Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

История развития науки и техники. Развитие науки и техники. Образование

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КОНТРОЛЬНАЯ РАБОТА

по истории

ИСТОРИЯ РАЗВИТИЯ НАУКИ И ТЕХНИКИ

1. Зарождение науки

Удовлетворение насущных практических потребностей, заставляющее внимательно наблюдать и изучать природу, всегда было сильнейшей побудительной причиной для развития науки. Не праздное любопытство и не происхождение земли, простая любознательность заставили первобытные народы тщательно следить за движением Солнца и Луны, а насущная необходимость иметь календарь.

Когда люди были вынуждены от охоты и скотоводства, являвшихся вначале единственными средствами существования, перейти к земледелию, то они уже не могли обходиться без достаточно правильного календаря, позволяющего своевременно выполнять полевые работы.

Вот почему за несколько тысяч лет до нашей эры в земледельческих государствах, возникших на плодородных долинах Месопотамии, Египта, Индии и Китая, одной из важнейших обязанностей жрецов делается систематическое наблюдение небесных светил. После многих веков тщательных наблюдений Солнца им удалось изучить его перемещение относительно звёзд и определить продолжительность года, что легло в основу календаря. Наблюдение Луны, определение законов её перемещения между звёздами было необходимо, чтобы установить связь между новым солнечным календарём и тем счётом времени по лунным фазам, к которому люди привыкли, когда жили охотой и скотоводством.

Необходимость уметь точно предсказывать наступление времён года была первой причиной, заставившей людей старательно следить за движением Луны и Солнца. Подмеченное при этом правильное чередование, или, как мы теперь говорим, периодичность небесных явлений, впервые дало людям представление о законах природы. Они стали понимать, что явления окружающего мира происходят не по капризу богов, а по твёрдым и неизменным законам. Развитие торговли и мореплавания дало новый могучий толчок к изучению природы, так как далёкие путешествия, особенно в открытом море, можно было совершать, лишь тщательно изучив звёздное небо и умея ориентироваться по созвездиям. Финикийские и греческие купцы, достигавшие с одной стороны берегов современной Франции и Англии, а с другой - проникавшие в южные области Египта и в Индийский океан, быстро убедились в том, что Земля не может быть плоской.

Ведь при путешествии на север созвездия, расположенные в южной части неба, перестают быть видимыми, а при перемещении в южном направлении, появляются новые созвездия.

Путешествия на юг показали, что существуют места, в которых полуденная тень от вертикального пред - 6 мета летом или исчезает вовсе, или даже падает к югу, а не к северу, как у нас.

Всё это было несовместимо с представлением о плоской Земле и подготовляло мысль о её шарообразности.

Однако, пока изучение движения небесных светил производилось только жрецами, заботившимися о точности календаря, и купцами-мореплавателями, заинтересованными лишь в умении находить путь по звёздам и Солнцу, наука в нашем смысле этого слова ещё не могла возникнуть. И жрецы, и мореплаватели представляли замкнутые группы, нисколько не заинтересованные в распространении своих открытий. Напротив, накопленный опыт являлся обычно тайной, сохраняемой в храмах или торговых конторах и недоступной для непосвящённых.

А самое главное, и те и другие были лишь узкими практиками, не занимавшимися обобщением и объяснением открытых явлений.

Заслуга создания науки принадлежит древним грекам. Хотя вавилоняне, египтяне, индусы раньше греков начали систематически наблюдать явления природы и размышлять над ними, но до настоящей науки о природе, до естествознания они не дошли.

Они никогда не могли освободиться от своих религиозно-мистических воззрений, подняться до мысли о естественной закономерности явлений природы и заняться выяснением их причинной связи.

Напротив, греки, в жизни которых религиозные представления не имели такого господствующего влияния, как у восточных народов, очень скоро стали искать познаваемую связь явлений, а не «волю богов».

В греческих государствах и колониях, рассеянных по берегам Средиземного моря, уже примерно за 6-7 веков до начала нашей эры, ведущая роль в развитии знаний переходит от жрецов к философам. Философами (что по-гречески означает «любители мудрости») называли тогда людей, занимающихся наукой и преподаванием. Это время, когда научные занятия окончательно отделились как от религии, так и от ремёсел, и можно считать временем зарождения науки.

Однако, возникшая наука далеко не сразу нащупала верный путь в изучении природы. Вместо того, чтобы кропотливо изучать отдельные явления и постепенно доходить до открытия общих законов природы, первые учёные пытались одним широким взмахом обнять всё мироздание. Не довольствуясь продвижением вперёд 2*7.

Осторожными шагами - маленькими, но верными, - они старались угадать общие принципы для объяснения природы в целом. Фалес Милетский учил, что «начало всех вещей - вода, из воды всё происходит и всё возвращается к воде». Анаксимандр считал началом всех вещей некоторое первичное вещество, качественно неопределённое, количественно бесконечное, вечное и неисчерпаемое. Из этого неопределённого вещества выделяются тёплое и холодное начала, соединение их даёт влагу, из которой путём высыхания образуется земля, далее - воздух и огненная стихия, а из этой последней - небесные светила. Анаксимен за первоначальное вещество принимал воздух, полагая, что от сгущения воздух превращается в воду, а вода в землю, разрежение воздуха даёт огонь.

Наряду с подобными наивными попытками осмыслить окружающую природу (имевшими огромный успех у современников), понемногу развивалось и точное знание. Наибольших успехов греческие учёные достигли в геометрии, которая в их руках скоро стала - по своей законченности, стройности, а главное убедительности - образцом для всех других наук. Развитие геометрии позволило получить много важных результатов и в астрономии. Таким образом, познание окружающего мира становится на прочный фундамент.

2. Роль науки в современном обществе

На протяжении всей истории человеческой цивилизации люди выработали несколько способов познания и освоения окружающего их мира. Одним из таких важнейших способов является наука.

Наука - сфера исследовательской деятельности, направленная на производство новых знаний о природе, обществе и мышлении и включающая в себя все условия и моменты этого производства.

Она отражает мир в форме понятий, гипотез, теорий, разного рода учений. При этом она прибегает к таким способам познания, как опыт, моделирование, мыслительный эксперимент и др.

Наука включает и ученых с их знаниями и способностями, квалификацией и опытом, с разделением и кооперацией научного труда, научные учреждения, экспериментальное и лабораторное оборудование, методы научно-исследовательской работы, понятийный и категориальный аппарат, систему научной информации, а также всю сумму наличных знаний, выступающих в качестве либо предпосылки, либо средства, либо результата научного производства. Эти результаты могут также выступать как одна из форм общественного сознания.

Наука - это и творческая деятельность по получению нового знания и результат такой деятельности.

Отличия науки от других отраслей культуры хорошо показал А.А. Горелов: «Наука отличается от мифологии тем, что стремится не к объяснению мира в целом, а к формулированию законов развития природы, допускающих эмпирическую проверку.

Наука отличается от мистики тем, что стремится не к слиянию с объектом исследования, а к эго теоретическому пониманию и воспроизведению. Наука отличается от религии тем, что разум и опора на чувственную реальность имеют в ней большее значение, чем вера.

Наука отличается от философии тем, что ее выводы допускают эмпирическую проверку и отвечают не на вопрос «почему?», а на вопрос «как?», «каким образом?».

Наука отличается от искусства своей рациональностью, не останавливающейся на уровне образов, а доведенной до уровня теорий.

Наука отличается от идеологии тем, что ее истины общезначимы и не зависят от интересов определенных слоев общества.

Наука отличается от техники тем, что нацелена не на использование полученных знаний о мире для его преобразования, а на познание мира.

Наука отличается от обыденного сознания тем, что представляет собой теоретическое освоение действительности.

Искусство, как проявление эстетического сознания, отражает мир в форме художественных образов. Различные жанры искусства - живопись, театр и т. д. - используют свои специфические средства и способы эстетического освоения мира. Моральное сознание отражает существующие в обществе нравственные отношения в форме моральных переживаний и взглядов, находящих свое выражение в моральных нормах и принципах поведения, а также в обычаях, традициях и т. д.

