это конкретные условия движения газа в пласте, призабойной зоне и скважине, характеризуемые величиной дебита и забойного давления (градиента давления) и определяемые некоторыми естественными ограничениями.

    К настоящему времени выделены 6 критериев, соблюдение которых позволяет контролировать устойчивую работу скважины Эти критерии являются математическим выражением учета влияния различных групп факторов на режим эксплуатации. Наибольшее влияние на режим эксплуатации скважин оказывают:

    Деформация пористой среды при создании значительных депрессий на пласт, приводящих к снижению проницаемости призабойной зоны, особенно в трещиновато- пористых пластах;

    Разрушение призабойной зоны при вскрытии неустойчивых, слабоустойчивых и слабосцементированных коллекторов;

    Образование песчано-жидкостных пробок в процессе эксплуатации скважин и их влияние на выбранный режим работы;

    Образование гидратов в призабойной зоне и в стволе скважины;

    Обводнение скважин подошвенной водой;

    Коррозия скважинного оборудования в процессе эксплуатации;

    Подключение скважин в общин коллектор;

    Вскрытие пласта многопластовых месторождений с учетом наличия гидродинамической связи между пропластками и др.

    Все эти и другие факторы выражаются следующими критериями, имеющими вид:

    dP/dR = Const -- постоянный градиент, с которым должны эксплуатироваться скважины;

    ДP=Pпл(t) - Pз(t) = Const -- постоянная депрессия на пласт;

    Pз(t) = Const -- постоянное забойное давление;

    Q(t) = Const -- постоянный дебит;

    Py(t) = Const -- постоянное устьевое давление;

    х(t) = Const -- постоянная скорость потока.

    Для любого месторождения при обосновании технологического режима работы следует выбрать один (очень редко два) из этих критериев.

    При выборе технологических режимов работы скважин, проектируемого месторождения, независимо от того, какие критерии будут приняты в качестве основных, определяющих режим эксплуатации, должны быть соблюдены следующие принципы:

    Полнота учета геологической характеристики залежи, свойств флюидов, насыщающих пористую среду;

    Выполнение требований закона об охране окружающей среды и природных ресурсов углеводородов газа, конденсата и нефти;

    Полная гарантия надежности работы системы «пласт--начало газопровода» в процессе разработки залежи;

    Максимальный учет возможность снятия всех ограничивающих производительность скважин факторов;

    Своевременное изменение ранее установленных режимов, не пригодных на данной стадии разработки месторождения;

    Обеспечение предусмотренного объема добычи газа, конденсата и нефти при минимальных капвложениях и эксплуатационных затратах и устойчивой работы всей системы «пласт-газопровод».

    Для выбора критериев технологического режима работы скважин сначала следует установить определяющий фактор или группу факторов для обоснования режима эксплуатации проектных скважин. Особое внимание при этом проектировщик должен обратить на наличие подошвенной воды, многослойность и наличие гидродинамической связи между пластами, на параметр анизотропии, на наличие литологических экранов по площади залежи, на близость контурных вод, на запасы и проницаемость маломощных высокопроницаемых пропластков (суперколлекторов), на устойчивость пропластков, на величину предельных градиентов, с которых начинается разрушение пласта, на давление и температуры в системе «пласт-УКПГ», на изменение свойств газа и жидкости от давления, на обвязку и на условия осушки газа и др.

    4. Расчет безводного дебита скважины, зависимость дебита от степени вскрытия пласта, параметра анизотропии

    В большинстве газоносных пластов вертикальные и горизонтальные проницаемости различаются, причем, как правило, вертикальная проницаемость k в значительно меньше горизонтальной k г. Низкая вертикальная проницаемость снижает опасность обводнения газовых скважин, вскрывших анизотропные пласты с подошвенной водой в процессе их эксплуатации. Однако при низкой вертикальной проницаемости затрудняется и подток газа снизу в область влияния несовершенства скважины по степени вскрытия. Точная математическая связь между параметром анизотропии и величиной допустимой депрессии при вскрытии скважиной анизотропного пласта с подошвенной водой не установлена. Использование методов определения Q пр, разработанных для изотропных пластов, приводит к существенным погрешностям.

