Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

По какой формуле находятся координаты вершины параболы. Как определить вершину параболы

Функция вида , где называется квадратичной функцией .

График квадратичной функции – парабола .


Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

То есть , ,

Для построения заполняем таблицу, подставляя значения x в формулу:


Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при парабола «станет шире» параболы :


Давайте подытожим:

1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы :

Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана в виде

1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

2) находим координаты вершины параболы по формуле , .

3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

Пример 1


Пример 2


Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

Многие технические, экономические и социальные вопросы прогнозируются при помощи кривых. Наиболее используемым типом среди них является парабола, а точнее, ее половина. Важной составляющей любой параболической кривой является ее вершина, определение точных координат которой иногда играет ключевую роль не только в самом отображении протекания процесса, но и для последующих выводов. О том, как найти ее точные координаты, и пойдет речь в данной статье.

Вконтакте

Начало поиска

Перед тем как перейти к поиску координат вершины параболы, ознакомимся с самим определением и его свойствами. В классическом понимании параболой называется такое расположение точек, которые удалены на одинаковом расстоянии от конкретной точки (фокус, точка F), а также от прямой, которая не проходит через точку F. Рассмотрим данное определение более предметно на рисунке 1.

Рисунок 1. Классический вид параболы

На рисунке изображена классическая форма. Фокусом является точка F. Директрисой в данном случае будет считаться прямая оси Y (выделена красным цветом). Из определения можно удостовериться, что абсолютно любая точка кривой, не считая фокуса, имеет себе подобную с другой стороны, удаленную на таком же расстояние от оси симметрии, как и сама. Более того, расстояние от любой из точек на параболе равно расстоянию до директрисы . Забегая вперед, скажем, что центр функции не обязательно должен находиться в начале координат, а ветки могут быть направлены в разные стороны.

Парабола, как и любая другая функция, имеет свою запись в виде формулы:

В указанной формуле буква «s» обозначает параметр параболы, которая равна расстоянию от фокуса до директрисы. Также есть и другая форма записи, указано ГМТ, имеющая вид:

Такая формула используется при решении задач из области математического анализа и применяется чаще, чем традиционная (в силу удобства). В дальнейшем будем ориентироваться на вторую запись.

Это интересно! : доказательство

Расчет коэффициентов и основных точек параболы

К числу основных параметров принято относить расположение вершины на оси абсцисс, координаты вершины на оси ординат, параметр директрисы.

Численное значение координаты вершины на оси абсцисс

Если уравнение параболы задано в классическом виде (1), то значение абсциссы в искомой точке будет равняться половине значения параметра s (половине расстояния между директрисой и фокусом). В случае, если функция представлена в виде (2), то x нулевое рассчитывается по формуле:

Т.е., глядя на эту формулу, можно утверждать, что вершина будет находиться в правой половине относительно оси y в том случае, если один из параметров a или b будет меньше нуля.

Уравнение директрисы определяется следующим уравнением:

Значение вершины на оси ординат

Численное значение местонахождения вершины для формулы (2) на оси ординат можно найти по такой формуле:

Отсюда можно сделать вывод, что в случае если а<0, то вершина кривой будет находиться в верхней полуплоскости , в противном случае – в нижней. При этом точки параболы будут обладать теми же свойствами, что были упомянуты ранее.

Если дана классическая форма записи, то более рациональным будет вычисление значения расположения вершины на оси абсцисс, а через него и последующее значение ординаты. Отметим, что для формы записи (2), ось симметрии параболы, в классическом представлении, будет совпадать с осью ординат.

Важно! При решении заданий с использованием уравнения параболы прежде всего выделите основные значения, которые уже известны. Более того, нелишним будет, если будут определены недостающие параметры. Такой подход заранее даст большее «пространство для маневра» и более рациональное решение. На практике старайтесь использовать запись (2). Она более проста для восприятия (не придется «переворачивать координаты Декарта), к тому же подавляющее количество заданий приспособлено именно под такую форму записи.

Построение кривой параболического типа

Используя распространенную форму записи, перед тем как построить параболу, требуется найти ее вершину. Проще говоря, необходимо выполнить следующий алгоритм:

  1. Найти координату вершину на оси X.
  2. Найти координату расположения вершины на оси Y.
  3. Подставляя разные значения зависимой переменной X, найти соответствующие значения Y и построить кривую.