По-своему отражается общественная жизнь в политических и религиозных взглядах. Наука отражает мир в форме понятий, гипотез, теорий, разного рода учений. При этом она прибегает к таким способам познания, как опыт, моделирование, мыслительный эксперимент и др.

Итак, наука - это «форма духовной деятельности людей, направленная на производство знаний о природе, обществе и о самом познании, имеющая непосредственной целью постижение истины и открытие объективных законов на основе обобщения реальных фактов в их взаимосвязи».

Сегодня совершенно очевидно, что наука представляет собой составную часть духовной культуры общества.

С ее возникновением в сокровищнице передаваемых от поколения к поколению знаний накапливаются уникальные духовные продукты, которые играют все более важную роль в осознании, понимании и преобразовании действительности. На определенном этапе человеческой истории наука, подобно другим, ранее возникшим элементам культуры, развивается в относительно самостоятельную форму общественного сознания. Это обусловлено тем, что целый ряд проблем, возникающих перед обществом, может быть решен только с помощью науки.

Опытная наука за 300 лет своего существования в странах, охваченных научно-технической революцией, дала возможность поднять уровень жизни в 15-20 раз. Невиданное ранее ускорение научно-технического прогресса, который привел к научно-технической революции, началось в мире в 50-х гг. ХХ в. НТР вызвала к жизни качественные преобразования производительных сил, резко усилила интернационализацию хозяйственной жизни.

Коренные изменения в производстве сопровождались сдвигами в мировом населении. Главные черты этих сдвигов: ускоренный рост численности, получивший наименование демографического “взрыва”, широкое распространение, урбанизации, изменения в структуре занятости, развитие этнических процессов.

Понимание места и роли науки как социокультурного явления представляет собой сложный процесс, который не завершен и в наши дни. Оно выработалось и вырабатывается долго и трудно, в борьбе подходов, идей, в ходе преодоления трудностей, противоречий, сомнений и возникновения новых и новых вопросов.

Современная наука стала индустрией открытий, мощным стимулятором развития техники. В настоящее время развитие науки и техники все более характеризуется тенденцией к их системному единству: если процесс производства становится применением науки, то наука, наоборот, становится фактором, функцией процесса производства. В результате начало формироваться новое качество науки как одной из общественных сил труда, а именно - непосредственной производительной силы общества. В этих условиях в развитии промышленности все определеннее проявляется тенденция к революционной ломке прежнего производственного процесса, к критическому пересмотру прежней формы развития производства, связанной со стремлением основываться на имеющемся «традиционном» опыте.

Ускоренное развитие науки, более глубокое познание законов и естественных процессов природы, их использование в производственном процессе преобразует саму основу, на которой до тех пор строился процесс производства, способствуют появлению качественно новых форм преемственности в его развитии, делают возможным и необходимым переход к интенсивной форме развития производства.

Все устройства такого рода имеют единый знаменатель - их действие происходит на основе законов механики.

Данные устройства рассматриваются с позиций «линейных» причинно-следственных целей и связей, а также жесткого детерминизма. Наука воспринимается через ее способность к точному, законченному знанию, к однозначному, невариантному типу мышления. Здесь преобразующие силы человека ограничиваются преимущественно уровнем развития науки, имеют свой обусловленный масштаб.

Важнейшей причиной, обусловившей столь быстрое развитие человечества за последние 100-150 лет, является соединение в процессе производства научных и технических достижений.

Это послужило основой поистине революционной ломки старых, традиционных форм промышленного производства и коренных изменений роли и места человека, техники и науки в производственном процессе, резкого возрастания масштабов влияния интенсивных факторов на развитие общественного производства.

В современной науке проблема роста, развития знания является центральной. Так, К. Поппер в своей концепции роста знания исходил из того, что последнее есть развивающаяся целостность. Рост знания, по его мнению, это не кумулятивный (накопительный) процесс и не простое коллекционирование наблюдений. Это ниспровержение теорий, их замена лучшими, процесс устранения ошибок. Это дарвиновский отбор как частный случай общемировых эволюционных процессов.

Т. Кун стремился выявить общий механизм развития науки как целостного единства «нормальной науки» и «некумулятивных скачков» (научных революций). Ст. Тулмин в своей эволюционной эпистемологии рассматривал содержание теорий как своеобразную «популяцию понятий», а общий механизм их развития представил как взаимодействие внутринаучных и вненаучных (социальных) факторов, подчеркивая, однако, решающее значение рациональных компонентов.

Согласно И. Лакатосу, рост, развитие науки есть смена ряда непрерывно связанных научно-исследовательских программ.

Современное общество пронизано гонкой за новизной. Это дает значительный эффект. Однако развитие цивилизации - противоречивый процесс. Здесь прогрессивное и регрессивное - две стороны одной медали. Так, сложившийся первоначально в Европе, а потом распространившийся по всему миру тип научно-технической культуры весьма способствовал развитию свободы человека. Но вместе с тем он имеет изъяны.

Технологическая цивилизация основана на таком взаимоотношении между человеком и природой, при котором природа является объектом человеческой деятельности, объектом эксплуатации, причем неограниченной. Ей присущ тип развития, который можно выразить одним словом - «больше».

Цель состоит в том, чтобы накапливать все больше материальных благ, богатств и на этой основе решать все человеческие проблемы, в том числе социальные, культурные и др.

Технологической цивилизации присуще представление, что природа неисчерпаема именно как объект ее эксплуатации человеком. Понимание глубины экономического кризиса положило конец такому представлению. Отсюда идейное научно-теоретическое движение последних десятилетий, начатое Римским клубом и поставившее проблему создания новой экологической культуры. Истоки современного глобального кризиса, прежде всего экологического, обнаруживаются в логике развития фундаментальных основ цивилизации - ее технико-технологического базиса.

Следовательно, соответствующим образом должны быть ориентированы и поиски путей и средств выхода из этого кризиса. С одной стороны, для оптимизации природной среды могут быть использованы невиданные технические возможности, открывающиеся сегодня. Ведь в том-то и состоит противоречивый характер современной науки, что, порождая невиданные в прошлом экологические проблемы, она в то же время содержит в себе потенциальные возможности их преодоления.

Современная наука охватывает огромную отрасль знаний - около 15 тысяч дисциплин, которые в различной степени отдалены друг от друга. Современная наука имеет очень сложную организацию. Она разделяется на множество отраслей знания.

По своей удаленности от практики можно разделить науки на два крупных типа: фундаментальные, где нет прямой ориентации на практику, и прикладные - непосредственное применение результатов научного познания для решения производственных и социально-практических задач.

Для того, чтобы нагляднее представить все те изменения, которые претерпела наука на всем протяжении своего существования, представим ее в виде своеобразного «луча света». Представим себе, что наука - это «луч света», входящий через «окно познания».

Первоначально это был сплошной «диффузный» поток «света», в котором нельзя было различить каких-либо составляющих его компонентов. О них можно было только догадываться и философствовать. Это была нерасчлененная наука, носившая натурфилософский характер. Со временем внутри этой единой, нерасчлененной науки стали зарождаться будущие отдельные науки: математика, механика, астрономия и др.

В эпоху Возрождения этот «луч» как бы преломился через «призму анализа», или «призму дифференциации», и как бы распался на отдельные фундаментальные науки, вышедшие из первоначально единой науки.

Возникшие отдельные отрасли научного знания поначалу включают в себя и их техническое применение.

Однако в конце XVIII в. в процессе продолжающейся дифференциации наук началось отпочкование прикладного знания от теоретического. В результате стали возникать особые технические науки в качестве отраслей научно-технического знания.

К середине XIX в. процесс односторонней дифференциации наук в основном исчерпал себя. До этого момента в научном движении дифференциация наук была, безусловно доминирующей, а связывание наук (их интеграция) осуществлялось лишь путем их внешнего соположения.

К концу первой половины XIX в. положение стало меняться коренным образом. Доминирующей становится тенденция к интеграции наук, причем сама эта интеграция начинает осуществляться через продолжающуюся их дифференциацию. Другими словами, связывание наук происходит благодаря появлению новых наук переходного, или промежуточного, характера. Эти новые науки перекидывают как бы мосты между ранее уже возникшими фундаментальными науками.