    Алгоритм решения:

    1. Определяем критические параметры газа:

    2. Определяем коэффициент сверхсжимаемости в пластовых условиях:

    3. Определяем плотность газа при стандартных условиях и далее при пластовых:

    4. Находим высоту столба пластовой воды, необходимой для создания давления 0,1 МПа:

    5. Определяем коэффициенты a* и b*:

    6. Определяем средний радиус:

    7. Находим коэффициент D:

    8. Определяем коэффициенты K o , Q* и предельно безводный дебит Q пр.безв. в зависимости от степени вскрытия пласта h и для двух разных значений параметра анизотропии:

    Исходные данные:

    Таблица 1 - Исходные данные для расчета безводного режима.

    Таблица 4 - Расчет безводного режима.

    5. Анализ результатов расчетов

    В результате расчета безводного режима для разных степеней вскрытия пласта и при значениях параметра анизотропии, равными 0,03 и 0,003 я получил следующие зависимости:

    Рисунок 1 - Зависимость предельного безводного дебита от степени вскрытия для двух значений параметра анизотропии: 0,03 и 0,003.

    Можно сделать выводы, что оптимальное значение вскрытия равно 0,72 в обоих случаях. При этом больший дебит будет при большем значении анизотропии, то есть при большем отношении вертикальной проницаемости к горизонтальной.

    Список используемой литературы

    1. «Инструкция по комплексному исследованию газовых и газоконденсатных скважин». М: Недра, 1980. Под редакцией Зотова Г.А.. Алиева З.С.

    2. Ермилов О.М., Ремизов В.В., Ширковский А.И, Чугунов Л.С. «Физика пласта, добыча и подземное хранение газа». М. Наука, 1996 г.

    3. Алиев З.С., Бондаренко В.В. Руководство по проектированию разработки газовых и газонефтяных месторождений. Печора.: Печорское время, 2002 г. - 896 с.


    Подобные документы

      Географическое расположение, геологическое строение, газоносность месторождения. Анализ показателей работы фонда скважин. Расчет температурного режима для выявления дебита, при котором не будут образовываться гидраты на забое и по стволу скважины.

      дипломная работа , добавлен 13.04.2015

      Схема эксплуатационной скважины. Работы, проводимые при её освоении. Источники пластовой энергии и режимы дренирования газового пласта. Средние дебиты по способам эксплуатации скважин. Погружное и поверхностное оборудование. Товарные кондиции нефти.

      контрольная работа , добавлен 05.06.2013

      Геолого-физические характеристики объекта. Проект разработки по участку пласта Суторминского месторождения по методике Гипровосток-нефть. Схемы расстановки скважин, величина мгновенных дебитов скважин. Расчет зависимости доли нефти в продукции скважин.

      курсовая работа , добавлен 13.01.2011

      Анализ достоверности залежей запасов газа; фонда скважин, годовых отборов из месторождения, состояния обводнения. Расчет показателей разработки месторождения на истощение при технологическом режиме эксплуатации скважин с постоянной депрессией на пласт.

      курсовая работа , добавлен 27.11.2013

      Определение необходимого количества скважин для месторождения газа. Метод источников и стоков. Анализ зависимости дебита газовой скважины от ее координат внутри сектора. Распределения давления вдоль луча, проходящего через вершину сектора, центр скважины.

      курсовая работа , добавлен 12.03.2015

      Описание геологического строения месторождения. Физико-химические свойства и состав свободного газа. Расчет количества ингибитора гидратообразования для процесса его добычи. Технологический режим работы скважины. Подсчет запасов газовой залежи пласта.

