Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

В каком отношении пересекаются медианы. Медиана. Визуальный гид (2019)

Медиана треугольника - это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.

Свойства медиан треугольника

1. Медиана разбивает треугольник на два треугольника одинаковой площади.

2. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника (центроидом).

3. Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Длина медианы проведенной к стороне: (док-во достроением до параллелограмма и использованием равенства в параллелограмме удвоенной суммы квадратов сторон и суммы квадратов диагоналей )

Т1. Три медианы треугольника пересекаются в одной точке М, которая делит каждую из них в отношении 2:1, считая от вершин треугольника. Дано: ∆ABC, СС 1 , АА 1 , ВВ 1 - медианы
ABC . Доказать: и

Д-во: Пусть М - точка пересечения медиан СС 1 , АА 1 треугольника ABC. Отметим A 2 - середину отрезка AM и С 2 - середину отрезка СМ. Тогда A 2 C 2 - средняя линия треугольника АМС. Значит,А 2 С 2 || АС

и A 2 C 2 = 0,5*АС. С 1 А 1 - средняя линия треугольника ABC. Значит, А 1 С 1 || АС и А 1 С 1 = 0,5*АС.

Четырехугольник А 2 С 1 А 1 С 2 - параллелограмм, так как его противо­положные стороны А 1 С 1 и А 2 С 2 равны и параллельны. Следовательно, А 2 М = МА 1 и С 2 М = МC 1 . Это означает, что точки А 2 и M делят медиану АА 2 на три равные части, т. е. AM = 2МА 2 . Аналогично СМ = 2MC 1 . Итак, точка М пересечения двух медиан АА 2 и CC 2 треугольника ABC делит каждую из них в отношении 2:1, считая от вершин треу­гольника. Совершенно аналогично доказывается, что точка пересечения меди­ан АА 1 и BB 1 делит каждую из них в отношении 2:1, считая от вер­шин треугольника.

На медиане АА 1 такой точкой является точка М, следовательно, точка М и есть точка пересечения медиан АА 1 иBB 1.

Таким образом, n

T2. Докажите, что отрезки, которые соединяют центроид с вер­шинами треугольника, делят его на три равновеликие части. Дано: ∆ABC , - его медианы.

Доказать:S AMB =S BMC =S AMC . Доказательство. В, у них общая. т.к. равны их основания и высота, проведенная из вершины М, у них общая. Тогда

Аналогичным образом доказывается, чтоS AMB = S AMC . Таким образом,S AMB = S AMC = S CMB . n

Биссектриса треугольника.Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис

Биссектриса угла - луч с началом в вершине угла, делящий угол на два равных угла.

Биссектриса угла есть геометрическое место точек внутри угла, равноудалённых от сторон угла.

Свойства

1. Теорема о биссектрисе: Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон

2. Биссектрисы внутренних углов треугольника пересекаются в одной точке - инцентре - центре вписанной в этот треугольник окружности.

3. Если в треугольнике две биссектрисы равны, то треугольник - равнобедренный (теорема Штейнера - Лемуса).

Вычисление длины биссектрисы

l c - длина биссектрисы, проведённой к стороне c,

a,b,c - стороны треугольника против вершин A,B,C соответственно,

p - полупериметр треугольника,

a l ,b l - длины отрезков, на которые биссектриса l c делит сторону c,

α,β,γ - внутренние углы треугольника при вершинах A,B,C соответственно,

h c - высота треугольника, опущенная на сторону c.


Метод площадей.

Характеристика метода. Из названия следует, что главным объектом данного метода является площадь. Для ряда фигур, например для треугольника, площадь довольно просто выражается через разнообразные комбинации элементов фигуры (треугольника). Поэтому весьма эффективным оказывается прием, когда сравниваются различные выражения для площади данной фигуры. В этом случае возникает уравнение, содержащее известные и искомые элементы фигуры, разрешая которое мы определяем неизвестное. Здесь и проявляется основная особенность метода площадей – из геометрической задачи он «делает» алгебраическую, сводя все к решению уравнения (а иногда системы уравнений).

