Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Предел последовательности и предел функции по коши. Вычисление пределов функций онлайн

Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что "скучная теория" должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.

Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.

Примеры решений

Пример 1
Вычислить а) $ \lim_{x \to 0} \frac{1}{x} $; б)$ \lim_{x \to \infty} \frac{1}{x} $
Решение

а) $$ \lim \limits_{x \to 0} \frac{1}{x} = \infty $$

б)$$ \lim_{x \to \infty} \frac{1}{x} = 0 $$

Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \text{a)} \lim \limits_{x \to 0} \frac{1}{x} = \infty \text{ б)}\lim \limits_{x \to \infty} \frac{1}{x} = 0 $$

Что делать с неопределенностью вида: $ \bigg [\frac{0}{0} \bigg ] $

Пример 3
Решить $ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} $
Решение

Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела.

$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = \frac{(-1)^2-1}{-1+1}=\frac{0}{0} $$

Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a^2-b^2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её :)

Получаем, что числитель $ x^2-1=(x-1)(x+1) $

Продолжаем решать учитывая вышеприведенное преобразование:

$$ \lim \limits_{x \to -1}\frac{x^2-1}{x+1} = \lim \limits_{x \to -1}\frac{(x-1)(x+1)}{x+1} = $$

$$ = \lim \limits_{x \to -1}(x-1)=-1-1=-2 $$

Ответ
$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = -2 $$

Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ \bigg [\frac{\infty}{\infty} \bigg ] $

Пример 5
Вычислить $ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} $
Решение

$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \frac{\infty}{\infty} $

Что же делать? Как быть? Не стоит паниковать, потому что невозможное - возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем...

$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} =\lim \limits_{x \to \infty} \frac{x^2(1-\frac{1}{x^2})}{x(1+\frac{1}{x})} = $$

$$ = \lim \limits_{x \to \infty} \frac{x(1-\frac{1}{x^2})}{(1+\frac{1}{x})} = $$

Используя определение из примера 2 и подставляя в место х бесконечность получаем:

$$ = \frac{\infty(1-\frac{1}{\infty})}{(1+\frac{1}{\infty})} = \frac{\infty \cdot 1}{1+0} = \frac{\infty}{1} = \infty $$

Ответ
$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \infty $$

Алгоритм вычисления лимитов

Итак, давайте кратко подведем итог разобранным примерам и составим алгоритм решения пределов:

  1. Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: "ноль делить на ноль" или "бесконечность делить на бесконечность" и переходим к следующим пунктам инструкции.
  2. Чтобы устранить неопределенность "ноль делить на ноль" нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
  3. Если неопределенность "бесконечность делить на бесконечность", тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.

В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.

Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!

Понятия пределов последовательностей и функций. Когда требуется найти предел последовательности, это записывают следующим образом: lim xn=a. В такой последовательности последовательности xn стремится к a, а n к бесконечности. Последовательность обычно представляют в виде ряда, например:
x1, x2, x3...,xm,...,xn... .
Последовательности подразделяются на возрастающие и убывающие. Например:
xn=n^2 - возрастающая последовательность
yn=1/n - последовательность
Так, например, предел последовательности xn=1/n^ :
lim 1/n^2=0

x→∞
Данный предел равен нулю, поскольку n→∞, а последовательность 1/n^2 стремится к нулю.

Обычно переменная величина x стремится к конечному пределу a, причем, x постоянно приближается к a, а величина a постоянна. Это записывают следующим образом: limx =a, при этом, n также может стремиться как к нулю, так и к бесконечности. Существуют бесконечные функции, для них предел стремится к бесконечности. В других случаях, когда, например, функцией замедление хода поезда, можно о пределе, стремящемся к нулю.
У пределов имеется ряд свойств. Как правило, любая функция имеет только один предел. Это главное свойство предела. Другие их перечислены ниже:
* Предел суммы равен сумме пределов:
lim(x+y)=lim x+lim y
* Предел произведения равен произведению пределов:
lim(xy)=lim x*lim y
* Предел частного равен частному от пределов:
lim(x/y)=lim x/lim y
* Постоянный множитель выносят за знак предела:
lim(Cx)=C lim x
Если дана функция 1 /x, в которой x →∞, ее предел равен нулю. Если же x→0, предел такой функции равен ∞.
Для тригонометрических функций имеются из этих правил. Так как функция sin x всегда стремится к единице, когда приближается к нулю, для нее справедливо тождество:
lim sin x/x=1