Способность исследователей длительное время работать в неких заданных рамках, очерчиваемых фундаментальными научными открытиями, стала важным элементом логики развития науки в концепции Т. Куна. Он ввел в методологию принципиально новое понятие - “парадигма”. Буквальный смысл этого слова - образец. В нем фиксируется существование особого способа организации знания, подразумевающего определенный набор предписаний, задающих характер видения мира, а значит, влияющих на выбор направлений исследования. В парадигме содержатся также и общепринятые образцы решения конкретных проблем. Парадигмальное знание не является собственно “чистой” теорией (хотя его ядром и служит, как правило, та или иная фундаментальная теория), поскольку не выполняет непосредственно объяснительной функции.

Оно дает некую систему отсчета, т. е., является предварительным условием и предпосылкой построения и обоснования различных теорий.

Являясь по сути метатеоретическим образованием, парадигма определяет дух и стиль научных исследований.

По словам Т. Куна, парадигму составляют признанные всеми научные достижения, которые в течение определенного времени дают модель постановки проблем и их решений научному сообществу”. Ее содержание отражено в учебниках, в фундаментальных трудах крупнейших ученых, а основные идеи проникают и в массовое сознание. Признанная научным сообществом, парадигма на долгие годы определяет круг проблем, привлекающих внимание ученых, является как бы официальным подтверждением подлинной “научности” их занятий. К парадигмам в истории науки Т. Кун причислял, например, аристотелевскую динамику, птолемеевскую астрономию, ньютоновскую механику и т. д.

Развитие, приращение научного знания внутри, в рамках такой парадигмы, получило название “нормальной науки”.

Смена же парадигмы есть не что иное, как научная революция. Наглядный пример - смена классической физики (ньютоновской) на релятивистскую (эйнштейновскую).

Решающая новизна концепции Т. Куна заключалась в мысли о том, что смена парадигм в развитии науки не является детерминированной однозначно, или, как сейчас выражаются, - не носит линейного характера. Развитие науки, рост научного знания нельзя, допустим, представить в виде тянущегося строго вверх, к солнцу дерева (познания добра и зла). Оно похоже, скорее, на развитие кактуса, прирост которого может начаться с любой точки его поверхности и продолжаться в любую сторону. И где, с какой стороны нашего научного “кактуса” возникнет вдруг “точка роста” новой парадигмы - непредсказуемо принципиально! Причем не потому, что процесс этот произволен или случаен, а потому, что в каждый критический момент перехода от одного состояния к другому имеется несколько возможных продолжений. Какая именно точка из многих возможных “пойдет в рост” - зависит от стечения обстоятельств.

Таким образом, логика развития науки содержит в себе закономерность, но закономерность эта “выбрана” случаем из целого ряда других, не менее закономерных возможностей. Из этого следует, что привычная нам ныне квантово-релятивистская картина мира могла бы быть и другой, но, наверное, не менее логичной и последовательной.

3. Накопление естественнонаучных знаний

Накопление практических знаний об окружающем мире на заре истории происходило в рамках мифологического, а затем повсеместно утвердившегося и господствовавшего религиозного миропонимания. Эмпирически найденные наиболее эффективные приемы охоты, обработки земли и создания орудий закреплялись авторитетом религии как данные свыше установления.

Выделение умственного труда первоначально осуществлялось в системе религии, и ее институты - храмы, монастыри - становились также местом хранения и накопления знаний, их фиксации в письменных источниках. История культуры свидетельствует, что древние цивилизации Египта, Месопотамии, Индии, Китая выработали большое количество математических, астрономических, медицинских и других знаний, которые были включены в различные виды религиозного мировоззрения. Как свидетельствуют историки, именно на жреца Древнего Египта лежала обязанность оповещать о разливах Нила. Медицинские рецепты, содержащиеся в книгах, написанных в тибетских монастырях, ожидают своей всесторонней научной экспертизы. Даже эмпирические приемы труда, например плавка и обработка металлов, сопровождались, а иногда и переплетались с религиозными обрядами. У многих народов до недавнего времени сквозь века сохранялось отношение к кузнечному делу как к чему-то обязательно связанному с «высшими» силами.

Теоретическое сознание как оперирование понятиями, идеями (а это необходимое условие возникновения науки) также первоначально формировалось в рамках религиозного мировоззрения. Первой областью науки как теоретического знания историки считают математику и ее формирование связывают с пифагорейской школой. В пифагореизме понятие числа приобретает особый метафизический статус, и проникновение в природу числа могло мыслиться как особый путь постижения сущности мира. Число превращалось в идеальный объект, что оказалось предпосылкой формирования математики как науки.

Чтобы стать объектом теоретического сознания, число первоначально должно было сакрализоваться, превратиться в объект почитания. В средние века в рамках схоластики развивались логические знания. Не только математика, логика, но и астрономия, медицина и пр. как особые отрасли духовного производства возникали и функционировали в системах религиозного мировоззрения. Формирующаяся наука, создавая понятийные системы, образует и свой теоретический мир, отличающийся от того, который предстает перед обыденным сознанием. Одновременно она вырабатывает и набор таких особых требований, которые призваны отделить ее от других форм духовной деятельности.

4. Накопление технических знаний

В ходе человеческой истории развивалось отношение к природе как объекту познания и преобразования. Первые достаточно развитые формы теоретического освоения действительности возникают в античности. Осмысляется дихотомия знание-мнение, теоретическая деятельность отделяется от религиозной и политической. Практическая техническая деятельность и научное знание относятся уже к разным ценностным сферам, их взаимодействие носит сложный и противоречивый характер, что определяется спецификой полисной социальной структуры и агональным (соревновательным) характером мироотношения греков.

Познание осуществлялось преимущественно путем формирования носящих умозрительный характер рационально-философских схем, а техническая орудийная деятельность существовала, до и вне всяких теоретических обобщений. Практическое и теоретическое четко обособлялись. “Истина” выявлялась посредством непротиворечивых рассуждений и разумно обоснованных доказательств. В античности были заложены основы рационально-критического отношения к технике, которые стали предпосылками выделения теоретической компоненты практического отношения к действительности и формирования на последующих этапах истории общества научного технического знания.

В отношении к природе как к объекту познания и преобразования Средние века воспроизвели существенные черты первобытного мышления, но на новом уровне.

В отличие от человека первобытного “средневековый человек уже не сливает себя с природой, но и не противопоставляет себя ей”.

Русский историк Е. Спекторский выделил три фундаментальные идеи, составлявшие специфику средневекового миропонимания: “антропоморфизм, телеологизм, иерархизм”. Они же определили и некоторые другие характерные особенности средневекового мышления: индивидуализация вещей и событий, восприятие всей совокупности свойств в неразрывном единстве с их носителем, что в негативном плане означает невозможность аналитических расчленений и унификаций по параметрам, а, тем самым, и каких-либо статистических квантификаций.

Постепенно складывающиеся в Новое Время прагматические отношения с природой, требовали “объектного” восприятия мира. Формировалось отношение к природным явлениям, к пространству и времени как к чему-то существующему независимо от человека и его действий, как к внешним реальностям, которыми можно и нужно “овладевать”. Модификации обыденного, “практического” мировосприятия не могли не сказаться на теоретических представлениях о мире.

С открытиями Коперника, Дж. Бруно, И. Кеплера, Г. Галилея Земля теряла статус центра Вселенной, небо превращалось в однородное пространство бесконечной глубины, нерушимым законам оказалось подчинено даже движение наиболее “благородных” небесных объектов и назрел вывод (И. Ньютона) о принципиальном единстве земной и небесной механики. Усилиями Ф. Бэкона, Г. Галея, Т. Гоббса, Б. Спинозы, И. Ньютона формировался каузальный взгляд на природу.

Удаление целей и субъектов положило начало бурному развитию механики. Новый методологический идеал, связанный с заменой антропоморфно-телеологических безусловно каузальными принципами, обозначив исторический водораздел между до дисциплинарной и дисциплинарной стадиями в развитии знания, сразу дал начало более чем трехсотлетней эпохе воссоединения наук путем победоносного шествия механистических методов.