Т.е. алгоритм не представляет собой ничего сложного, основной акцент делается на том, как найти вершину параболы. Дальнейший процесс построения можно считать механическим.

При условии, что даны три точки, координаты которых известны, прежде всего необходимо составить уравнение самой параболы, а потом повторить порядок действий, который был описан ранее. Т.к. в уравнении (2) присутствуют 3 коэффициента, то, используя координаты точек, вычислим каждое из них:

(5.1).

(5.2).

(5.3).

В формулах (5.1), (5.2), (5.3) применяются соответственно тех точек, которые известны (к примеру А (, B (, C (. Таким путем находим уравнение параболы по 3 точкам. С практической стороны такой подход не является самым «приятным», однако он дает четкий результат, на основе которого впоследствии строится сама кривая.

При построении параболы всегда должна присутствовать ось симметрии. Формула оси симметрии для записи (2) будет иметь такой вид:

Т.е. найти ось симметрии, которой симметричны все точки кривой, не составляет труда. Точнее, она равна первой координате вершины.

Наглядные примеры

Пример 1. Допустим, имеем уравнение параболы:

Требуется найти координаты вершины параболы, а также проверить, принадлежит ли точка D (10; 5) данной кривой.

Решение: Прежде всего проверим принадлежность упомянутой точки самой кривой

Откуда делаем вывод, что указанная точка не принадлежит заданной кривой. Найдем координаты вершины параболы. Из формул (4) и (5) получаем такую последовательность:

Получается, что координаты на вершине, в точке О, следующие (-1,25; -7,625). Это говорит о том, что наша парабола берет свое начало в 3-й четверти декартовой системы координат.

Пример 2. Найти вершину параболы, зная три точки, которые ей принадлежат: A (2;3), B (3;5), C (6;2). Используя формулы (5.1), (5.2), (5.3), найдем коэффициенты уравнения параболы. Получим следующее:

Используя полученные значения, получим следующие уравнение:

На рисунке заданная функция будет выглядеть следующим образом (рисунок 2):

Рисунок 2. График параболы, проходящий через 3 точки

Т.е. график параболы, который проходит по трем заданным точкам, будет иметь вершину в 1-й четверти. Однако ветки данной кривой направлены вниз, т.е. имеется смещение параболы от начала координат. Такое построение можно было предвидеть, обратив внимание на коэффициенты a, b, c.

В частности, если a<0, то ветки» будут направлены вниз. При a>1 кривая будет растянута, а если меньше 1 – сжата.

Константа c отвечает за «движение» кривой вдоль оси ординат. Если c>0, то парабола «ползет» вверх , в противном случае – вниз. Относительно коэффициента b, то определить степень влияния можно лишь изменив форму записи уравнения, приведя ее к следующему виду:

Если коэффициент b>0, то координаты вершины параболы будут смещены вправо на b единиц, если меньше – то на b единиц влево.

Важно! Использование приемов определения смещения параболы на координатной плоскости подчас помогает экономить время при решении задач либо узнать о возможном пересечении параболы с другой кривой еще до построения. Обычно смотрят только на коэффициент a, так как именно он дает четкий ответ на поставленный вопрос.

Полезное видео: как найти вершину параболы

Полезное видео: как легко составить уравнение параболы из графика

Вывод

Такой как алгебраический процесс, как определение вершин параболы, не является сложным, но при этом достаточно трудоемкий. На практике стараются использовать именно вторую форму записи с целью облегчения понимания графического решения и решения в целом. Поэтому настоятельно рекомендуем использовать именно такой подход, и если не помнить формулы координаты вершины, то хотя бы иметь шпаргалку.

Содержимое:

Вершина параболы – это самая высокая или самая низкая ее точка. Чтобы найти вершину параболы, вы можете воспользоваться специальной формулой или методом дополнения до полного квадрата. Ниже описано, как это сделать.

