Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Между тэц и пгу. Парогазовые установки электростанций Описание пгу

Парогазовые электростанции представляют собой сочетание паровых и газовых турбин. Такое объединение позволяет снизить потери отработавшей теплоты газовых турбин или теплоты уходящих газов паровых котлов, что обеспечивает повышение КПД парогазовых установок (ПГУ) по сравнению с отдельно взятыми паротурбинными и газотурбинными установками.

В настоящее время различают парогазовые установки двух типов:

а) с высоконапорными котлами и со сбросом отработавших газов турбины в топочную камеру обычного котла;

б) с использованием теплоты отработавших газов турбины в котле.

Принципиальные схемы ПГУ этих двух типов представлены на рис. 2.7 и 2.8.

На рис. 2.7 представлена принципиальная схема ПГУ с высоконапорным паровым котлом (ВПГ) 1 , в который подается вода и топливо, как и на обычной тепловой станции для производства пара. Пар высокого давления поступает в конденсационную турбину 5 , на одном валу с которой находится генератор 8 . Отработавший в турбине пар поступает сначала в конденсатор 6 , а затем с помощью насоса 7 направляется снова в котел 1 .

Рис 2.7. Принципиальная схема пгу с впг

В то же время образующиеся при сгорании топлива в котле газы, имеющие высокую температуру и давление, направляются в газовую турбину 2 . На одном валу с ней находятся компрессор 3 , как в обычной ГТУ, и другой электрический генератор 4 . Компрессор предназначен для нагнетания воздуха в топочную камеру котла. Выхлопные газы турбины 2 подогревают также питательную воду котла.

Такая схема ПГУ обладает тем преимуществом, что в ней не требуется дымососа для удаления отходящих газов котла. Следует заметить, что функцию дутьевого вентилятора выполняет компрессор 3 . КПД такой ПГУ может достигать 43 %.

На рис. 2.8 показана принципиальная схема другого типа ПГУ. В отличие от ПГУ, представленной на рис. 2.7, газ в турбину 2 поступает из камеры сгорания 9 , а не из котла 1 . Далее отработавшие в турбине 2 газы, насыщенные до 16―18 % кислородом благодаря наличию компрессора, поступают в котел 1 .

Такая схема (рис. 2.8) обладает преимуществом перед рассмотренной выше ПГУ (рис. 2.7), так как в ней используется котел обычной конструкции с возможностью использования любого вида топлива, в том числе и твердого. В камере сгорания 3 при этом сжигается значительно меньше, чем в схеме ПГУ с высоконапорным паровым котлом, дорогостоящего в настоящее время газа или жидкого топлива.

Рис 2.8. Принципиальная схема пгу (сбросная схема)

Такое объединение двух установок (паровой и газовой) в общий парогазовый блок создает возможность получить также и более высокие маневренные качества по сравнению с обычной тепловой станцией.

Принципиальная схема атомных электростанций

По назначению и технологическому принципу действия атомные станции практически не отличаются от традиционных тепловых станций. Их существенное различие заключается, во-первых, в том, что на АЭС в отличие от ТЭС пар образуется не в котле, а в активной зоне реактора, а во-вторых, в том, что на АЭС используется ядерное топливо, в состав которого входят изотопы урана-235 (U-235) и урана-238 (U-238).

Особенностью технологического процесса на АЭС является также образование значительных количеств радиоактивных продуктов деления, в связи с чем атомные станции технически более сложны по сравнению с тепловыми станциями.

Схема АЭС может быть одноконтурной, двухконтурной и трехконтурной (рис. 2.9).

Рис. 2.9. Принципиальные схемы АЭС

Одноконтурная схема (рис. 2.9,а) наиболее проста. Выделившееся в ядерном реакторе 1 вследствие цепной реакции деления ядер тяжелых элементов тепло переносится теплоносителем. Часто в качестве теплоносителя служит пар, который далее используется как на обычных паротурбинных электростанциях. Однако образующийся в реакторе пар радиоактивен. Поэтому для защиты персонала АЭС и окружающей среды большая часть оборудования должна иметь защиту от излучения.