1) Метод сравнения: связан с большим кол-вом формул S одних и тех же фигур

2) Метод отношения S: основан на след опорных задачах:



Теорема Чевы

Пусть точки A",B",C" лежат на прямых BC,CA,AB треугольника. Прямые AA",BB",CC" пересекаются в одной точке тогда и только тогда, когда

Доказательство.

Обозначим через точку пересечения отрезков и . Опустим из точек С и А перпендикуляры на прямую ВВ 1 до пересечения с ней в точках Kи L соответственно (см. рисунок).

Поскольку треугольники и имеют общую сторону , то их площади относятся как высоты, проведенные на эту сторону, т.е. AL иCK:

Последнее равенство справедливо, так как прямоугольные треугольники и подобны по острому углу.

Аналогично получаем и

Перемножим эти три равенства:

что и требовалось доказать.

Замечание. Отрезок (или продолжение отрезка), соединяющий вершину треугольника с точкой, лежащей на противоположной стороне или ее продолжении, называется чевианой.

Теорема (обратная теорема Чевы) . Пусть точки A",B",C" лежат на сторонах BC,CA и AB треугольника ABC соответственно. Пусть выполняется соотношение

Тогда отрезки AA",BB",CC" и пересекаются в одной точке.

Теорема Менелая

Теорема Менелая. Пусть прямая пересекает треугольник ABC, причем C 1 – точка ее пересечения со стороной AB, A 1 – точка ее пересечения со стороной BC, и B 1 – точка ее пересечения с продолжением стороны AC. Тогда

Доказательство . Проведем через точку C прямую, параллельную AB. Обозначим через K ее точку пересечения с прямой B 1 C 1 .

ТреугольникиAC 1 B 1 иCKB 1 подобны (∟C 1 AB 1 = ∟KCB 1 , ∟AC 1 B 1 = ∟CKB 1). Следовательно,

ТреугольникиBC 1 A 1 иCKA 1 такжеподобны (∟BA 1 C 1 =∟KA 1 C, ∟BC 1 A 1 =∟CKA 1). Значит,

Из каждого равенства выразим CK:

Откуда что и требовалось доказать.

Теорема (обратная теорема Менелая). Пусть дан треугольник ABC. Пусть точка C 1 лежит на стороне AB, точка A 1 – на стороне BC, а точка B 1 – на продолжении стороны AC, причем выполняется соотношение

Тогда точки A 1 ,B 1 и C 1 лежат на одной прямой.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Доказательство. Докажем, что медианы AA 1 и CC 1 в точке пересечения M делятся в отношении 2:1. Теорема. Медианы треугольника пересекаются в одной точке и делятся в этой точке в отношении 2: 1, считая от вершин. Пусть D – середина отрезка BA 1. Тогда C 1 D – средняя линия треугольника ABA 1. Следовательно, прямые AA 1 и C 1 D параллельны. Так как CA 1:A 1 D = 2:1, то по теореме о пропорциональных отрезках получим: CM:MC 1 = 2:1. Аналогично доказывается, что медианы BB 1 и CC 1 в точке пересечения делятся в отношении 2:1. Значит, все медианы пересекаются в одной точке и делятся в этой точке в отношении 2: 1, считая от вершин. Медианы треугольника