В странах Западной Европы постепенно происходили существенные изменения, затрагивающие, в том числе, сферу технического знания, формировалась техническая, или техногенная цивилизации.

Техника начинает играть все большее значение в ее развитии, в преобразовании природной среды, всех сфер человеческой жизнедеятельности, преобразовании способов и видов человеческой коммуникации, социальных связей и отношений людей, общественных институтов и морально-этических установок. Этот период О. Тофлер называет “второй социотехнической революцией”. Первой социотехнической революцией, по мнению О. Тофлера, был, опосредованный прогрессом техники, переход в эпоху неолита от преимущественно присваивающей экономики базирующейся на охоте и собирательстве к производящей основанной на скотоводстве и земледелии. Основные ценности техногенной цивилизации, как замечает В.С. Степин, состоят в следующем:

1. ценность объективного и предметного знания, раскрывающего сущность вещей, их природу, законы в соответствии с которыми могут изменяться вещи;

2. установка на постоянное приращение знаний о мире, требование постоянной новизны как результата исследования.

Оформляется идеал новой науки с ориентацией на эмпирические исследования. Второй вид знания, фиксирующий собственно процесс создания и использования технических средств труда, получил название технического знания.

5. Роль техники в жизни общества

Техника - совокупность средств и предметов труда, созданных человеком для повышения эффективности его деятельности в различных сферах (техника производственная, исследовательская, военная, бытовая, медицинская, учебная и т. д.).

С ней тесно связана технология - совокупность способов изготовления и применения техники, соединения средств и предметов труда. Технический прогресс как процесс совершенствования техники и технологии на основе опыта трудовой деятельности, использования более богатых природных ресурсов (например, железа вместо камня), социально-демографических факторов (например, специализация на изготовлении определенных орудий труда) имел место на всех этапах развития общества.

Техника - искусство, мастерство, умение - это общее название различных приспособлений, механизмов и устройств, не существующих в природе и изготовляемых человеком. Слово "техника" также означает "способ изготовления чего-либо" - например, техника живописи, техника выращивания картофеля и т. п.

Основное назначение техники - избавление человека от выполнения физически тяжёлой или рутинной (однообразной) работы, чтобы предоставить ему больше времени для творческих занятий, облегчить его повседневную жизнь.

За последние столетия техника оказала решающее воздействие на социально-экономический строй человеческого общества. Именно машинное производство вызвало переход от феодального общества к современному капитализму, а развитие бытовой и потребительской техники создало современную западную цивилизацию.

Прогресс в военной технике, особенно в сфере средств массового уничтожения, радикально изменил способы ведения войн, сделав невозможными крупномасштабные столкновения ведущих мировых государств. А в настоящее время полным ходом идёт также разработка и т. н. "несмертельных" видов оружия, широкое применение которых может заметно изменить стратегию и тактику будущих войн.

Если рассматривать развитие техники с положительной стороны, то в последние годы развитие новых отраслей и направлений требует колоссальных капитальных и интеллектуальных затрат. Это приводит к широкому международному сотрудничеству, например, в области космоса, фундаментальных физических исследований, энергетике.

Техносфера - термин употребляется при описании современной цивилизации, для которой характерно повсеместное использование техники и научных методов преобразования действительности, представляющих собой основной фактор развития общества.

Техносфера - синтез естественного и искусственного, созданный человеческой деятельностью и поддерживаемый ею для удовлетворения потребностей общества.

Осмысление взаимозависимости человечества, техники и природы как вместилища того и другого в концепции техносферы насущно необходимо для формирования новой идеологии научно-технического прогресса и мироощущения, в котором был бы преодолен утилитарно-потребительский подход как к природе, так и к человеку.

Человечество реализует технологический способ существования в природе путем использования ее потенций для целенаправленных преобразований, изменений в ней же.

Его практически преобразовательная деятельность изменяет, структурирует природное вещество, по-особому организует, переиначивает течение природных процессов за счет создания специальных предметных форм, образований, составляющий вещественную сферу техники.

Создается новая среда, в которой так или иначе в необходимой для человека мере должна присутствовать "естественная среда", уже зависимая и относительная, в другом статусе. древнегреческий общество исторический

Техническая деятельность порождает "вторую природу", квазиприроду, как бы природу, устойчивую лишь в рамках общественной практики, под надзором и при участии в ее процессах человека.

Вольно и невольно, самопроизвольно формируется симбиоз техники и человечества в природе как объективная реальность.

Человек технически создает "вторую природу" в качестве своей непосредственной среды обитания. Что же меняется в природе? Что же привносит в природу человеческая предметно-практическая деятельность? Как изменяются природные процессы?

Распашка миллиардов гектаров земли, преобразование видового состава растений и животных, изменение водного режима планеты, развитие горнорудной и химической промышленности.

Энергетики разнообразных отраслей производства проявились в ХХ веке как планетарная сила, порождающая целый ряд эффектов, неблагоприятно сказывающихся на природных процессах и на человеке, как биологическом существе. Масштабы промышленного производства и его инфраструктуры привели к проблемам рационального природопользования и пределов роста технологической цивилизации.

Сложившаяся ситуация нашла отражение в обращении к исследованию феномена техники, в том числе и в историческом контексте, на новых основаниях, с чем связано, появление термина "техносфера" и попытки создать концепцию техносферы.

В науках о Земле - географии, геологии, геохимии - видоизмененные фрагменты земной коры, географической среды принято относить к сфере взаимодействия природы и общества, а своеобразная "земная оболочка", несущая на себе следы человеческой деятельности, у некоторых исследователей получила название техносферы - преобразованной биосферы. Имеется точка зрения, что с материальной системой - природой, географической средой, может взаимодействовать лишь материальная компонента социосферы - "техносфера".

В русском языке термины "техника" и "технология" не являются синонимами. Употребляя первый, имеют, в виду предметные, вещественные устройства, совокупность предметных, вещественных средств, создаваемых для осуществления производственных потребностей общества. Т. е., это инструменты, машины, приборы и т. п.

Размещено на Allbest.ru

...

Подобные документы

    Место технического знания в системе научного знания. Основные этапы развития технических знаний: донаучный, зарождение технических наук, классический, современный. Проблемы философии техники: различение искусственного и естественного, оценка техники.

    реферат , добавлен 13.01.2015

    Эпоха Просвещения как одна из ключевых эпох в истории европейской культуры, связанная с развитием научной, философской и общественной мысли. Развитие науки и техники. Основные достижения деятелей науки. Историческое значение развития науки и техники.

    реферат , добавлен 14.12.2014

    Эволюция научного знания, науки и техники в процессе освоения и обустройства окружающего мира в различные исторические эпохи. Набор орудий и инструментов людей палеолита. Лук и стрелы как важнейшее достижение мезолита. Неолит и неолитическая революция.

    контрольная работа , добавлен 16.02.2012

    Результаты и проблемы развития научной мысли в Англии в XIX веке. Изобретения в области технического вооружения производства в России в XVI в. Определение влияния достижений науки и техники в рассматриваемые периоды на ход исторического процесса.

    контрольная работа , добавлен 22.09.2011

    Характеристика и сущность периода послевоенного восстановления народного хозяйства, реформ и преобразований, переход от тоталитарного государства к демократическому обществу. Развитие науки, культуры и творчества в годы войны, период "оттепели", "застоя".

    реферат , добавлен 25.10.2011

    Развитие науки и техники в период расцвета исламской культуры. Достижения мусульманских учёных средних веков в области математики и астрономии, медицины, физики и химии, минералогии, геологии и географии. Закона преломления арабского оптика Альгазена.

    реферат , добавлен 15.06.2012

    Развитие техники как предпосылки появления бытовой техники: от примитивных орудий первобытного человека до автоматических устройств современной промышленности. История появления электричества и электродвигателя, пылесоса, стиральной машины и холодильника.

    реферат , добавлен 27.11.2009

    Специфика развития научных знаний в Древнем Египте и их особые черты. Развитие точных и естественных наук, врачебного искусства. Процесс накопления знаний, которые носили прикладной характер. Значение древнеегипетской науки в развитии других цивилизаций.