По двух- и трехконтурной схемам (рис. 2.9,б и 2.9,в) отвод тепла из реактора осуществляется теплоносителем, который затем передает это тепло рабочей среде непосредственно (например, как в двухконтурной схеме через парогенератор 3 ) или через теплоноситель промежуточного контура (например, как в трехконтурной схеме между промежуточным теплообменником 2 и парогенератором 3 ). На рис. 2.9 цифрами 5 , 6 и 7 обозначены конденсатор и насосы, выполняющие те же функции, что и на обычной ТЭС.

Ядерный реактор часто называют «сердцем» атомной электростанции. В настоящее время существует довольно много видов реакторов.

В зависимости от энергетического уровня нейтронов, под воздействием которых происходит деление ядерного топлива, АЭС можно разделить на две группы:

    АЭС с реакторами на тепловых нейтронах ;

    АЭС с реакторами на быстрых нейтронах .

Под воздействием тепловых нейтронов способны делиться лишь изотопы урана-235, содержание которых в природном уране составляет всего 0,7 %, остальные 99,3 % ― это изотопы урана-238. Под воздействием нейтронного потока более высокого энергетического уровня (быстрых нейтронов) из урана-238 образуется искусственное ядерное топливо плутоний-239, которое используется в реакторах на быстрых нейтронах. Подавляющее большинство эксплуатируемых в настоящее время энергетических реакторов относится к первому типу.

Принципиальная схема атомного энергетического реактора, используемого в двухконтурной схеме АЭС, представлена на рис. 2.10.

Ядерный реактор состоит из активной зоны, отражателя, системы охлаждения, системы управления, регулирования и контроля, корпуса и биологической защиты.

Активная зона реактора - область, где поддерживается цепная реакция деления. Она слагается из делящегося вещества, замедлителя и отражателя нейтронов теплоносителя, регулирующих стержней и конструкционных материалов. Основными элементами активной зоны реактора, обеспечивающими энерговыделение и самоподдерживающими реакцию, являются делящееся вещество и замедлитель. Активная зона отдалена от внешних устройств и работы персонала зоной защиты.

Что такое устройство ПГУ КамАЗа-5320? Этот вопрос интересует многих новичков. Данная аббревиатура может привести в недоумение несведущего человека. На самом деле ПГУ - это пневматический Рассмотрим особенности этого устройства, его принцип работы и типы обслуживания, включая ремонт.

  • 1 - гайка сферическая с контргайкой.
  • 2 - поршневой толкатель деактиватора сцепления.
  • 3 - предохранительный чехол.
  • 4 - поршень выключения сцепления.
  • 5 - задняя часть остова.
  • 6 - комплексный уплотнитель.
  • 7 - следящий поршень.
  • 8 - клапан перепускной с колпаком.
  • 9 - диафрагма.
  • 10 - клапан впускной.
  • 11 - выпускной аналог.
  • 12 - поршень пневматического типа.
  • 13 - сливная пробка (для конденсата).
  • 14 - фронтальная часть корпуса.
  • «А» - подвод рабочей жидкости.
  • «Б» - поступление сжатого воздуха.

Предназначение и устройство

Грузовой автомобиль - достаточно массивная и крупногабаритная техника. Для ее управления требуется недюжинная физическая сила и выносливость. Устройство ПГУ КамАЗа-5320 позволяет облегчить регулировку транспортного средства. Это небольшое, но полезное устройство. Оно дает возможность не только упростить труд водителя, но и повышает производительность работ.

Рассматриваемый узел состоит из следующих элементов:

  • Поршневого толкателя и регулировочной гайки.
  • Пневматического и гидравлического поршня.
  • Пружинного механизма, редуктора с крышкой и клапаном.
  • Седла диафрагмы, контрольного винта.
  • и поршневого следящего приспособления.

Особенности

Корпусная система усилителя состоит из двух элементов. Фронтальная часть изготавливается из алюминия, а задний аналог - из чугуна. Между деталями предусмотрена специальная прокладка, которая играет роль уплотнителя и диафрагмы. Следящий механизм регулирует изменение давления воздуха на пневмопоршень в автоматическом режиме. В данное приспособление также входит уплотнительная манжета, пружины с диафрагмами, а также клапаны на впуск и выпуск.