BC, то медиана CM лежит ближе к стороне AC, т.е. угол ACM меньше угла BCM. Упражнение 1 Доказательство. Продолжим медиану CM и отложим отрезок MD, равный CM. Треугольники AMD" title="Докажите, что если для сторон треугольнике ABC выполняется неравенство AC > BC, то медиана CM лежит ближе к стороне AC, т.е. угол ACM меньше угла BCM. Упражнение 1 Доказательство. Продолжим медиану CM и отложим отрезок MD, равный CM. Треугольники AMD" class="link_thumb"> 2 Докажите, что если для сторон треугольнике ABC выполняется неравенство AC > BC, то медиана CM лежит ближе к стороне AC, т.е. угол ACM меньше угла BCM. Упражнение 1 Доказательство. Продолжим медиану CM и отложим отрезок MD, равный CM. Треугольники AMD и BMC равны по двум сторонам и углу между ними. Следовательно, AD = BC. Так как против меньшей стороны треугольника лежит меньший угол, то угол ACD меньше угла ADC. Значит, угол ACM меньше угла BCM. BC, то медиана CM лежит ближе к стороне AC, т.е. угол ACM меньше угла BCM. Упражнение 1 Доказательство. Продолжим медиану CM и отложим отрезок MD, равный CM. Треугольники AMD"> BC, то медиана CM лежит ближе к стороне AC, т.е. угол ACM меньше угла BCM. Упражнение 1 Доказательство. Продолжим медиану CM и отложим отрезок MD, равный CM. Треугольники AMD и BMC равны по двум сторонам и углу между ними. Следовательно, AD = BC. Так как против меньшей стороны треугольника лежит меньший угол, то угол ACD меньше угла ADC. Значит, угол ACM меньше угла BCM."> BC, то медиана CM лежит ближе к стороне AC, т.е. угол ACM меньше угла BCM. Упражнение 1 Доказательство. Продолжим медиану CM и отложим отрезок MD, равный CM. Треугольники AMD" title="Докажите, что если для сторон треугольнике ABC выполняется неравенство AC > BC, то медиана CM лежит ближе к стороне AC, т.е. угол ACM меньше угла BCM. Упражнение 1 Доказательство. Продолжим медиану CM и отложим отрезок MD, равный CM. Треугольники AMD"> title="Докажите, что если для сторон треугольнике ABC выполняется неравенство AC > BC, то медиана CM лежит ближе к стороне AC, т.е. угол ACM меньше угла BCM. Упражнение 1 Доказательство. Продолжим медиану CM и отложим отрезок MD, равный CM. Треугольники AMD">


Докажите, что медиана CM треугольника ABC меньше полусуммы сторон AC и BC. Упражнение 2 Доказательство. Продолжим медиану CM и отложим отрезок MD, равный CM. Треугольники AMD и BMC равны по двум сторонам и углу между ними. Следовательно, AD = BC. В силу неравенства треугольника, сторона CD меньше суммы сторон AC и AD. Значит, медиана CM треугольника ABC меньше полусуммы сторон AC и BC.




Доказательство следует из того, что центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы. Докажите, что медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы. Упражнение 4


Пусть в треугольнике ABC AB = c, AC = b, BC = a. Докажите, что для медианы m c, проведенной из вершины C, имеет место формула Доказательство. По теореме косинусов, примененной к треугольникам ACD и BCD, имеем: Складывая эти равенства, получим равенство из которого непосредственно следует искомая формула. Упражнение 5










Площадь треугольника ABC равна 1. Найдите площадь треугольника, стороны которого равны медианам треугольника ABC. Упражнение 10 Решение. На продолжении отрезка MC 1 отложим равный ему отрезок C 1 D. Стороны треугольника ADM равны две трети медиан, а его площадь равна одной третьей. Следовательно, площадь треугольника, стороны которого равны медианам треугольника ABC, равна три четвертых. Ответ. 0,75.


Теорема. Биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам. Биссектрисы треугольника Доказательство. Пусть CD – биссектриса треугольника ABC. Докажем, что AD: DB = AC: BC. Проведем прямую BE, параллельную CD. В треугольнике BEC угол B равен углу E. Следовательно, BC = EC. По теореме о пропорциональных отрезках, AD: DB = AC: CE = AC: BC.