Шаги

1 Формула для нахождения вершины

  1. 1 Найдите величины a, b, и c. В квадратном уравнении коэффициент при x 2 = a, при x = b, постоянная (коэффициент без переменной) = c. Например, возьмем уравнение: y = x 2 + 9x + 18. Здесь a = 1, b = 9, and c = 18.
  2. 2 Воспользуйтесь формулой для вычисления значения координаты x вершины. Вершина также является точкой симметрии параболы. Формула для нахождения координаты x параболы: x = -b/2a. Подставьте в нее соответствующие значения для вычисления x .
    • x=-b/2a
    • x=-(9)/(2)(1)
    • x=-9/2
  3. 3 Подставьте найденное значение x в исходное уравнение для вычисления значения y. Теперь, когда вам известно значение x, просто подставьте его в исходное уравнение для нахождения y. Таким образом, формулу для нахождения вершины параболы можно записать в виде функции: (x, y) = [(-b/2a), f(-b/2a)] . Это значит, что для нахождения y необходимо сначала найти x по формуле, а затем подставить значение x в исходное уравнение. Вот как это делается:
    • y = x 2 + 9x + 18
    • y = (-9/2) 2 + 9(-9/2) +18
    • y = 81/4 -81/2 + 18
    • y = 81/4 -162/4 + 72/4
    • y = (81 - 162 + 72)/4
    • y = -9/4
  4. 4 Запишите значения x и y в виде пары координат. Теперь, когда вам известно, что x = -9/2, а y = -9/4, запишите их как координаты в виде: (-9/2, -9/4). Вершина параболы находится по координатам (-9/2, -9/4). Если вам нужно нарисовать эту параболу, то ее вершина лежит в нижней точке, так как коэффициент при x 2 положительный.

2 Дополнение до полного квадрата

  1. 1 Запишите уравнение. Дополнение до полного квадрата – еще один способ найти вершину параболы. Применив этот метод, вы найдете координаты x и y сразу, без необходимости подставлять x в исходное уравнение. Например, дано уравнение: x 2 + 4x + 1 = 0.
  2. 2 Разделите каждый коэффициент на коэффициент при x 2 . В нашем случае коэффициент при x 2 равен 1, поэтому мы можем пропустить этот шаг. Деление на 1 ничего не изменит.
  3. 3 Перенесите постоянную в правую часть уравнения. Постоянная – коэффициент без переменной. Здесь это "1". Перенесите 1 вправо путем вычитания 1 из обеих частей уравнения. Вот как это сделать:
    • x 2 + 4x + 1 = 0
    • x 2 + 4x + 1 -1 = 0 - 1
    • x 2 + 4x = - 1
  4. 4 Дополните до полного квадрата левую часть уравнения. Для этого просто найдите (b/2) 2 и прибавьте результат к обеим частям уравнения. Подставьте "4" вместо b , так как "4x" – это коэффициент b нашего уравнения.
    • (4/2) 2 = 2 2 = 4. Теперь прибавьте 4 к обеим частям уравнения и получите:
      • x 2 + 4x + 4 = -1 + 4
      • x 2 + 4x + 4 = 3
  5. 5 Упрощаем левую часть уравнения. Мы видим, что x 2 + 4x + 4 – полный квадрат. Он может быть записан в виде: (x + 2) 2 = 3
  6. 6 Используйте его для нахождения координат x и y. Вы можете найти x, просто приравняв (x + 2) 2 к 0. Теперь, когда (x + 2) 2 = 0, вычисляем x: x =-2. Координата y – это постоянная в правой части полного квадрата. Итак, y = 3. Вершина параболы уравнения x 2 + 4x + 1 = (-2, 3)
  • Правильно определяйте a, b, и c.
  • Записывайте предварительные вычисления. Это не только поможет в процессе работы, но и позволит увидеть, где сделаны ошибки.
  • Не нарушайте порядок вычислений.

Предупреждения

  • Проверьте ваш ответ!
  • Удостоверьтесь, что вы знаете, как определить коэффициента a, b, и c. Если вы не знаете, ответ будет неправильным.
  • Не – решение таких задач требует практики.

Инструкция

Квадратичная функция в общем виде записывается уравнением: y = ax² + bx + c. Графиком этого уравнения является , ветви которой направлены вверх (при a > 0) или вниз (при a < 0). Школьникам предлагается просто запомнить формулу вычисления координат вершины . Вершина параболы в точке x0 = -b/2a. Подставив это значение в квадратное , получите y0: y0 = a(-b/2a)² - b²/2a + c = - b²/4a + c.

Людям, знакомым с понятием производной, легко найти вершину параболы. Независимо от положения ветвей параболы ее вершина является точкой (минимума, если ветви направлены вверх, или , когда ветви направлены вниз). Чтобы найти точки предполагаемого экстремума любой , надо вычислить ее первую производную и приравнять ее к нулю. В общем виде производная равна f"(x) = (ax² + bx + c)" = 2ax + b. Приравняв к нулю, вы получите 0 = 2ax0 + b => x0 = -b/2a.