Принцип действия

При нажатии педали сцепления под давлением жидкости устройство ПГУ КамАЗа-5320 давит на шток и поршень следящего приспособления, после чего конструкция вместе с диафрагмой смещается до момента открытия впускного клапана. Затем воздушная смесь из пневматической системы автомобиля подается к пневмопоршню. В результате суммируются усилия обоих элементов, что позволяет отвести вилку и выключить сцепление.

После того, как нога убирается с педали сцепления, давление подводящей магистральной жидкости падает до нулевого показателя. Вследствие этого ослабевает нагрузка на гидравлические поршни исполнительного и следящего механизма. По этой причине поршень гидравлического типа начинает перемещаться в обратном направлении, закрывая впускной клапан и блокируя поступление давления из ресивера. Нажимная пружина, воздействуя на следящий поршень, отводит его в исходную позицию. Воздух, изначально реагирующий с пневматическим поршнем, выводится в атмосферу. Шток с обоими поршнями возвращается в начальное положение.

Производство

Устройство ПГУ КамАЗа-5320 подходит для многих модельных модификаций этого производителя. Большинство старых и новых тягачей, самосвалов, военных вариантов оснащается пневмогидравлическим усилителем руля. Современные модификации, производимые различными компаниями, имеют следующие обозначения:

  • Запчасти КамАЗ (ПГУ) производства ОАО «КамАЗ» (номер по каталогу 5320) с вертикальным размещением следящего приспособления. Устройство над корпусом цилиндра используется на вариациях под индексом 4310, 5320, 4318 и некоторых других.
  • WABCO. ПГУ под этой маркой производятся в США, отличаются надежностью и компактными габаритами. Эта комплектация оборудована системой слежения за состоянием накладок, уровень износа которых доступно определить без демонтажа силового агрегата. Большинство грузовиков с серии 154 оснащаются именно этим пневмогидравлическим оборудованием.
  • Пневмогидроусилитель сцепления «ВАБКО» для моделей с КПП типа ZF.
  • Аналоги, выпускаемые на заводе в Украине (Волчанск) или Турции (Yumak).

В плане выбора усилителя специалисты рекомендуют приобретать такую же марку и модель, которая была изначально установлена на машине. Это позволит обеспечить максимально правильное взаимодействие между усилителем и механизмом сцепления. Прежде чем менять узел на новую вариацию, проконсультируйтесь со специалистом.

Обслуживание

Для поддержания рабочего состояния узла осуществляют следующие работы:

  • Визуальный осмотр, позволяющий обнаружить видимые утечки воздуха и жидкости.
  • Подтягивание фиксирующих болтов.
  • Регулировку свободного хода толкателя при помощи сферической гайки.
  • Доливку рабочей жидкости в баке системы.

Стоит отметить, что при регулировке ПГУ КамАЗа-5320 модификации Wabco, износ накладок сцепления легко просматривается на специальном указателе, выдвигаемом под воздействием поршня.

Разборка

Данная процедура при необходимости выполняется в следующем порядке:

  • Задняя часть корпуса зажимается в тисках.
  • Откручиваются болты. Снимаются шайбы и крышка.
  • Изымается клапан из корпусной части.
  • Демонтируется фронтальный остов вместе с пневматическим поршнем и его мембраной.
  • Снимаются: диафрагма, следящий поршень, стопорное кольцо, элемент выключения сцепления и корпус уплотнителя.
  • Удаляется перепускной клапанный механизм и люк с выпускным уплотнителем.
  • Остов вынимается из тисов.
  • Демонтируется упорное кольцо задней части корпуса.
  • Стержень клапана освобождается от всех конусов, шайб и седла.
  • Следящий поршень снимается (предварительно необходимо убрать стопор и прочие сопутствующие элементы).
  • Из фронтальной части корпуса извлекается пневматический поршень, манжета и стопорное кольцо.
  • Затем все детали промываются в бензине (керосине), обдаются сжатым воздухом и проходят этап дефектации.