Пусть в треугольнике ABC AC = b, BC = a. Докажите, что для биссектрисы l c, проведенной из вершины C, имеет место формула где c, c – отрезки на которые биссектриса делит сторону AB Доказательство. По теореме косинусов, примененной к треугольникам ACD и BCD, имеем: Умножим первое равенство на c, второе на c и сложим полученные равенства. Делая тождественные преобразования, получим равенство. Упражнение 3










Докажите, что биссектриса угла треугольника делит его площадь на части, пропорциональные прилежащим сторонам. Доказательство. У треугольников AC 1 C и BC 1 C высота, проведенная из вершины C, общая, а стороны AC 1 и BC 1 относятся как стороны AC и BC. Следовательно, площади треугольников AC 1 C и BC 1 C относятся как стороны AC и BC. Упражнение 8




Пусть в треугольнике ABC AB = c, AC = b, BC = a. Докажите, что биссектриса CС 1 делится точкой пересечения биссектрис в отношении (a+b):c, считая от вершины. Упражнение 10 Доказательство. Проведем прямую C 1 C, параллельную AA 1. Тогда A 1 C: CB = AC 1: C 1 B = b: a. Пусть A 1 C = bx, CB = ax. Так как CA 1: A 1 B = b: c, то CA 1: A 1 C = b(a+b)x/c. Следовательно, CO: OC 1 = (a + b)/c.


Высоты треугольника Теорема. В прямоугольном треугольнике перпендикуляр, опущенный из прямого угла на гипотенузу, есть среднее геометрическое проекций катетов на гипотенузу. (Средним геометрическим двух положительных чисел a и b называется положительное число c, квадрат которого равен ab, т.е. c =). Доказательство. Треугольники ADC и CDB подобны. Следовательно, или CD 2 = AD BD, т.е. CD является средним геометрическим AD и BD.










Упражнение 5 В треугольнике ABC проведены высоты AA 1 и BB 1. Докажите, что углы A 1 AC и B 1 BC равны. Доказательство. Окружность с диаметром AB пройдет через точки A 1 и B 1. Вписанные углы A 1 AC и B 1 BC опираются на одну дугу AB 1. Следовательно, они равны. Для доказательства равенства углов можно было бы воспользоваться тем, что стороны данных углов перпендикулярны.


Упражнение 6 В треугольнике ABC проведены высоты AA 1 и BB 1. Докажите, что углы AA 1 B 1 и ABB 1 равны. Доказательство. Окружность с диаметром AB пройдет через точки A 1 и B 1. Вписанные углы AA 1 B 1 и ABB 1 опираются на одну дугу AB 1. Следовательно, они равны.


Упражнение 7 В треугольнике ABC проведены высоты AA 1 и BB 1. Докажите, что углы BAC и B 1 A 1 C равны. Доказательство. Угол BAC равен 90 о минус угол ABB 1. Угол B 1 A 1 C равен 90 о минус угол AA 1 B 1. Так как углы AA 1 B 1 и ABB 1 равны (см. предыдущую задачу), то равны и углы BAC и B 1 A 1 C.


Упражнение 8 В треугольнике ABC проведены высоты AA 1 и BB 1. Докажите, что треугольник ABC подобен треугольнику A 1 B 1 C. Доказательство. Углы BAC и B 1 A 1 C равны (см. предыдущую задачу). Угол C треугольников ABC и A 1 B 1 C общий. Следовательно, данные треугольники подобны по двум углам.






Упражнение 11 Теорема. Для радиуса r окружности, вписанной в треугольник, имеет место формула где h a, h b, h c – высоты треугольника. Доказательство. Пусть стороны треугольника ABC равны a, b, c. Для площади S треугольника имеют место равенства: Из которых следует требуемая формула.


Упражнение 12 Докажите, что точки, симметричные точке пересечения высот треугольника относительно его сторон, лежат на окружности, описанной около этого треугольника. Доказательство. Для точки C, симметричной точке H пересечения высот треугольника ABC, имеем Следовательно, точка C принадлежит описанной окружности. Аналогично, описанной окружности принадлежат остальные две симметричные точки.