      дипломная работа , добавлен 29.09.2014

      Методы расчета безводного периода работы скважин с учетом реальных свойств газа и неоднородности пласта. Газоконденсатоотдача залежей с подошвенной водой. Динамика накопленной добычи газа и вторжения воды в залежь Среднеботуобинского месторождения.

      курсовая работа , добавлен 17.06.2014

      Геолого-промысловая характеристика Самотлорского нефтяного месторождения. Тектоника и стратиграфия разреза. Состав и свойства пород продуктивных пластов. Стадии разработки месторождения, способы эксплуатации и замер скважин. Промысловая подготовка нефти.

      отчет по практике , добавлен 08.12.2015

      Подбор оборудования и выбор узлов насосный центробежной установки для эксплуатации скважины месторождения. Проверка диаметрального габарита погружного оборудования, параметров трансформатора и станции управления. Описание конструкции электродвигателя.

      курсовая работа , добавлен 24.06.2011

      Распределение давления в газовой части. Уравнение Бернулли для потока вязкой жидкости. Графики зависимости дебита скважины и затрубного давления от проницаемости внутренней кольцевой зоны. Формула Дюпюи для установившейся фильтрации в однородном пласте.

    Формула расчета дебита нефтяной скважины – нужная вещь в современном мире. Все предприятия, которые добывают нефтепродукты, должны рассчитывать дебит для своих детищ. Многие используют формулу Дюпюи – французского инженера, многие годы посвятившего изучению движения грунтовых вод. Его формула поможет легко понять, стоит ли производительность того или иного источника денег на оборудование скважины.

    Что такое дебит нефтяной скважины?

    Дебит – объем жидкости, поставляемой через скважину за определенную единицу времени. Многие пренебрегают его расчетам при установке насосного оборудования, но это может оказаться фатально для всей конструкции. Интегральная величина, определяющая количество нефти рассчитывается по нескольким формулам, которые будут приведены ниже.

    Дебит часто называют производительностью насоса. Но эта характеристика немного не подходит под определение, так как все свойства насоса имеют свои погрешности. И определенный объем жидкостей, и газов иногда в корне отличается от заявленного.

    Изначально этот показатель должен просчитываться для выбора насосного оборудования. Когда вы будете знать, какой производительностью участок, можно будет сразу исключить из выбираемого списка оборудования несколько неподходящих агрегатов.

    Обязательно нужно рассчитывать дебит в нефтедобывающей промышленности, так как малопроизводительные участки будут нерентабельны для любого предприятия. И неправильно подобранная насосная установка из-за упущенных расчетов может принести компании убытки, а не предполагаемую со скважины прибыль.

    Он обязателен к подсчету на всех типах нефтедобывающих предприятий – даже дебиты близлежащих скважин могут слишком отличаться от новой. Чаще всего, огромная разница лежит в величинах, подставляемых в формулы для подсчета. К примеру, проницаемость пласта может существенно отличаться на километре под землей. При плохой проницаемости, показатель будет получаться меньше, а значит, и прибыльность скважины будет уменьшаться в геометрической прогрессии.

    Дебит нефтяной скважины подскажет не только как правильно выбрать оборудование, но и где его установить. Установка новой нефтяной вышки –рискованное дело, так как даже самые умные геологи не могут разгадать тайны земли.

    Да, созданы тысячи моделей профессионального оборудования, которое определяет все нужные параметры для бурения новой скважины, но лишь результат, увиденный после этого процесса, сможет показать правильные данные. Исходя из них, и стоит высчитывать прибыльность того или иного участка.

    Методы расчета дебитов скважин.

    Существует всего несколько методов для подсчета дебита нефтяного местарождения – стандартный и по Дюпюи. Формула человека, который практически всю жизнь занимался изучением этого материала и выведением формулы, гораздо точнее показывает результат, ведь в ней гораздо больше данных для подсчета.