В ряде встречаются функции, при вычислении пределов которых возникает неопределенность - ситуация, при которой предел невозможно вычислить. Единственным выходом из такой ситуации становится Лопиталя. Существует два вида неопределенностей:
* неопределенность вида 0/0
* неопределенность вида ∞/∞
К примеру, дан предел следующего вида: lim f(x)/l(x), причем, f(x0)=l(x0)=0. В таком случае, возникает неопределенность вида 0/0. Для решения такой задачи обе функции подвергают дифференцированию, после чего находят предел результата. Для неопределенностей вида 0/0 предел равен:
lim f(x)/l(x)=lim f"(x)/l"(x) (при x→0)
Это же правило справедливо и для неопределенностей типа ∞/∞. Но в этом случае справедливо следующее равенство: f(x)=l(x)=∞
С помощью правила Лопиталя можно находить значения любых пределов, в которых фигурируют неопределенности. Обязательное условие при

том - отсутствие ошибок при нахождении производных. Так, например, производная функции (x^2)" равна 2x. Отсюда можно сделать вывод, что:
f"(x)=nx^(n-1)

Члена последовательности.

Число а называется пределом последовательности {xn}, если для любого ε>0 существует номер n=n(ε), начиная с которого выполняется |xn-a |


Пример 2. Доказать, что в примера 1 число а=1 не является пределом последовательности предыдущего примера. Решение. Вновь упростите общий член последовательности. Возьмите ε=1 (это любое число >


Задачи непосредственного вычисления предела последовательности довольно однообразны. Все они содержат отношения полиномов относительно n или выражений относительно этих полиномов. Приступая к решению, вынесите за скобки (знак радикала) составляющую, находящуюся в старшей . Пусть для числителя исходного выражения это приведет к появлению множителя a^p, а для знаменателя b^q. Очевидно, что все оставшиеся слагаемые имеют вид С/(n-k) и стремятся к нулю при n>


Первый способ вычисления предела последовательности основан на ее определении. Правда следует запомнить, что путей непосредственного поиска предела он не дает, а позволяет лишь доказать, что какое-либо число а является (или не является) пределом.Пример 1. Доказать, что последовательность {xn}={(3n^2-2n-1)/(n^2-n-2)} имеет предел а=3.Решение. Проводите путем применения определения в обратном порядке. То есть справа налево. Предварительно проверьте – нет ли возможности упростить формулу для xn.хn =(3n^2+4n+2)/(n^2+3n22)=((3n+1)(n+1))/((n+2)(n+1))=)=(3n+1)/(n+2).Рассмотрите неравенство |(3n+1)/(n+2)-3|0 можно найти любое натуральное число nε, большее -2+5/ε.

Пример 2. Доказать, что в примера 1 число а=1 не является пределом последовательности предыдущего примера. Решение. Вновь упростите общий член последовательности. Возьмите ε=1 (это любое число >0).Запишите заключающее неравенство общего определения |(3n+1)/(n+2)-1|

Задачи непосредственного вычисления предела последовательности довольно однообразны. Все они содержат отношения полиномов относительно n или выражений относительно этих полиномов. Приступая к решению, вынесите за скобки (знак радикала) составляющую, находящуюся в старшей . Пусть для числителя исходного выражения это приведет к появлению множителя a^p, а для знаменателя b^q. Очевидно, что все оставшиеся слагаемые имеют вид С/(n-k) и стремятся к нулю при n>k (n стремится к бесконечности). После этого запишите ответ: 0, если pq.