Окружность 1 Теорема 1. Угол с вершиной внутри круга измеряется полусуммой дуг, на которые опираются данный угол и вертикальный с ним угол. Доказательство. Рассмотрим угол АСВ с вершиной С внутри круга и точками А и В на окружности. Пусть А 1, В 1 – точки пересечения с окружностью сторон вертикального к нему угла. Проведем хорду BB 1. Угол АСВ является внешним углом треугольника B 1 СВ. Следовательно, ACB = AB 1 B + B 1 BA 1. Углы, стоящие в правой части равенства измеряются половинами соответствующих дуг, что и завершает доказательство.


Окружность 2 Теорема 2. Угол между касательной к окружности и хордой, проведенной через точку касания, измеряется половиной дуги окружности, заключенной внутри этого угла. Доказательство. Пусть угол ACB образован касательной AC и хордой BC окружности. Если этот угол – прямой, то BC – диаметр окружности и, следовательно, угол ACB измеряется половиной дуги полуокружности, заключенной внутри этого угла. Если угол ACB – острый, то проведем диаметр CD. Имеем ACB = ACD – BCD. Угол ACD измеряется половиной дуги CBD окружности. Угол BCD измеряется половиной дуги BD окружности. Следовательно, их разность (угол ACB) измеряется половиной дуги CB окружности, заключенной внутри этого угла. Самостоятельно рассмотрите случай тупого угла.


Окружность 3 Теорема 3. Угол с вершиной вне круга, стороны которого пересекают окружность, измеряется полуразностью дуг окружности, заключенных внутри этого угла. Доказательство. Рассмотрим угол ACB с вершиной C вне окружности и точками A и B на окружности. Пусть А 1, В 1 – точки пересечения с окружностью сторон AC и BC. Проведем хорду AB 1. Угол АВ 1 B является внешним углом треугольника AB 1 С. Следовательно, ACB = AB 1 B – B 1 AA 1. Углы, стоящие в правой части равенства измеряются половинами соответствующих дуг, что и завершает доказательство.


Окружность 4 Теорема 4. Произведение отрезков любой хорды, проведенной через внутреннюю точку круга, равно произведению отрезков диаметра, проведенного через ту же точку. Доказательство. Пусть дан круг с центром в точке O, хорда AB и диаметр CD пересекаются в точке E. Докажем, что Треугольники ACE и DBE подобны. Следовательно, значит,












































Упражнение 21 Найдите геометрическое место точек, из которых данный отрезок АВ виден под данным углом, т. е. таких точек С, для которых угол АСВ равен данному углу. Ответ: Дуги двух окружностей одинакового радиуса, опирающихся на отрезок AB, без точек A и B.




Упражнение 23 Ответ: а) ГМТ, лежащих вне окружности с диаметром AB и не принадлежащих прямой AB; Для данных точек А и В найдите геометрическое место точек С, для которых угол АСВ: а) острый; б) тупой. б) ГМТ, лежащих внутри окружности с диаметром AB и не принадлежащих отрезку AB.






Упражнение 26 Пусть AC и BD – хорды окружности, пересекающиеся в точке E. Докажите, что треугольники ABE и CDE подобны. Доказательство: Угол A треугольника ABE равен углу D треугольника CDE, как вписанные углы, опирающиеся на одну дугу окружности. Аналогично, угол B равен углу C. Следовательно, треугольники ABE и CDE подобны по первому признаку.


Упражнение 31 Ответ: DEK и DLF, DEK и ELK, DLF и ELK, DFK и DLE, DFK и FLK, DLE и FLK. На рисунке DL – биссектриса треугольника DEF, вписанного в окружность. DL пересекает окружность в точке K, которая соединена отрезками с вершинами E и F треугольника. Найдите подобные треугольники.