Парабола - симметричная линия. Ось проходит через вершину параболы. Зная точки параболы с осью координат X, можно легко найти абсциссу вершины x0. Пусть x1 и x2 - корни параболы (так называют точки пересечения параболы с осью абсцисс, поскольку эти значения обращают квадратное уравнение ax² + bx + c в ноль). При этом пусть |x2| > |x1|, тогда вершина параболы лежит посередине между ними и может быть найдена из следующего выражения: x0 = ½(|x2| - |x1|).

Видео по теме

Источники:

  • Квадратичная функция
  • формула нахождения вершины параболы

Парабола – это график квадратичной функции, в общем виде уравнение параболы записывается y=aх^2+bх+с, где а≠0. Это универсальная кривая второго порядка, которая описывает многие явления в жизни, например, движение подбрасываемого и затем падающего тела, форму радуги, поэтому умение найти параболу может очень пригодиться в жизни.

Вам понадобится

  • - формула квадратичного уравнения;
  • - лист бумаги с координатной сеткой;
  • - карандаш, ластик;
  • - компьютер и программа Excel.

Инструкция

В первую очередь найдите вершину параболы. Чтобы найти абсциссу этой точки, возьмите коэффициент перед х, разделите его на удвоенный коэффициент перед х^2 и умножьте на -1 ( х=-b/2a). Ординату найдите, подставив полученное значение в уравнение или по формуле у=(b^2-4ac)/4a. Вы получили координаты точки вершины параболы.

Вершину параболы можно найти и другим способом. Так как является экстремумом функции, то для ее вычисления вычислите первую производную и приравняйте ее к нулю. В общем виде вы получите формулу f(x)" = (ax? + bx + c)" = 2ax + b. А приравняв ее к нулю, вы придете к той же самой формуле - х=-b/2a.

Узнайте, направлены ли ветви параболы вверх или вниз. Для этого посмотрите на коэффициент перед х^2, то есть на а. Если а>0, то ветви направлены вверх, если а

Координаты вершины параболы найдены. Запишите их в виде координат одной точки (x0,y0).

Видео по теме

Для функций (точнее их графиков) используется понятие наибольшего значения, в том числе и локального максимума. Понятие же «вершина» скорее связано с геометрическими фигурами. Точки максимумов гладких функций (имеющих производную) легко определить с помощью нулей первой производной.

Инструкция

Для точек, в которых функция не дифференцируема, но непрерывна, наибольшее на промежутке значение может иметь вид острия (на y=-|x|). В таких точках к функции можно провести сколь угодно касательных для нее просто не существует. Сами функции такого типа обычно задаются на отрезках. Точки, в которых производная функции равна нулю или не существует, называются критическими.

Реение. y=x+3 при x≤-1 и y=((x^2)^(1/3)) –х при x>-1. Функция задана на отрезках умышленно, так как в данном случае преследуется цель отобразить все в одном примере. Легко , что при х=-1 функция остается непрерывной.y’=1 при x≤-1 и y’=(2/3)(x^(-1/3))-1=(2-3(x^(1/3))/(x^(1/3)) при x>-1. y’=0 при x=8/27. y’ не существует при x=-1 и x=0.При этом y’>0 если x

Видео по теме

Парабола – одна из кривых второго порядка, ее точки построены в соответствии с квадратным уравнением. Главное в построении этой кривой – найти вершину параболы . Это можно сделать несколькими способами.

Инструкция

Чтобы найти координаты вершины параболы , воспользуйтесь следующей формулой: х=-b/2а, где а – коэффициент перед х в , а b – коэффициент перед х. Подставьте ваши значения и рассчитайте его . Затем подставьте полученное значение вместо х в уравнение и посчитайте ординату вершины. Например, если вам дано уравнение у=2х^2-4х+5, то абсциссу найдите следующим образом: х=-(-4)/2*2=1. Подставив х=1 в уравнение, рассчитайте значение у для вершины параболы : у=2*1^2-4*1+5=3. Таким образом, вершина параболы имеет координаты (1;3).

Значение ординаты параболы можно найти и без предварительного расчета абсциссы. Для этого воспользуйтесь формулой у=-b^2/4ас+с.