Укажем не традиционный способ нахождения предела последовательности и бесконечных сумм. Будем использовать функциональные последовательности (их члены функции, определенные на некотором промежутке (a,b)).Пример 3. Найти сумму вида 1+1/2! +1/3! +…+1/n! +…=s .Решение. Любое число а^0=1. Положите 1=exp(0) и рассмотрите функциональную последовательность {1+x+x^2/2! +x^3/3! +…+x^/n!}, n=0,1,2,..,n… . Легко заметить, что записанный полином совпадает с многочленом Тейлора по степеням x, который в данном случае совпадает с exp(x). Возьмите х=1. Тогдаexp(1)=e=1+1+1/2! +1/3! +…+1/n! +…=1+s. Ответ s=e-1.

Совет 2: В какой последовательности смотреть фильмы Марвел про мстителей?

Вселенная «Марвел» основана на комиксах издательства Marvel, но далеко не все экранизации комиксов – часть киновселенной. В нее входит только снятое Marvel Studios или совместно с ней. Киновселенная «Марвел» разделена на фазы, каждый фильм в ней имеет свое место. Однако сериалы и короткометражки, являясь частью вселенной, в хронологии могут быть между фазами. Т.е. могут не принадлежать к конкретным частям киновселенной.

Сериалы Netflix и канала abc отличаются от вселенной «Марвел». У киновселенной есть две особенности:

  • каждый фильм наделен собственной историей;
  • глобальный сюжет переходит из одного фильма в другой, в итоге каждый из них двигает этот сюжет вперед.

Сериалы канала abc связаны с глобальным сюжетом киновселенной, но не продвигают, а только дополняют его. Сериалы Netflix - это и вовсе самостоятельные истории, со своим сюжетом и своим глобальным миром.

За годы существования вселенная «Марвел» разрослась, и продолжает расширяться. Поэтому разобраться с хронологией ее фильмов неподготовленному человеку сложно, ведь не каждому понятно, что нельзя смотреть «Железного человека 3» сразу после «Железного человека 2». А чтобы разобраться, надо изучить хронологию, которая включает три фазы.

Первая фаза:

  1. Фильм «Железный человек», 2008 года. Эта картина закладывает фундамент и общий тон следующим экранизациям, ее действие происходит в 2010 году.
  2. Фильм «Невероятный Халк», 2008 года. В этой экранизации зрители понимают, что истории двух разных героев случаются в одной вселенной, поскольку и в «Железном человеке», и в «Невероятном Халке» упомянут Щ.И.Т., программа «суперсолдат», встречается логотип StarkIndusries и т.д. Действие фильма разворачивается в 2011 году. Картина не продолжает историю фильма «Халк» 2003 года.
  3. Фильм «Железный человек 2», 2010 года. Эта история - нечто вроде затравки к Мстителям, она вводит в сюжет Черную Вдову, дает много предпосылок к будущим проектам и рассказывает о новых проблемах Тони Старка, с которыми он столкнулся через год после первой части «Железного человека».
  4. Фильм «Тор», 2011 года. Это тоже подготовка к Мстителям, и главная цель картины - познакомить зрителя с Тором и Локи. Действие сюжета происходит параллельно с историей «Невероятного Халка» и «Железного человека 2».
  5. Фильм «Первый мститель», 2011 года. В нем рассказывают о Капитане Америка - первом супергерое Земли, который, как и Халк, появился из-за сыворотки «суперсолдат». Первая и последняя сцены фильма происходят в 2011 году, а основные действия - в период с 1943 по 1945 годы. В фильме появляется Тессеракт, один из шести Камней Бесконечности, и выясняется, что «отцом» Щ.И.Т.а была организация СНР (Стратегический Научный Резерв).
  6. Короткометражка «Консультант», 2011 года. Здесь разъясняется финальная сцена фильма «Невероятный Халк».
  7. Короткометражка «Забавный случай по пути к молоту Тора», 2011 года.
  8. Фильм «Мстители», 2012 года. Действие сюжета разворачивается в 2012 году, когда Щ.И.Т. ради спасения мира объявляет «общий сбор».