Упражнение 32 Ответ: ABH и ADC, ACH и ADB, ABM и CDM, BMD и AMC. В окружность вписан остроугольный треугольник ABC, AH – его высота, AD – диаметр окружности, который пересекает сторону BC в точке M. Точка D соединена с вершинами B и C треугольника. Найдите подобные треугольники.


Упражнение 33 Через внешнюю точку E окружности проведены две прямые, пересекающая окружность соответственно в точках A, C и B, D. Докажите, что треугольники ADE и BCE подобны. Доказательство: Угол D треугольника ADE равен углу C треугольника BCE, как вписанные углы, опирающиеся на одну дугу окружности. Угол E этих треугольников общий. Следовательно, треугольники ADE и BCE подобны по первому признаку.


Упражнение 34 Через внешнюю точку E окружности проведены две прямые, пересекающая окружность соответственно в точках A, C и B, D. Докажите, что AE·CE = BE·DE. Доказательство: Треугольники ADE и BCE подобны. Значит, AE: DE = BE: CE. Следовательно, AE·CE = BE·DE.
Упражнение 36 Через внешнюю точку E окружности проведены прямая, пересекающая окружность в точках A и B, и касательная EС (C – точка касания). Докажите, что треугольники EAC и ECB подобны. Доказательство. У треугольников EAC и ECB угол E общий. Углы ACE и CBE равны, как углы, опирающиеся на одну хорду. Следовательно, треугольники EAC и ECB подобны.
78 Прямая касается окружностей радиусов R и r в точках A и B. Известно, что расстояние между центрами окружностей равно a, причем r


Трапеция с основаниями 14 и 40 вписана в окружность радиуса 25. Найдите высоту трапеции. Решение. Пусть ABCD – трапеция, вписанная в окружность с центром O и радиусом 25. Возможны два случая: основания AB и CD трапеции расположены по одну сторону от центра O, основания AB и CD расположены по разные стороны от центра O. В первом случае (рис. 1) через точку O проведем прямую, перпендикулярную AB, и обозначим P, Q ее точки пересечения соответственно с AB и CD. Тогда высота PQ трапеции равна OQ – OP. Имеем OQ = OP = Следовательно, PQ = 9. Во втором случае (рис. 2) через точку O проведем прямую, перпендикулярную AB, и обозначим P, Q ее точки пересечения соответственно с AB и CD. Тогда высота PQ трапеции равна OQ + OP. Имеем OQ = OP = Следовательно, PQ = 39. Ответ. 9 или 39. Упражнение 39


Окружности с центрами O 1 и O 2 пересекаются в точках A и B. Известно, что угол AO 1 B равен 90 о, угол AO 2 B равен 60 о, O 1 O 2 = a. Найдите радиусы окружностей. Решение. Возможны два случая: точки O 1, O 2 расположены по разные стороны от прямой AB, точки O 1, O 2 расположены по одну сторону от прямой AB. Обозначим r радиус окружности с центром O 1. Тогда радиус окружности с центром O 2 будет равен. Обозначим P точку пересечения прямых O 1 O 2 и AB. Тогда O 1 P =, O 2 P =. В первом случае (рис. 1) и, следовательно, Во втором случае (рис. 2) и, следовательно, Ответ. или Упражнение 40


Около треугольника ABC описана окружность с центром O, угол AOC равен 60 о. В треугольник ABC вписана окружность с центром M. Найдите угол AMC. В первом случае (рис. 1) сумма углов A и C треугольника ABC равна 150 о. Так как AM и CM – биссектрисы этих углов, то сумма углов CAM и ACM равна 75 о и, следовательно, угол AMC равен 105 о. Ответ. 105 о или 165 о. Решение. Возможны два случая расположения вершины B треугольника ABC. Во втором случае (рис. 2) сумма углов A и C треугольника ABC равна 30 о. Так как AM и CM – биссектрисы этих углов, то сумма углов CAM и ACM равна 15 о и, следовательно, угол AMC равен 165 о. Упражнение 41