    Формула расчета дебита скважин

    Для расчетов по стандартной формуле - D = H x V/(Hд – Hст), нужна всего лишь такая информация:

    • Высота водного столба;
    • Производительность насоса;
    • Статический и динамический уровень.

    Статический уровень в этом случае – расстояние от начала подземных вод до первых слоев почвы, а динамический уровень – абсолютная величина, получаемая при замере уровня воды после откачивания.

    Также существует понятие, как оптимальный показатель дебита нефтяного месторождения. Определяется он, как для общего установления уровня депрессии отдельной скважины, так и всего пласта в целом. Формула высчитывания среднего уровня депрессии месторождения определяется, как Р заб=0. Дебит одной скважины, который был получен при оптимальной депрессии, и будет являться оптимальным дебитом нефтяной скважины.

    Однако такая формула и сам показатель оптимального дебита применяется не на каждом месторождении. Из-за механического и физического давления на пласт, может происходить обрушение части внутренних стенок нефтяных скважин. По указанным причинам, часто приходится уменьшать потенциальный дебит механическим способом, чтобы сохранить бесперебойность процесса добычи нефти и сохранения прочности стенок.

    Это – простейшая формула расчета, которая не сможет с точностью получить правильный результат – будет большая погрешность. Для того чтобы избежать неправильных расчетов и направить себя на получение более точного результата, используют формулу Дюпюи, в которой необходимо взять гораздо больше данных, чем в выше представленной.

    Но Дюпюи был не просто умным человеком, но и отличным теоретиком, поэтому он разработал две формулы. Первая – для потенциальной продуктивности и гидропроводности, которые вырабатывают насос и месторождение нефти. Вторая – для неидеального месторождения и насоса, с их фактической продуктивностью.

    Рассмотрим первую формулу:

    N0 = kh/ub * 2Pi/ln(Rk/rc).

    Эта формула для потенциальной производительности включает в себя:

    N0 – потенциальная продуктивность;

    Kh/u – коэффициент, определяющий свойство гидропроводности нефтяного пласта;

    B – коэффициент расширения по объему;

    Pi – Число П = 3,14…;

    Rk – радиус контурного питания;

    Rc – долотный радиус скважины по расстоянию до вскрытого пласта.

    Вторая формула имеет такой вид:

    N = kh/ub * 2Pi/(ln(Rk/rc)+S).

    Этой формулой для фактической продуктивности месторождения сейчас пользуются абсолютно все компании, которые бурят нефтяные скважины. В ней поменяны только две переменные:

    N – фактическая продуктивность;

    S–скин-фактор (параметр фильтрационного сопротивления течению).

    В некоторых способах для повышения дебита нефтяных месторождений, применяется технология гидравлического разрыва пластов с полезным ископаемым. Она подразумевается образованием механическим способом трещин в продуктивной породе.

    Естественный процесс снижения дебита нефтяных месторождений происходит с показателем в 1-20 процентов в год, исходя из первоначальных данных этого показателя при запуске скважины. Применяемые и описанные выше технологии могу интенсифицировать выработку нефти из скважины.

    Периодически может проводиться механическая регулировка дебита нефтяных скважин. Она знаменуется повышением забойного давления, что приводит к снижению уровня добычи и высокому показателю возможностей отдельно взятого месторождения

    Для повышения показателей и уровня дебита может применяться также термокислотный метод обработки. С помощью нескольких видов растворов, таких как кислотная жидкость, производится очистка элементов месторождения от смолянистых отложений, соли и других химических компонентов, мешающих качественному и результативному проходу добываемой породы.

    Кислотная жидкость изначально проникает в скважину и заполняет площадь перед пластом. Далее производится процесс закрытия задвижки и под давлением кислотный раствор проникает в глубинный пласт. Оставшиеся детали этой жидкости промываются нефтью или водой после продолжения работы по добыче.

    Расчет дебита следует проводить периодически для формирования стратегии векторного развития нефтедобывающего предприятия.

    Расчет производительности скважины

    Похожие публикации