    контрольная работа , добавлен 24.06.2013

    Уникальные находки научного и художественного значения, обнаруженные при раскопках кубанских курганов и вошедшие в мировую сокровищницу науки. Кубанские курганы как исторический источник для изучения жизни племён и народов, населявших Прикубанье.

    реферат , добавлен 07.10.2009

    Основные этапы и направления развития русской культуры, науки, техники в первой половине ХIХ в. Особенности художественной культуры этого периода: быстрая смена идейно-художественных направлений и параллельное существование разных художественных стилей.

Введение
1. Развитие науки
2. Влияние науки на материальную сторону жизни общества
3. Техника в исторической ретроспективе
4. Наука и технология
Заключение
Список использованной литературы

Введение

В последнее столетие наука развивалась и развивается очень быстрыми темпами. В настоящее время объем научных знаний удваивается каждые 10-15 лет. Около 90 % всех ученых, когда-либо живших на Земле, являются нашими современниками. За последние 300 лет, а именно такой возраст современной науки, человечество сделало огромный рывок в своем развитии. Около 90 % всех научно-технических достижений были сделаны в наше время. Весь окружающий нас мир показывает, какого прогресса достигло человечество.

Именно наука явилась главной причиной столь бурного развития человеческого общества, перехода к постиндустриальному обществу, повсеместному внедрению информационных технологий, появления «новой экономики», начала переноса знаний человечества в электронную форму, удобную для хранения, систематизации, поиска и обработки и др. Все это убедительно доказывает, что наука в наши дни становиться все более и более значимой и существенной частью реальности.

Хотя техника является настолько же древней, как и само человечество, и хотя она так или иначе попадала в поле зрения философов, как самостоятельная философская дисциплина философия техники возникла лишь в XX столетии.

И только в XX веке техника, ее развитие, ее место в обществе и значение для будущего человеческой цивилизации становится предметом систематического изучения. Не только философы, но и сами инженеры, начинают уделять осмыслению техники все большее внимание.

Сегодня тема науки и техники, и их взаимоотношений весьма актуальна. Это свя­за­но, пре­ж­де все­го, с той си­туа­ци­ей, в ко­то­рой ока­за­лась со­вре­мен­ная ци­ви­ли­за­ция. С од­ной сто­ро­ны, вы­яви­лись не­ви­дан­ные пер­спек­ти­вы нау­ки и ос­но­ван­ной на ней тех­ни­ки. Со­вре­мен­ное об­ще­ст­во всту­пило в информационную ста­дию раз­ви­тия, ра­цио­на­ли­за­ция всей со­ци­аль­ной жиз­ни ста­но­вит­ся не толь­ко воз­мож­ной, но и жиз­нен­но не­об­хо­ди­мой. С дру­гой сторо­ны, об­на­ру­жи­лись пре­де­лы раз­ви­тия ци­ви­ли­за­ции од­но­сто­рон­не техноло­ги­че­ско­го ти­па: и в свя­зи с гло­баль­ным эко­ло­ги­че­ским кри­зи­сом, и как след­ст­вие вы­явив­шей­ся не­воз­мож­но­сти то­таль­но­го управ­ле­ния социальны­ми про­цес­са­ми.

1. Развитие науки

Большой вклад в изучение истории науки внес академик В.И. Вернадский. Для Вернадского не составляет сомнений, что наука была порождена жизнью, практической деятельностью людей, развивалась как ее теоретическое обобщение и отражение. Наука вырастала из потребностей практической жизни. Формирование науки Вернадским рассматривается как глобальный процесс, обще планетарное явление. Главным стимулом и причиной зарождения науки, новых идей, Вернадский считал требование жизни. Целью открытий было стремление к знанию, а его двигала вперед жизнь, и ради нее, а не собственно науки, трудились и искали новые пути (знания) ремесленники, мастера, техники и т.п. Человечество в процессе своего развития осознало необходимость искания научного понимания окружающего, как особого дела жизни мыслящей личности. Уже при самом начале своего зарождения наука поставила одной из своих задач овладеть силами природы для пользы человечества.

О науке, научной мысли, их появлении в человечестве можно говорить — только тогда, когда отдельный человек сам стал раздумывать над точностью знания и стал искать научную истину для истины, как дело своей жизни, когда научное искание явилось самоцелью. Основным явилось точное установление факта и его проверка, выросшие, вероятно, из технической работы и вызванные потребностями быта. Истинность знаний, открываемых наукой проверяется практикой научного эксперимента. Главный критерий правильности научных знаний и теорий является эксперимент и практика.

В своем развитии наука прошла следующие этапы:

1. Преднаука — она не вышла за рамки наличной практики, и моделирует изменения объектов, включенных в практическую деятельность (практическая наука). На этом этапе происходило накопление эмпирических знаний, и закладывался фундамент науки — совокупность точно установленных научных фактов.

2. Наука в собственном смысле слова — в ней наряду с эмпирическими правилами и зависимостями (которые знала и преднаука) формируется особый тип знания — теория, позволяющая получить эмпирические зависимости как следствие из теоретических постулатов. Знания уже не формулируются как предписания для наличной практики, они выступают как знания об объектах реальности «самой по себе», и на их основе вырабатывается рецептура будущего практического изменения объектов. На этой стадии наука обрела предсказательную силу.

3. Формирование технических наук как своеобразного опосредующего слоя знания между естествознанием и производством, а затем становление социальных и гуманитарных наук. Эта стадия связана с эпохой индустриализма, с увеличивающимся внедрением научных знаний в производство и возникновением потребностей научного управления социальными процессами.

В современном понимании наука — это особый вид познавательной деятельности, направленной на выработку объективных, системно организованных и обоснованных знаний о мире. Социальный институт, обеспечивающий функционирование научной познавательной деятельности. Главное качество науки — постоянно генерировать рост нового знания, выходя за рамки привычных и уже известных представлений о мире.

Производство знаний в обществе несамодостаточно, оно необходимо для поддержания и развития жизнедеятельности человека. Наука возникает из потребностей практики и особым способом регулирует ее. Она взаимодействует с другими видами познавательной деятельности: обыденным, художественным, религиозным, мифологическим, философским постижением мира. Наука ставит своей целью выявить законы, в соответствии с которыми объекты могут преобразовываться. Наука изучает их как объекты, функционирующие и развивающиеся по своим естественным законам. Предметный и объективный способ рассмотрения мира, характерный для науки, отличает ее от иных способов познания. Признак предметности и объективности знания выступает важнейшей характеристикой науки. Наука есть динамическое явление, находится в постоянном изменении и углублении. Постоянное стремление науки к расширению поля изучаемых объектов безотносительно к сегодняшним возможностям их массового практического освоения выступает системообразующим признаком, который обосновывает другие признаки науки. Науке присущи следующие характеристики: системная организация, обоснованность и доказанность знания. Наука использует свои специальные научные методы познания, которые она постоянно совершенствует.

Каждый этап развития науки сопровождался особым типом ее институализации, связанной с организацией исследований и способом воспроизводства субъекта научной деятельности — научных кадров. Как социальный институт наука начала формироваться в 17-18 в.в., когда в Европе возникли первые научные общества, академии и научные журналы. К середине 19 в. формируется дисциплинарная организация науки, возникает система дисциплин со сложными связями между ними. В 20 в. наука превратилась в особый тип производства научных знаний, включающий многообразные типы объединения ученых, целенаправленное финансирование и особую экспертизу исследовательских программ, их социальную поддержку, специальную промышленно-техническую базу, обслуживающую научный поиск, сложное разделение труда и целенаправленную подготовку кадров.

В процессе развития науки менялись ее функции в социальной жизни. В эпоху становления естествознания наука отстаивала в борьбе с религией свое право участвовать в формировании мировоззрения. В 19 ст. к мировоззренческой функции науки добавилась функция быть производительной силой. В первой половине 20 в. наука стала приобретать еще одну функцию — она стала превращаться в социальную силу, внедряясь в различные сферы социальной жизни и регулируя различные виды человеческой деятельности.