Треугольник ABC вписан в окружность радиуса 12. Известно, что AB = 6 и BC = 4. Найдите AC. Решение. По теореме синусов Откуда Возможны два случая расположения вершины C треугольника ABC. Опустим перпендикуляр BH на прямую AC. Тогда BH = ABsinA = 1. По теореме Пифагора AH = CH = В первом случае (рис. 1) AC = Во втором случае (рис. 2) AC = Ответ. или Упражнение 42


Прямые, содержащие высоты треугольника ABC пересекаются в точке H. Известно, что CH = AB. Найдите угол ACB. В первом случае (рис. 1) угол C равен углу CAA 1, как вписанные углы, опирающиеся на равные дуги. Следовательно, угол C равен 45 о. Во втором случае (рис. 2) угол C равен 135 о. Ответ. 45 о или 135 о. Решение. Пусть AA 1, BB 1 – высоты треугольника ABC. Опишем окружности на CH и AB как на диаметрах. Они пройдут через точки A 1 и B 1. Возможны два случая расположения точки H. Упражнение 43


В треугольнике ABC проведены высоты BB 1 и CC 1, O – центр вписанной окружности. Известно, что BC = 24, B 1 C 1 = 12. Найдите радиус R окружности, описанной около треугольника BOC. Решение. Возможны два случая расположения отрезка B 1 C 1. На BC, как на диаметре, опишем окружность с центром P. Треугольник B 1 C 1 P равносторонний. Следовательно, сумма углов BPB 1 и CPC 1 равна 120 о. В первом случае (рис. 1) треугольники BPC 1 и CPB 1 равнобедренные. Следовательно, сумма углов B и C равна 120 о. Так как BO и CO – биссектрисы, то угол BOC равен 120 о. По теореме синусов находим R =. Во втором случае (рис. 2) сумма углов B и C равна 60 о. Так как BO и CO – биссектрисы, то угол BOC равен 150 о. По теореме синусов находим R = 24. Ответ. или 24. Упражнение 44

Существует теорема о том, что медианы треугольника пересекаются в одной точке, и эта точка делит каждую медиану в отношении 2: 1 , где 2 соответствует отрезку от вершины, из которой проведена медиана, до точки пересечения медиан, а 1 соответствует отрезку от точки пересечения медиан до середины стороны, к которой проведена медиана.

Чтобы доказать эту теорему, рассмотрим треугольник ABC с медианами AE, BF, CD. То есть точки D, E, F делят пополам стороны AB, BC, CA соответственно.
Нам не известно, пересекаются ли все медианы в одной точке (это еще требуется доказать). Однако любые две медианы пересекутся в одной точке, так как не могут быть параллельны. Пусть медианы AE и BF пересекаются в точке O.

Медиана BF делит медиану AE на два отрезка AO и EO. Проведем через точку E прямую, параллельную BF. Эта прямая пересечет сторону AC в некой точке L. Также проведем через середину отрезка AB (точку D) еще одну параллельную к BF прямую. Она пересечет AC в точке K.

Согласно теореме Фалеса, если на одной стороне угла от его вершины отложить последовательно равные отрезки и провести через концы этих отрезков параллельные прямые, пересекающие другую сторону угла, то эти параллельные прямые отсекут на второй стороне угла также равные между собой отрезки.

Посмотрим на угол BCA данного треугольника. Отрезки BE и EC равны между собой, прямые BF и EL параллельны друг другу. Тогда согласно теореме Фалеса CL = LF.
Если же посмотреть на угол BAC, так как AD = BD и DK || BF, то AK = KF.

Так как отрезки AF и CF равны между собой (т. к. их образует медиана) и каждый из них делится на два равных отрезка, то все четыре отрезка стороны AC равны между собой: AK = KF = FL = LC.