Вторая фаза:

  1. Фильм «Железный человек 3», 2013 года. Действие происходит зимой 2012 года, когда Тони Старк возвращается домой после «Битвы за Нью-Йорк», но его мучают кошмары. Спать он не может, и посвящает свое время созданию новых костюмов.
  2. Сериал «Агенты Щ.И.Т.а», 2013 года.
  3. Фильм «Тор 2: Царство Тьмы», 2013 года. В картине рассказывают, как Тор вернулся домой и обнаружил, что все девять миров погружены в хаос. И о том, как Тор наводил порядок.
  4. Короткометражка «Да здравствует король», 2014 год. Это история о Треворе Слеттери, которая происходит после событий фильма «Железный человек 3».
  5. Фильм «Первый мститель: Другая Война», 2014 года. Это история о Капитане Америка, который не может вернуться домой, потому ищет себе новое дело и становится агентом Щ.И.Т.а, работая в команде с Черной Вдовой. Фильм лучше смотреть между 16 и 17 сериями «Агентов Щ.И.Т.а».
  6. Фильм «Стражи Галактики», 2014 год. Смотреть надо после 1 сезона сериала «Агенты Щ.И.Т.а». Это история о преступниках вне Земли, которые создали команду, чтобы остановить более опасного преступника Ронана, и не дать ему получить Камень Бесконечности.
  7. Сериал «Агенты Щ.И.Т.а», второй сезон, 2014 год.
  8. Сериал «Агент Картер», 2016 год. Это история о том, как Пегги Картер и дворецкий Эдвин Джарвис помогают Говарду Старку вернуть его доброе имя.
  9. Фильм «Мстители: Эра Альтрона», 2015 года. В этой картине Мстители снова собрались, чтобы спасти мир, но этот раз они стали полноценной командой. Смотреть лучше между 19 и 20 сериями второго сезона «Агентов Щ.И.Т.а».
  10. Фильм «Человек-Муравей», 2015 года. Смотреть после 2 сезона сериала «Агенты Щ.И.Т.а».

Третья фаза:

  1. Фильм «Первый Мститель: Противостояние», 2016 года. После «Заковийского договора» Мстители обязаны подчиняться правительству, но это разбивает их на два лагеря: тех, кто за регистрацию, и тех, кто против нее.

Это все фильмы, которые уже вышли в прокат. Но не вся история. В третьей фазе планируется еще 14 фильмов, а потом - четвертая фаза.

Связанная статья

Приводятся формулировки основных теорем и свойств числовых последовательностей, имеющих предел. Содержится определение последовательности и ее предела. Рассмотрены арифметические действия с последовательностями, свойства, связанные с неравенствами, критерии сходимости, свойства бесконечно малых и бесконечно больших последовательностей.

Последовательности

Числовой последовательностью называется закон (правило), согласно которому, каждому натуральному числу ставится в соответствие число .
Число называют n-м членом или элементом последовательности.
Далее мы будем считать, что элементами последовательности являются действительные числа.

ограниченной , если существует такое число M , что для всех действительных n .

Верхней гранью последовательности называют наименьшее из чисел, ограничивающее последовательность сверху. То есть это такое число s , для которого для всех n и для любого , найдется такой элемент последовательности , превосходящий s′ : .

Нижней гранью последовательности называют наибольшее из чисел, ограничивающее последовательность снизу. То есть это такое число i , для которого для всех n и для любого , найдется такой элемент последовательности , меньший i′ : .

Верхнюю грань также называют точной верхней границей , а нижнюю грань - точной нижней границей . Понятия верхней и нижней граней справедливы не только к последовательностям, но и к любым множествам действительных чисел.

Определение предела последовательности

Число a называется пределом последовательности , если для любого положительного числа существует такое натуральное число N , зависящее от , что для всех натуральных выполняется неравенство
.
Предел последовательности обозначается так:
.
Или при .

С помощью логических символов существования и всеобщности определение предела можно записать следующим образом:
.

Открытый интервал (a - ε, a + ε) называют ε - окрестностью точки a .

Последовательность, у которой существует предел называется сходящейся последовательностью . Также говорят, что последовательность сходится к a . Последовательность, не имеющая предела, называется расходящейся .