На каждом из этапов развития науки научное познание усложняло свою организацию. Совершались новые открытия, создавались новые научные направления и новые научные дисциплины. Формируется дисциплинарная организация науки, возникает система научных дисциплин со сложными связями между ними. Развитие научного познания сопровождается и интеграцией наук. Взаимодействие наук формирует междисциплинарные исследования, удельный вес которых возрастает по мере развития науки.

2. Влияние науки на материальную сторону жизни общества

Ста­нов­ле­ние и раз­ви­тие нау­ки в XVII сто­ле­тии при­ве­ло к ко­рен­ным пре­об­ра­зо­ва­ни­ям об­раза жиз­ни че­ло­ве­ка. Как от­ме­чал Б. Рас­сел: «Поч­ти все, чем от­ли­ча­ет­ся но­вый мир от бо­лее ран­них ве­ков, обу­слов­ле­но нау­кой, которая дос­тиг­ла по­ра­зи­тель­ных ус­пе­хов в XVII ве­ке».

Государственная жизнь во всем ее проявлении охватывается научным мышлением в небывалой раньше степени. Наука ее захватывает все больше и больше. Значение науки в жизни, связанное тесно с изменением биосферы и ее структуры, с переходом в ноосферу увеличивается с тем же, если не с большим темпом как рост новых областей научного знания. И вместе с этим ростом приложения научного знания к жизни, к технике, к медицине, к государственной работе создаются в еще большем числе, чем новых областях науки, новые прикладные науки, появляется новая методика и до чрезвычайности быстро создаются новые приложения и выдвигаются новые проблемы и задания техники в широком ее понимании, тратятся государственные средства в небывалых раньше размерах, на прикладную хотя, но научную по существу работу. Значение науки и ее проблем растет в жизни в этом аспекте, еще с большей скоростью, чем растут новые области знания. К тому же, как раз эти новые области научного знания чрезвычайно расширяют и углубляют прикладное значение науки, ее значение в ноосфере».

Со­вре­мен­ное раз­ви­тие нау­ки ве­дет к даль­ней­шим пре­об­ра­зо­ва­ни­ям всей сис­те­мы жиз­не­дея­тель­но­сти че­ло­ве­ка. Осо­бо впе­чат­ляю­ще ее воз­дей­ст­вие на раз­ви­тие тех­ни­ки и но­вей­ших тех­но­ло­гий, воз­дей­ст­вие на­уч­но-тех­ни­че­ско­го про­грес­са на жизнь лю­дей. Нау­ка соз­да­ет но­вую сре­ду для бы­тия че­ло­ве­ка. «Как и ис­кус­ст­во, — пи­шет М. Хай­дег­гер, — нау­ка не есть про­сто куль­тур­ное заня­тие че­ло­ве­ка. Нау­ка — спо­соб, при­том ре­шаю­щий, ка­ким для нас предстает то, что есть. Мы долж­ны, по­это­му ска­зать: дей­ст­ви­тель­ность, внутри ко­то­рой дви­жет­ся и пы­та­ет­ся ос­та­вать­ся се­го­дняш­ний че­ло­век, все боль­ше оп­ре­де­ля­ет­ся тем, что на­зы­ва­ют за­пад­но­ев­ро­пей­ской нау­кой».

Человек постоянно создает для себя мир новых идей, предметов и объектов и непрерывно потребляет их. Он живет результатами своей деятельности, продуктами своего труда. Это касается всех основных аспектов жизнедеятельности человека, начиная от самых исходных, обеспечивающих само его биологическое существование и заканчивая разнообразными видами его духовной жизни. Человечество постоянно расширяет свою силу и влияние в биосфере — создает для последующих поколений сознательной государственной научной работой неизмеримо лучшие условия жизни.

Государственное значение науки, как творческой силы, как основного элемента, ничем не заменимого в создании народного богатства, как реальной возможности быстрого и массового его создания уже проникло в общее сознание, с этого пути человечество не сможет уже сойти, так как реально наука есть максимальная сила создания материальных благ для человечества.

3. Техника в исторической ретроспективе

Независимо от того, с какого момента отсчитывать начало науки, о технике можно сказать определенно, что она возникла вместе с возникновением Homo sapiens и долгое время развивалась независимо от всякой науки. Это, конечно, не означает, что ранее в технике не применялись научные знания. Но, во-первых, сама наука не имела долгое время особой дисциплинарной организации, и, во-вторых, она не была ориентирована на сознательное применение создаваемых ею знаний в технической сфере. Рецептурно-техническое знание достаточно долго противопоставлялось научному знанию, об особом научно-техническом знании вообще вопрос не ставился. «Научное» и «техническое» принадлежали фактически к различным культурным ареалам. В более ранний период развития человеческой цивилизации и научное, и техническое знание были органично вплетены в религиозно-мифологическое мировосприятие и ещё не отделялись от практической деятельности.

В древнем мире техника, техническое знание и техническое действие были тесно связаны с магическим действием и мифологическим миропониманием. Один из первых философов техники Альфред Эспинас в своей книге «Возникновение технологии», опубликованной в конце XIX века, писал: «Живописец, литейщик и скульптор являются работниками, искусство которых оценивается, прежде всего, как необходимая принадлежность культа. …Египтяне, например, не намного отстали в механике от греков эпохи Гомера, но они не вышли из религиозного миросозерцания. Более того, первые машины, по-видимому, приносились в дар богам и посвящались культу, прежде чем стали употребляться для полезных целей. Бурав с ремнем был, по-видимому, изобретен индусами для возжигания священного огня - операция, производившаяся чрезвычайно быстро, потому что она и теперь совершается в известные праздники до 360 раз в день. Колесо было великим изобретением; весьма вероятно, что оно было прежде посвящено богам. Гейгер полагает, что надо считать самыми древними молитвенные колеса, употребляемые и теперь в буддийских храмах Японии и Тибета, которые отчасти являются ветряными, а отчасти гидравлическими колесами… Итак, вся техника этой эпохи, - заключает автор, - имела один и тот же характер. Она была религиозной, традиционной и местной». Наука древнего мира была еще не только неспециализированной и недисциплинарной, но и неотделимой от практики и техники. Важнейшим шагом на пути развития западной цивилизации была античная революция в науке, которая выделила теоретическую форму познания и освоения мира в самостоятельную сферу человеческой деятельности.

Античная наука была комплексной по самому своему стремлению максимально полного охвата осмысляемого теоретически и обсуждаемого философски предмета научного исследования. Специализация еще только намечалась и во всяком случае не принимала организованных форм дисциплинарности. Понятие техники также было существенно отлично от современного. В античности понятие «тэхнэ» обнимает и технику, и техническое знание, и искусство. Но оно не включает теорию. Поэтому у древнегреческих философов, например, Аристотеля, нет специальных трудов о «тэхнэ». Более того, в античной культуре наука и техника рассматривались как принципиально различные виды деятельности. «В античном мышлении существовало четкое различение эпистеме, на постижении которого основывается наука, и тэхнэ, практического знания, которое необходимо для дела и связано с ним, - писал один известный исследователь. - Тэхнэ не имело никакого теоретического фундамента, античная техника всегда была склонна к рутине, сноровке, навыку; технический опыт передавался от отца к сыну, от матери к дочери, от мастера к ученику. Древние греки проводили четкое различение теоретического знания и практического ремесла».

В средние века архитекторы и ремесленники полагались в основном на традиционное знание, которое держалось в секрете и которое со временем изменялось лишь незначительно. Вопрос соотношения между теорией и практикой решался в моральном аспекте - например, какой стиль в архитектуре является более предпочтительным с божественной точки зрения. Именно инженеры, художники и практические математики эпохи Возрождения сыграли решающую роль в принятии нового типа практически ориентированной теории. Изменился и сам социальный статус ремесленников, которые в своей деятельности достигли высших уровней ренессансной культуры. В эпоху Возрождения наметившаяся уже в раннем Средневековье тенденция к всеохватывающему рассмотрению и изучению предмета выразилась, в частности, в формировании идеала энциклопедически развитой личности ученого и инженера, равным образом хорошо знающего и умеющего - в самых различных областях науки и техники.