Рассмотрим угол EAC. Через концы трех равных отрезков стороны AC проведены параллельные прямые. Следовательно, они отсекают на стороне AE равные между собой отрезки. Отрезок AO содержит в себе два таких отрезка, а EO только один. Таким образом, мы доказали, что как минимум одна медиана треугольника точкой пересечения с другой медианой делится на два отрезка, длины которых соотносятся как 2: 1.

Теперь рассмотрим пересечение медианы AE с медианой CD. Пусть они пересекаются в точке P.

Аналогично предыдущему, доказывается, что параллельные прямые FM, CD, EN делят сторону AB на равные отрезки. В свою очередь они же делят AE на три равных отрезка. Причем от вершины A до пересечения медиан два таких отрезка, а после - один.

Один и тот же отрезок нельзя разделить на три равных части так, чтобы при одном варианте деления они были одного размера, а при другом - другого. Поэтому точки O и P должны совпадать. Это значит, что все три медианы треугольники пересекаются в одной точке.

Чтобы доказать, что две остальные медианы делятся точкой пересечения в соотношении 2: 1, можно аналогично предыдущему провести параллельные прямые к сторонам AB и BC.

Медианой именуется отрезок, проведенный из вершины треугольника на середину противоположной стороны, то есть делит ее точкой пересечения пополам. Точка, в которой медиана пересекает противоположную вершине, из которой она выходит, сторону, именуется основанием. Через одну точку, называемую точкой пересечения, проходит каждая медиана треугольника. Формула длины ее может выражаться несколькими способами.

Формулы для выражения длины медианы

  • Зачастую в задачах по геометрии ученикам приходится иметь дело с таким отрезком, как медиана треугольника. Формула ее длины выражается через стороны:

где a, b и c - стороны. Причем с является стороной, на которую медиана опускается. Таким образом выглядит самая простая формула. Медианы треугольника иногда требуется проводить для вспомогательных расчетов. Есть и другие формулы.

  • Если при расчете известны две стороны треугольника и определенный угол α, находящийся между ними, то длина медианы треугольника, опущенной к третьей стороне, будет выражаться так.

Основные свойства

  • Все медианы имеют одну общую точку пересечения O и ею же делятся в отношении два к одному, если вести отсчет от вершины. Такая точка носит название центра тяжести треугольника.
  • Медиана разделяет треугольник на два других, площади которых равны. Такие треугольники называются равновеликими.
  • Если провести все медианы, то треугольник будет разделен на 6 равновеликих фигур, которые также будут треугольниками.
  • Если в треугольнике все три стороны равны, то в нем каждая из медиан будет также высотой и биссектрисой, то есть перпендикулярна той стороне, к которой она проведена, и делит надвое угол, из которого она выходит.
  • В равнобедренном треугольнике медиана, опущенная из вершины, которая находится напротив стороны, не равной никакой другой, будет также высотой и биссектрисой. Медианы, опущенные из других вершин, равны. Это также является необходимым и достаточным условием равнобедренности.
  • Если треугольник является основанием правильной пирамиды, то высота, опущенная на данное основание, проецируется в точку пересечения всех медиан.

  • В прямоугольном треугольнике медиана, проведенная к наибольшей стороне, равняется половине ее длины.
  • Пусть O - точка пересечения медиан треугольника. Формула, приведенная ниже, будет верная для любой точки M.

  • Еще одним свойством обладает медиана треугольника. Формула квадрата ее длины через квадраты сторон представлена ниже.

Свойства сторон, к которым проведена медиана

  • Если соединить любые две точки пересечения медиан со сторонами, на которые они опущены, то полученный отрезок будет являться средней линией треугольника и составлять одну вторую от стороны треугольника, с которой она не имеет общих точек.
  • Основания высот и медиан в треугольнике, а также середины отрезков, соединяющих вершины треугольника с точкой пересечения высот, лежат на одной окружности.

В заключение логично сказать, что одним из самых важных отрезков является именно медиана треугольника. Формула ее может использоваться при нахождении длин других его сторон.

Похожие публикации