ПГУ КамАза-5320: неисправности

Чаще всего в рассматриваемом узле возникают неполадки следующего характера:

  • Сжатый воздушный поток поступает в недостаточном количестве либо совсем отсутствует. Причина неисправности - разбухание впускного клапана пневматического усилителя.
  • Заклинивание следящего поршня на пневмоусилителе. Вероятнее всего, причина кроется в деформации уплотнительного кольца или манжеты.
  • Наблюдается «провал» педали, что не позволяет полностью выключить сцепление. Эта неполадка свидетельствует о попадании воздуха в гидравлический привод.

Ремонт ПГУ КамАЗа-5320

Проводя дефектовку элементов узла, особое внимание следует обратить на такие моменты:

  • Проверку уплотнительных деталей. Не допускается наличие на них деформаций, разбухания и трещин. В случае нарушения эластичности материала, элемент подлежит замене.
  • Состояние рабочих поверхностей цилиндров. Контролируется внутренний зазор диаметра цилиндров, который по факту должен соответствовать нормативу. На деталях не должно быть вмятин или трещин.

В ремонтный комплект ПГУ входят такие запчасти КамАЗа:

  • Защитный чехол заднего корпуса.
  • Конус и диафрагма редуктора.
  • Манжеты для пневматического и следящего поршня.
  • Колпак перепускного клапана.
  • Стопорные и уплотнительные кольца.

Замена и установка

Для замены рассматриваемого узла выполняют следующие манипуляции:

  • Проводится стравливание воздуха из ПГУ КамАЗа-5320.
  • Сливается рабочая жидкость либо перекрывается слив при помощи пробки.
  • Демонтируется прижимная пружина вилки рычага включения сцепления.
  • От устройства отсоединяются подводящие воду и воздух трубы.
  • Откручиваются финты крепления к картеру, после чего агрегат демонтируется.

После замены деформированных и негодных элементов, система проверяется на герметичность в гидравлической и пневматической части. Сборка производится следующим образом:

  • Совмещают все фиксирующие отверстия с гнездами в картере, после чего закрепляется усилитель при помощи пары болтов с пружинными шайбами.
  • Подсоединяется гидравлический шланг и воздушный трубопровод.
  • Монтируется оттяжный пружинный механизм вилки выключения узла сцепления.
  • В компенсационный резервуар наливают тормозную жидкость, после чего прокачивают систему гидравлического привода.
  • Проверяют повторно герметичность соединений на предмет подтекания рабочей жидкости.
  • Регулируется, при необходимости, величина зазора между торцевой частью крышки и ограничителем хода активатора делителя передач.

Принципиальная схема подсоединения и размещения элементов узла

Принцип работы ПГУ КамАЗа-5320 проще понять, изучив представленную ниже схему с пояснениями.

  • а - стандартная схема взаимодействия частей привода.
  • б - расположение и фиксация элементов узла.
  • 1 - педаль блока сцепления.
  • 2 - основной цилиндр.
  • 3 - цилиндрическая часть пневматического усилителя.
  • 4 - следящий механизм пневматической части.
  • 5 - воздухопровод.
  • 6 - основной гидроцилиндр.
  • 7 - выключающая муфта с подшипником.
  • 8 - рычаг.
  • 9 - шток.
  • 10 - шланги и трубы привода.

Рассматриваемый узел имеет довольно понятное и простое устройство. Тем не менее его роль при управлении грузовым автомобилем очень значительна. Использование ПГУ позволяет существенно облегчить управление машиной и повысить эффективность работы транспортного средства.

О статье, в которой подробно и простыми словами описан цикл ПГУ-450. Статья действительно очень легко усваивается. Я же хочу рассказать о теории. Коротко, но по-делу.

Материал я позаимствовал из учебного пособия «Введение в теплоэнергетику» . Авторы этого пособия — И. З. Полещук, Н. М. Цирельман. Пособие предлагается студентам УГАТУ (Уфимский государственный авиационный технический университет) для изучения одноименной дисциплины.