В науке Нового времени можно наблюдать иную тенденцию - стремление к специализации и вычленению отдельных аспектов и сторон предмета как подлежащих систематическому исследованию экспериментальными и математическими средствами. Одновременно выдвигается идеал новой науки, способной решать теоретическими средствами инженерные задачи, и новой, основанной на науке, техники. Именно этот идеал привел в конечном итоге к дисциплинарной организации науки и техники. В социальном плане это было связано со становлением профессий ученого и инженера, повышением их статуса в обществе. Сначала наука многое взяла у мастеров-инженеров эпохи Возрождения, затем в XIX-XX веках профессиональная организация инженерной деятельности стала строиться по образцам действия научного сообщества. Специализация и профессионализация науки и техники с одновременной технизацией науки и сциентификацией техники имели результатом появление множества научных и технических дисциплин, сложившихся в XIX-XX веках в более или менее стройное здание дисциплинарно организованных науки и техники. Этот процесс был также тесно связан со становлением и развитием специально-научного и основанного на науке инженерного образования.

Итак, можно видеть, что в ходе исторического развития техническое действие и техническое знание постепенно отделяются от мифа и магического действия, но первоначально опираются еще не на научное, а лишь на обыденное сознание и практику. Это хорошо видно из описания технической рецептуры в многочисленных пособиях по ремесленной технике, направленных на закрепление и передачу технических знаний новому поколению мастеров. В рецептах уже нет ничего мистически-мифологического, хотя перед нами еще не научное описание, да и техническая терминология еще не устоялась.

В Новое время возникает настоятельная необходимость подготовки инженеров в специальных школах. Это уже не просто передача накопленных предыдущими поколениями навыков от мастера к ученику, от отца к сыну, но налаженная и социально закрепленная система передачи технических знаний и опыта через систему профессионального образования.

4. Нау­ка и тех­но­ло­гия

Ос­нов­ное назна­че­ние при­клад­ных на­ук есть ис­сле­до­ва­ние действительно­сти с целью применения ре­зуль­та­тов этих исследований в разно­об­раз­ных сфе­рах прак­ти­че­ской дея­тель­но­сти че­ло­ве­ка посредством техно­ло­гий. Технология суть при­ме­не­ние научных зна­ний на прак­ти­ке с целью про­из­вод­ст­ва пред­ме­тов по­треб­ле­ния, с це­лью из­ме­не­ния, совершенство­ва­ния и кон­тро­ли­ро­ва­ния ус­ло­вий жиз­ни.

Ко­гда ны­не рас­смат­ри­ва­ют­ся про­бле­мы тех­но­ло­гии, то не­из­беж­но вста­ет во­прос о на­прав­лен­но­сти ее раз­ви­тия, ее воз­дей­ст­вия на жизнь общества. Как ино­гда го­во­рят ка­ж­дое тех­но­ло­ги­че­ское дос­ти­же­ние по необходи­мо­сти ам­би­ва­лент­но, т. е. оно мо­жет слу­жить в за­ви­си­мо­сти от подхода к не­му или сло­жив­шей­ся си­туа­ции на поль­зу или же во вред человеку. Бо­лее то­го, тех­но­ло­гии, за­дей­ст­во­ван­ные во бла­го че­ло­ве­ка, мо­гут иметь в хо­де сво­его раз­ви­тия и от­ри­ца­тель­ные по­боч­ные по­след­ст­вия, так что тех­но­ло­ги­че­ское раз­ви­тие ну­ж­да­ет­ся в по­сто­ян­ном по­ни­ма­нии и кон­тро­ле. По­след­нее ста­ло бо­лее чем оче­вид­ным в на­ше вре­мя, в пе­ри­од стремительного тех­но­ло­ги­че­ско­го раз­ви­тия об­ще­ст­ва. Ны­не об­ще­ст­во овладело та­ки­ми мощ­ны­ми си­ла­ми, дей­ст­вие ко­то­рых срав­ни­мо с геологически­ми и гро­зит че­ло­ве­че­ст­ву са­мо­унич­то­же­ни­ем. На­уч­ные исследова­ния про­ни­ка­ют в тон­чай­шие ме­ха­низ­мы ге­не­ти­че­ско­го управ­ле­ния жи­вы­ми сис­те­ма­ми, что мо­жет при­вес­ти к ко­рен­ным, не­об­ра­ти­мым изменениям в хо­де эво­лю­ци­он­ных про­цес­сов.

Че­ло­век все боль­ше осоз­на­ет не толь­ко то, что он «вла­сте­лин ми­ра», но так­же и то, сколь зыб­ко са­мо его су­ще­ст­во­ва­ние. Об этом вла­ст­но за­яв­ля­ют воз­ник­шие в на­ше вре­мя мно­гие гло­баль­ные про­бле­мы, и в ча­ст­но­сти экологи­че­ский кри­зис.

От­сю­да и вста­ют во­про­сы о на­прав­лен­но­сти тех­но­ло­ги­че­ско­го раз­ви­тия об­ще­ст­ва и об от­вет­ст­вен­но­сти за по­след­ст­вия это­го раз­ви­тия.

При от­ве­те на эти во­про­сы раз­да­ют­ся го­ло­са, что от­вет­ст­вен­на за отрица­тель­ные по­след­ст­вия тех­но­ло­ги­че­ско­го раз­ви­тия са­ма нау­ка. По­доб­ная «гу­ма­ни­сти­че­ская» кри­ти­ка нау­ки по­лу­чи­ла дос­та­точ­ное рас­про­стра­не­ние. По­лу­ча­ет­ся, что са­мо про­из­вод­ст­во зна­ний вред­но для че­ло­ве­ка. Ли­ния рассуж­де­ний здесь дос­та­точ­но про­стая: по­сколь­ку нау­ка яв­ля­ет­ся теоретическим ба­зи­сом ны­неш­них на­уч­но-тех­ни­че­ских раз­ра­бо­ток и определя­ет са­му воз­мож­ность по­след­них, то она, на пра­вах со­ро­ди­те­ля, и несет от­вет­ст­вен­ность за по­яв­ле­ние на свет тех­но­ло­ги­че­ских нов­шеств как поло­жи­тель­ных, так и от­ри­ца­тель­ных. Но это да­ле­ко не так.

Вы­бор ос­нов­ных на­прав­ле­ний в об­ще­ст­вен­ном раз­ви­тии непосредственно за­тра­ги­ва­ет са­ми ба­зис­ные фор­мы ор­га­ни­за­ции жиз­ни людей. Со­от­вет­ст­вен­но это­му ко­рен­ные во­про­сы раз­ви­тия об­ще­ст­ва определя­ют­ся ин­те­ре­са­ми оп­ре­де­лен­ных групп, сло­ев, клас­сов, по­ли­ти­че­ских сил. Бо­лее то­го, все наи­бо­лее зна­чи­мые на­уч­но-тех­ни­че­ские про­грам­мы (разви­тие ядер­ной энер­ге­ти­ки, элек­тро­ни­ки, биотехнологий и др.) принимаются на уров­не прави­тельств, пар­ла­мен­тов. Ход научного творчества является той силой, которой человек меняет биосферу, в которой он живет. Это проявление изменения биосферы есть неизбежное, сопутствующее явление росту научной мысли. Это изменение биосферы происходит независимо от человеческой воли, стихийно, как природный естественный процесс. А так как среда жизни есть организованная оболочка планеты — биосфера, то вхождение в нее, в ходе ее геологически длительного существования, нового фактора ее изменения — научной работы человечества — есть природный процесс перехода биосферы в новую фазу, в новое состояние — ноосферу. Наконец, те крупные и великие изменения условий жизни человечества, блага культуры и техники, имеющие целью общую пользу, смягчение и уничтожение всех физических бедствий человечества, отдельных классов и отдельных личностей сознательно достигаются только наукой, только ростом и развитием научного знания.

Заключение

Причиной зарождения науки, движущей силой развития науки есть жизнь, жажда жизни, стремление человека к улучшению условий жизни. В своем развитии наука прошла путь от эмпирического накопления фактов к теоретическому их обобщению и к предсказанию будущих изменений объектов.

На начальном этапе теоретических обобщений возникает прикладное в науке, прикладные исследования, прикладные науки. Прикладные науки являются связующим звеном между фундаментальными знаниями и их воплощением в практику жизни, в технологии на благо жизни.