Точка a не является пределом последовательности , если существует такое , что для любого натурального n существует такое натуральное m > n , что
.
.
Это означает, что можно выбрать такую ε - окрестностью точки a , за пределами которой будет находиться бесконечное число элементов последовательности.

Свойства конечных пределов последовательностей

Основные свойства

Точка a является пределом последовательности тогда и только тогда, когда за пределами любой окрестности этой точки находится конечное число элементов последовательности или пустое множество.

Если число a не является пределом последовательности , то существует такая окрестность точки a , за пределами которой находится бесконечное число элементов последовательности .

Теорема единственности предела числовой последовательности . Если последовательность имеет предел, то он единственный.

Если последовательность имеет конечный предел, то она ограничена .

Если каждый элемент последовательности равен одному и тому же числу C : , то эта последовательность имеет предел, равный числу C .

Если у последовательности добавить, отбросить или изменить первые m элементов , то это не повлияет на ее сходимость.

Доказательства основных свойств приведены на странице
Основные свойства конечных пределов последовательностей >>> .

Арифметические действия с пределами

Пусть существуют конечные пределы и последовательностей и . И пусть C - постоянная, то есть заданное число. Тогда
;
;
;
, если .
В случае частного предполагается, что для всех n .

Если , то .

Доказательства арифметических свойств приведены на странице
Арифметические свойства конечных пределов последовательностей >>> .

Свойства, связанные с неравенствами

Если и элементы последовательности, начиная с некоторого номера, удовлетворяют неравенству , то и предел a этой последовательности удовлетворяет неравенству .

Если и элементы последовательности, начиная с некоторого номера, принадлежат замкнутому интервалу (сегменту) , то и предел a также принадлежит этому интервалу: .

Если и и элементы последовательностей, начиная с некоторого номера, удовлетворяют неравенству , то .

Если и, начиная с некоторого номера, , то .
В частности, если, начиная с некоторого номера, , то
если , то ;
если , то .

Если и , то .

Пусть и . Если a < b , то найдется такое натуральное число N , что для всех n > N выполняется неравенство .

Доказательства свойств, связанных с неравенствами приведены на странице
Свойства пределов последовательностей, связанные с неравенствами >>> .

Бесконечно большая и бесконечно малая последовательности

Бесконечно малая последовательность

Последовательность называется бесконечно малой последовательностью , если ее предел равен нулю:
.

Сумма и разность конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую является бесконечно малой последовательностью.

Произведение конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.

Для того, чтобы последовательность имела предел a , необходимо и достаточно, чтобы , где - бесконечно малая последовательность.

Доказательства свойств бесконечно малых последовательностей приведены на странице
Бесконечно малые последовательности - определение и свойства >>> .

Бесконечно большая последовательность

Последовательность называется бесконечно большой последовательностью , если для любого положительного числа существует такое натуральное число N , зависящее от , что для всех натуральных выполняется неравенство
.
В этом случае пишут
.
Или при .
Говорят, что стремится к бесконечности.

Если , начиная с некоторого номера N , то
.
Если же , то
.

Если последовательность являются бесконечно большой, то, начиная с некоторого номера N , определена последовательность , которая является бесконечно малой. Если являются бесконечно малой последовательностью с отличными от нуля элементами, то последовательность является бесконечно большой.

Если последовательность бесконечно большая, а последовательность ограничена, то
.

Если абсолютные значения элементов последовательности ограничены снизу положительным числом (), а - бесконечно малая с неравными нулю элементами, то
.

Более подробно определение бесконечно большой последовательности с примерами приводится на странице
Определение бесконечно большой последовательности >>> .
Доказательства свойств бесконечно больших последовательностей приведены на странице
Свойства бесконечно больших последовательностей >>> .

Критерии сходимости последовательностей

Монотонные последовательности

Последовательность называется строго возрастающей , если для всех n выполняется неравенство:
.
Соответственно, для строго убывающей последовательности выполняется неравенство:
.
Для неубывающей :
.
Для невозрастающей :
.

Отсюда следует, что строго возрастающая последовательность также является неубывающей. Строго убывающая последовательность также является невозрастающей.

Последовательность называется монотонной , если она неубывающая или невозрастающая.