Газотурбинная установка (ГТУ) представляет собой тепловой двигатель, в котором химическая энергия топлива преобразуется сначала в теплоту, а затем в механическую энергию на вращающемся валу.

Простейшая ГТУ состоит из компрессора, в котором сжимается атмосферный воздух, камеры сгорания, где в среде этого воздуха сжигается топливо, и турбины, в которой расширяются продукты сгорания. Так как средняя температура газов при расширении существенно выше, чем воздуха при сжатии, мощность, развиваемая турбиной, оказывается больше мощности, необходимой для вращения компрессора. Их разность представляет собой полезную мощность ГТУ.

На рис. 1 показаны схема, термодинамический цикл и тепловой баланс такой установки. Процесс (цикл) работающей таким образом ГТУ называется разомкнутым или открытым. Рабочее тело (воздух, продукты сгорания) постоянно возобновляется — забирается из атмосферы и сбрасывается в нее. КПД ГТУ, как и любого теплового двигателя, представляет собой отношение полезной мощности N ГТУ к расходу теплоты, полученной при сжигании топлива:

η ГТУ = N ГТУ / Q T.

Из баланса энергии следует, что N ГТУ = Q T — ΣQ П, где ΣQ П — общее количество отведенной из цикла ГТУ теплоты, равное сумме внешних потерь.

Основную часть потерь теплоты ГТУ простого цикла составляют потери с уходящими газами:


ΔQух ≈ Qух — Qв; ΔQух — Qв ≈ 65…80%.

Доля остальных потерь значительно меньше:

а) потери от недожога в камере сгорания ΔQкс / Qт ≤ 3%;

б) потери из-за утечек рабочего тела; ΔQут / Qт ≤ 2%;

в) механические потери (эквивалентная им теплота отводится из цикла с маслом, охлаждающим подшипники) ΔNмех / Qт ≤ 1%;

г) потери в электрическом генераторе ΔNэг / Qт ≤ 1…2%;

д) потери теплоты конвекцией или излучением в окружающую среду ΔQокр / Qт ≤ 3%

Теплота, которая отводится из цикла ГТУ с отработавшими газами, может быть частично использована вне цикла ГТУ, в частности, в паросиловом цикле.

Принципиальные схемы парогазовых установок различных типов приведены на рис. 2.

В общем случае КПД ПГУ:

Здесь — Qгту количество теплоты, подведенной к рабочему телу ГТУ;

Qпсу — количество теплоты, подведенной к паровой среде в котле.

Рис. 1. Принцип действия простейшей ГТУ

а — принципиальная схема: 1 — компрессор; 2 — камера сгорания; 3 — турбина; 4 — электрогенератор;
б — термодинамический цикл ГТУ в ТS-диаграмме;
в — баланс энергии.

В простейшей бинарной парогазовой установке по схеме, показанной на рис. 2 а, весь пар вырабатывается в котле-утилизаторе: η УПГ = 0,6…0,8 (в зависимости, главным образом, от температуры уходящих газов).

При Т Г = 1400…1500 К η ГТУ ≈ 0,35, и тогда КПД бинарной ПГУ может дос-тигать 50-55 %.

Температура отработавших в турбине ГТУ газов высока (400-450оС), следовательно, велики потери теплоты с уходящими газами и КПД газотурбинных электростанций составляет 38 % , т. е. он практически такой же, как КПД современных паротурбинных электростанций.

Газотурбинные установки работают на газовом топливе, которое существенно дешевле мазута. Единичная мощность современных ГТУ достигает 250 МВт, что приближается к мощности паротурбинных установок. К преимуществам ГТУ по сравнению с паротурбинными установками относятся:

  1. незначительная потребность в охлаждающей воде;
  2. меньшая масса и меньшие капитальные затраты на единицу мощности;
  3. возможность быстрого пуска и форсирования нагрузки.