Если вы знакомы с понятием производной, найдите вершину параболы при помощи производных, воспользовавшись следующим свойством любой : первая производная функции, приравненная к нулю, указывает на . Так как вершина параболы , независимо от того, направлены ее ветви вверх или вниз, точкой , вычислите производную для вашей функции. В общем виде она будет иметь вид f(х)=2ах+b. Приравняйте ее к нулю и получите координаты вершины параболы , соответствующей вашей функции.

Попробуйте найти вершину параболы , воспользовавшись таким ее свойством, как симметричность. Для этого найдите точки пересечения параболы с осью ох, приравняв функцию к нулю (подставив у=0). Решив квадратное уравнение, вы найдете х1 и х2. Так как парабола симметрична относительно директрисы, проходящей через вершину , эти точки будут равноудалены от абсциссы вершины. Чтобы ее найти, разделим

Параболой является график квадратичной функции. Данная линия обладает весомым физическим значением. Для того чтобы легче было найти вершину параболы, нужно ее нарисовать. Тогда на графике с легкостью можно будет увидеть ее вершину. Но чтобы построить параболу, необходимо знать, как найти точки параболы и как найти координаты параболы.

Находим точки и вершину параболы

В общем представлении квадратичная функция имеет следующий вид: y = ax 2 + bx + c. Графиком данного уравнения является парабола. При значении а › 0, ее ветви направлены вверх, а при значении а ‹ 0 – вниз. Для построения параболы на графике необходимо знать три точки, если она проходит вдоль оси ординат. В противном случае, должно быть известно четыре точки построения.

При нахождении абсциссы (х) необходимо взять коэффициент при (х) из заданной формулы многочлена, а затем разделить на удвоенный коэффициент при (x 2), после чего умножить на число – 1.

Для того чтобы найти ординату необходимо найти дискриминант, затем умножить его на – 1, после чего разделить на коэффициент при (x 2), предварительно умножив его на 4.

Далее, подставляя численные значения, вычисляется вершина параболы. Для всех расчетов желательно использовать инженерный калькулятор, а при черчении графиков и парабол пользоваться линейкой и люмографом, это позволит значительно повысить точность ваших расчетов.

Рассмотрим следующий пример, который поможет нам понять, как найти вершину параболы.

x 2 -9=0. В данном случае координаты вершины рассчитываются следующим образом: точка 1 (-0/(2*1); точка 2 -(0^2-4*1*(-9))/(4*1)). Таким образом, координатами вершины являются значения (0; 9).

Находим абсциссу вершины

После того, как вы узнали, как найти параболу, и можете рассчитать точки ее пересечения с осью координат (х), можно легко вычислить абсциссу вершины.

Пусть (x 1) и (х 2) являются корнями параболы. Корни параболы – это точки ее пересечения с осью абсцисс. Данные значения обращают в ноль квадратное уравнение следующего вида: ax 2 + bx + c.

При этом |x 2 | > |x 1 |, значит вершина параболы расположена посередине между ними. Таким образом, ее можно найти по следующему выражению: x 0 = ½(|x 2 | - |x 1 |).

Находим площадь фигуры

Для нахождения площади фигуры на координатной плоскости нужно знать интеграл. А чтобы применить его, достаточно знать определенные алгоритмы. Для того чтобы найти площадь, ограниченную параболами, необходимо произвести ее изображение в декартовой системе координат.

Вначале, по описанному выше методу, определяется координата вершины оси (х), затем оси (у), после чего находится вершина параболы. Теперь следует определить пределы интегрирования. Как правило, они указываются в условии задачи при помощи переменных (а) и (b). Данные значения следует поместить в верхнюю и нижнюю части интеграла соответственно. Далее следует вписать в общем виде значение функции и умножить его на (dx). В случае с параболой: (x 2)dx.

Затем нужно вычислить в общем виде первообразное значение функции. Для этого следует воспользоваться специальной таблицей значений. Подставляя туда пределы интегрирования, находится разность. Данная разность и будет являться площадью.

В качестве примера рассмотрим систему уравнений: у = x 2 +1 и х+у=3.

Находятся абсциссы точек пересечения: х 1 =-2 и х 2 =1.

Полагаем, что у 2 =3, а у 1 =x 2 + 1, подставляем значения в вышеприведенную формулу и получаем значение равное 4,5.

Теперь мы узнали как найти параболу, а также, основываясь на этих данных, рассчитать площадь фигуры, которую она ограничивает.

Похожие публикации