Монотонная последовательность ограничена, по крайней мере, с одной стороны значением . Неубывающая последовательность ограничена снизу: . Невозрастающая последовательность ограничена сверху: .

Теорема Вейерштрасса . Для того чтобы неубывающая (невозрастающая) последовательность имела конечный предел, необходимо и достаточно, чтобы она была ограниченной сверху (снизу ). Здесь M - некоторое число.

Поскольку любая неубывающая (невозрастающая) последовательность ограничена снизу (сверху), то теорему Вейерштрасса можно перефразировать следующим образом:

Для того чтобы монотонная последовательность имела конечный предел, необходимо и достаточно, чтобы она была ограниченной: .

Монотонная неограниченная последовательность имеет бесконечный предел, равный для неубывающей и для невозрастающей последовательности.

Доказательство теоремы Вейерштрасса приведено на странице
Теорема Вейерштрасса о пределе монотонной последовательности >>> .

Критерий Коши сходимости последовательности

Условие Коши . Последовательность удовлетворяет условию Коши, если для любого существует такое натуральное число , что для всех натуральных чисел n и m , удовлетворяющих условию , выполняется неравенство
.
Последовательности, удовлетворяющие условию Коши, также называют фундаментальными последовательностями .

Критерий Коши сходимости последовательности . Для того, чтобы последовательность имела конечный предел, необходимо и достаточно, чтобы она удовлетворяла условию Коши.

Доказательство критерия сходимости Коши приведено на странице
Критерий Коши сходимости последовательности >>> .

Подпоследовательности

Теорема Больцано - Вейерштрасса . Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность. А из любой неограниченной последовательности - бесконечно большую подпоследовательность, сходящуюся к или к .

Доказательство теоремы Больцано - Вейерштрасса приведено на странице
Теорема Больцано – Вейерштрасса >>> .

Определения, теоремы и свойства подпоследовательностей и частичных пределов рассмотрены на странице
Подпоследовательности и частичные пределы после­довательностей >>>.

Использованная литература:
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
В.А. Зорич. Математический анализ. Часть 1. Москва, 1997.
В.А. Ильин, Э.Г. Позняк. Основы математического анализа. Часть 1. Москва, 2005.

Решение пределов функции онлайн . Найти предельное значение функции либо функциональной последовательности в точке, вычислить предельное значение функции на бесконечности. определить сходимость числового ряда и многое другое можно выполнить благодаря нашему онлайн сервису - . Мы позволяем находить лимиты функций онлайн быстро и безошибочно. Вы сами вводите переменную функции и предел, к которому она стремится, анаш сервис проводит все вычисления за вас, выдавая точный и простой ответ. Причем для нахождения предела онлайн вы можете вводить как числовые ряды, так и аналитические функции, содержащие константы в буквенном выражении. В этом случае найденный предел функции будет содержать эти константы как постоянные аргументы в выражении. Нашим сервисом решаются любые сложные задачи по нахождению пределов онлайн , достаточно указать функцию и точку в которой необходимо вычислить предельное значение функции . Вычисляя пределы онлайн , можно пользоваться различными методами и правилами их решения, при этом сверяя полученный результат с решением пределов онлайн на www.сайт, что приведет с успешному выполнению задачи - вы избежите собственных ошибок и описок. Либо вы полностью можете довериться нам и использовать наш результат в своей работе, не затрачивая лишних усилий и времени на самостоятельные вычисления предела функции. Мы допускаем ввод таких предельных значений, как бесконечность. Необходимо ввести общий член числовой последовательности и www.сайт вычислит значение предела онлайн на плюс или минус бесконечности.

Одним из основных понятий математического анализа является лимит функции и предел последовательности в точке и на бесконечности, важно уметь правильно решать пределы . С нашим сервисом это не составит никакого труда. Производится решение пределов онлайн в течение нескольких секунд, ответ точный и полный. Изучение математического анализа начинается с предельного перехода , пределы используются практически во всех разделах высшей математики, поэтому полезно иметь под рукой сервер для решения лимитов онлайн , каковым является сайт.

Похожие публикации