Рис. 2. Принципиальные схемы различных парогазовых установок:

а — ПГУ с парогенератором утилизационного типа;
б — ПГУ со сбросом газов в топку котла (НПГ);
в — ПГУ на парогазовой смеси;
1 — воздух из атмосферы; 2 — топливо; 3 — отработавшие в турбине газы; 4 — уходящие газы; 5 — вода из сети на охлаждение; 6 — отвод охлаждающей воды; 7 — свежий пар; 8 — питательная вода; 9 – промежуточный перегрев пара; 10 — регенеративные отбросы пара; 11 — пар, поступающий после турбины в камеру сгорания.
К — компрессор; Т — турбина; ПТ — паровая турбина;
ГВ, ГН — газоводяные подогреватели высокого и низкого давления;
ПВД, ПНД — регенеративные подогреватели питательной воды высокого и низкого давления; НПГ, УПГ — низконапорный, утилизационный парогенераторы; КС — камера сгорания.

Объединяя паротурбинную и газотурбинную установки общим технологическим циклом, получают парогазовую установку (ПГУ), КПД который существенно выше, чем КПД отдельно взятых паротурбинной и газотурбинной установок.

КПД парогазовой электростанции на 17-20 % больше, чем обычной паротурбинной электростанции. В варианте простейшей ГТУ с утилизацией тепла уходящих газов коэффициент использования тепла топлива достигает 82-85%.

Узел ПГУ на МАЗ предназначен для уменьшения усилия, необходимого для выключения сцепления. На машинах встречаются агрегаты собственной разработки, а также импортные изделия Wabco. Принцип действия устройств одинаковый.

Устройство и принцип работы

Пневмогидравлические усилители (ПГУ) выпускаются в нескольких модификациях, отличающихся местом расположения магистралей и конструкцией рабочего штока и защитного чехла.

В устройство ПГУ входят следующие детали:

  • гидравлический цилиндр, установленный под педалью сцепления, совместно с поршнем и обратной пружиной;
  • пневматическая часть, включающая в себя поршень, общий для пневматики и гидравлики, шток и возвратную пружину;
  • контролирующий механизм, оборудованный диафрагмой с выпускным клапаном и пружиной обратного хода;
  • клапанный механизм (для впуска и выпуска) с общим штоком и упругий элемент для возврата деталей в нейтральное положение;
  • индикаторный шток износа накладок.


Для устранения зазоров в конструкции имеются поджимные пружины. В соединениях с вилкой управления сцеплением люфты отсутствуют, что позволяет отслеживать степень износа фрикционных накладок. По мере уменьшения толщины материала происходит утапливание поршня в глубину корпуса усилителя. Поршень воздействует на специальный индикатор, информирующий водителя об остаточном ресурсе сцепления. Замена ведомого диска или накладок требуется при достижении индикаторным стержнем длины 23 мм.

Усилитель сцепления оснащен штуцером для подключения к штатной пневматической системе грузового автомобиля. Нормальная работа узла возможна при давлении в воздушных магистралях не менее 8 кгс/см². Для крепления ПГУ к раме грузовика имеются 4 отверстия под шпильки М8.

Принцип работы устройства:

  1. При нажатии на педаль сцепления происходит передача усилия на поршень гидравлического цилиндра. Одновременно нагрузка подается на поршневую группу следящего штока.
  2. Следящее устройство автоматически начинает изменять положение поршня в пневматической силовой секции. Поршень воздействует на управляющий клапан следящего устройства, открывая подачу воздуха в полость пневматического цилиндра.
  3. Давление газа обеспечивает силовое воздействие на вилку управления сцеплением через отдельный шток. Следящий контур обеспечивает автоматическую корректировку давления в зависимости от усилия нажатия ногой на педаль сцепления.
  4. После отпускания педали происходит сброс давления жидкости, а затем закрытие клапана подачи воздуха. Поршень пневматической секции уходит в исходную позицию.

Смотрите » Устройство и эксплуатация кабины МАЗа


Неисправности

К неисправностям ПГУ на грузовиках МАЗ относят следующее:

  1. Заедание привода из-за набухания уплотнительных манжет.
  2. Поздняя реакция исполнительного механизма по причине густой жидкости или заедания поршня следящего компонента привода.
  3. Увеличение усилия на педали. Причиной неисправности может стать выход из строя впускного клапана для сжатого воздуха. При сильном разбухании уплотнительных элементов заклинивает следящий механизм, что вызывает снижение эффективности устройства.
  4. Сцепление выключается не до конца. Дефект возникает из-за неправильной регулировки свободного хода.
  5. Падение уровня жидкости в бачке из-за трещин или затвердевания уплотнительной манжеты.

Как заменить

Замена ПГУ МАЗ предусматривает установку новых шлангов и магистралей. Все узлы должны иметь внутренний диаметр не менее 8 мм.


Процедура замены состоит из шагов:

  1. Отсоединить магистрали от старого узла и открутить точки крепления.
  2. Демонтировать узел с автомобиля.
  3. Установить на штатное место новый агрегат, произвести замену поврежденных магистралей.
  4. Затянуть точки крепления с необходимым моментом. Изношенные или ржавые метизные изделия рекомендуется заменить новыми.
  5. После установки ПГУ требуется проверить перекос рабочих штоков, который не должен превышать 3 мм.

Как отрегулировать

Под регулировкой подразумевается изменение свободного хода муфты отключения сцепления. Проверка зазора выполняется смещением рычага вилки от сферической поверхности гайки толкателя усилителя. Операция проводится вручную, для уменьшения усилия требуется демонтировать пружину рычага. Нормальным является ход в пределах 5-6 мм (замеренный на радиусе 90 мм). Если измеренное значение находится в пределах 3 мм, то его следует довести до нормы вращением сферической гайки.


После регулировки требуется проверить полный ход толкателя, который должен составлять не менее 25 мм. Тест производится путем полного утапливания педали сцепления.

При меньших значениях усилитель не обеспечивает полного разведения дисков сцепления.

Дополнительно настраивается свободный ход педали, соответствующий началу работы главного цилиндра. Величина зависит от зазора между поршнем и толкателем. Нормальным считается ход 6-12 мм, измеренный по средней части педали. Настройка зазора между поршнем и толкателем выполняется поворотом эксцентрикового пальца. Регулировка выполняется при полностью отпущенной педали сцепления (до контакта об резиновый упор). Палец вращается до момента получения требуемого свободного хода. Затем затягивается гайка на регуляторе и устанавливается страховочный шплинт.

Смотрите » Технические характеристики и инструкция по ремонту МАЗа сельхозника

Как прокачать

Прокачка ПГУ на МАЗе производится следующим образом:

  1. Изготовить самодельный нагнетательный прибор из пластиковой бутылки емкостью 0,5-1,0 л. В крышке и донной части сверлятся отверстия, в которые затем устанавливаются ниппели от бескамерных шин.
  2. Из детали, смонтированной в донце емкости, требуется удалить золотниковый клапан.
  3. Заполнить бутылку свежей тормозной жидкостью на 60-70%. При заливке следует закрыть отверстие в клапане.
  4. Соединить емкость шлангом со штуцером, установленным на усилителе. Для подключения используется клапан без золотника. Перед установкой магистрали требуется снять защитный элемент и ослабить штуцер, повернув на 1-2 оборота.
  5. Подать сжатый воздух в бутылку через клапан, установленный в крышке. Источником газа может служить компрессор с пистолетом для подкачки шин. Установленный на узле манометр позволяет контролировать давление в емкости, которое должно находиться в пределах 3-4 кгс/см².
  6. Под воздействием давления воздуха жидкость поступает в полости усилителя и вытесняет имеющийся внутри воздух.
  7. Процедура продолжается до момента исчезновения пузырьков воздуха в расширительном бачке.
  8. После заполнения магистралей необходимо закрутить штуцер и довести уровень жидкости в бачке до требуемого значения. Нормальным считается уровень, расположенный на 10-15 мм ниже кромки заливной горловины.

Допускается обратная методика прокачки, когда жидкость подается под давлением в бачок. Заливка продолжается до момента прекращения выхода пузырьков газа из штуцера (предварительно открученного на 1-2 оборота). После заправки клапан затягивается и закрывается сверху защитным резиновым элементом.

Похожие публикации