Сила науки заключена в истинности научных знаний. В основе науки, научного исследования лежит научная мысль. Развитие науки и развитие научной мысли это два взаимосвязанных и взаимообусловленных процесса.

ХХ век может быть охарактеризован как всё расширяющееся использование техники в самых различных областях социальной жизни. Техника начинает всё активнее применяться в различных сферах управления. Она реально начинает воздействовать на выбор тех или иных путей социального развития. Эту новую функцию техники иногда характеризуют как превращение её в социальную силу. При этом усиливаются мировоззренческие функции техники и её роль как непосредственной производительной силы.

Современная философия техники рассматривает развитие техническое познание как социокультурный феномен. И одной из важных её задач является исследование того, как исторически меняются способы формирования нового технического познания и каковы механизмы воздействия социокультурных факторов на этот процесс.

Философия техники не ставит своей обязательной задачей чему-то учить. Она не формулирует никаких конкретных рецептов или предписаний, она объясняет, описывает, но не предписывает. Философия техники в наше время преодолела ранее свойственные ей иллюзии в создании универсального метода или системы методов, которые могли бы обеспечить успех для всех приложений во все времена. Она выявила историческую изменчивость не только конкретных методов, но и глубинных методологических установок, характеризующих техническую рациональность. Современная философия техники показала, что сама техническая рациональность исторически развивается и что доминирующие установки технического сознания могут изменяться в зависимости от типа исследуемых объектов и под влиянием изменений в культуре, в которые техника вносит свой специфический вклад.

Список использованной литературы

  1. Большаков А.В., Грехнев В.С., Добрынина В.И. Основы философских знаний. — М., Знание, 1997.
  2. Введение в философию. Учебник для высших учебных заведений, 2 том. / Под ред. Фролова И.Т.- М., 1989.
  3. Новая философская энциклопедия. 1-4 т. — М.: Мысль. 2001.
  4. Стёпин В. С., Горохов В. Г., Розов М. А. Философия науки и техники. — М., 1995.
  5. Спиркин А.Г. Философия. Учебник. – М., 2001.
  6. Философия: теория и методология. Учебное пособие под ред. М. Галкина. – М., 1991.
  7. Философия: Учебник для высших учебных заведений. — Ростов н/Д.: Феникс, 1995.

В тесной связи с экономическими потребностями развиваются в XIV-XVI вв. наука и техника. Рождается наука в современном понимании - наука как новый способ познания мира. Характерной чертой эпохи становится отход от средневековой схоластики. Всячески обосновывается необходимость изучать природу не путем схоластических рассуждений, а с помощью опыта.

С развитием торговли совершенствуется кораблестроение и морское дело. Использование компаса делает возможными длительные плавания. Совершенствуются карты. Все это подготовило эпоху Больших географических открытий: в 1492 г. - открытие Америки Колумбом, в 1498 г. - открытие морского пути в Индию Васко да Гама, 1519-1522 гг. - кругосветное путешествие Магеллана. Эти и другие открытия познакомили Европу с новыми цивилизациями, дали толчок развитию многих наук и в то же время изменили всю систему мировой торговли, послужили предпосылкой возникновения колониализма.

Появление артиллерии вызывало изменения в военном деле, требовала сложных математических расчетов, изменила систему градостроения.

Огромное значение имело изобретение Йоганом Гутенбергом книгопечатания (около 1445 г.).

Постепенно не расчленение, характерное для древних времен, начинает изменяться выделением отдельных областей знаний.

Большие изменения происходят в медицине. Еще в XIII веке в ходе конфронтации с Папой римским император Священной Римской империи Фридрих II издал указ, который позволял препарировать человеческие труппы, что раньше сурово запрещалось церковью. В 1316 г. в первый раз в средневековой Европе в Болонье был прочитан курс лекций по анатомии человека. Теофраст Парацельс поддал критическому пересмотру идеи древней медицины и способствовал началу использования при лечении химических препаратов. Андреас Везалий в своем трактате «О телосложении человеческом» дал научное описание всех органов и систем, исправил много ошибочных представлений. Знаменитый хирург Амбруаз Паре разработал методы лечения огнестрельных ран; предложил мазевые повязки. Знаменитым является его афоризм: «Лучше быть правым в одиночку, чем ошибаться со всеми». Многие известные деятели эпохи Возрождения имели высшее медицинское образование (Франсуа Рабле, Николай Коперник, Галилео Галилей). Имели ее также и выдающиеся украинские деятели науки того времени, например, Юрий Котермак (Дрогобыч), который в 1481-1482 гг. был ректором Болонского университета, который называли матерью наук в Европе.

Переворот происходит в научных представлениях о строении Вселенной. Раньше господствовала система Птолемея, согласно которой центром Вселенной является неподвижная Земля, вокруг которой вращаются Солнце и другие небесные тела. Такой взгляд поддерживала церковь. А.Эйнштейн писал: «Сегодня нелегко понять, какая независимость мысли, редкая интуиция и искусное владение астрономическими фактами, были нужны для доказательства преимущества гелиоцентрических убеждений». Эти качества воплотились в научной работе Николая Коперника. Он родился в Польше, учился в Италии, потом вернулся на родину. Имел обширные математические знания. В результате длительных астрономических наблюдений и сложных расчетов он составил очень точные таблицы движения небесных тел. Они оказались необъяснимые с геоцентрических позиций. Таким образом, он доказал, что Земля вращается вокруг своей оси и одновременно, вокруг Солнца. Земля оказалась, согласно гелиоцентрической системе, не центром Вселенной, а рядовой планетой. Коперник изложил новые взгляды в книге, которую, побаиваясь преследования, позволил опубликовать, только лишь когда ему исполнилось 70 лет. Первые экземпляры его книги, вышли в свет, лишь перед его смертью.

Активным сторонником и пропагандистом нового взгляда на Вселенную стал Джордано Бруно. Он приходит к выводу, что жизнь возможна не только на Земле, что Вселенная бесконечна и состоит из множества миров. Бруно жил во многих странах Европы, выступал с лекциями в наибольших университетах. Был по доносам арестован инквизицией, восемь лет провел в тюрьме, осужденный на смертное наказание и сожженный в Риме на площади Цветов. О себе он писал: «Было во мне все-таки то, в чем не откажут мне будущие века, а именно: «страх смерти был чужим ему, - скажут потомки, - силу характера он имел больше, чем кто-либо, и ставил выше всех наслаждений в жизни, борьбу за истину».

Теоретические выводы Коперника подтвердил практическими наблюдениями Галилео Галилей. В 1609 г. он сконструировал телескоп, который давал увеличение в 32 раза. Его открытия ошеломили современников: месячный ландшафт, пятна на Солнце, изменения освещенности Венеры, спутники Юпитера. Учение Коперника находилось под официальным церковным запрещением, было признано ересью. Невзирая на это, Галилей пишет «Диалог о двух самых главных системах мира - Птолемеевой и системой Коперника». За это он был отдан под суд инквизиции, и хоть ему удалось избежать казней, до самой смерти находился под домашним арестом и не должен был возможности заниматься астрономией.

Культура Возрождения складывалась в условиях острой и сложной политической борьбы: возникновение свободных городских коммун в Италии, изменение республиканских форм правления тираниями, интервенция Франции, Испании и Германии, многочисленные крестьянские восстания, религиозные войны, первая буржуазная революция, в Нидерландах. Все это давало практический материал для теоретических обобщений, для развития политической мысли. Перу дипломата, историка, философа и поэта Никколо, Макиавелли принадлежит трактат «Государь». Макиавелли справедливо считается основателем политической науки Нового времени. Он призывал рассматривать явления политики вне их связи с религией и этикой. Именно он ввел в научное обращение понятие «государство» как такое (к нему разговор велся только о конкретных государствах). Макиавелли был убежденным республиканцем, за что испытал арест, пытки, но сохранил свою преданность флорентийской коммуне. Он был горячим патриотом Италии, сторонником национального единства. В то же время, опираясь на практику современной ему политики, Макиавелли, считал, что ради достижения могущества и благополучия государства пригодны любые средства - подкуп, лицемерие (формула «цель оправдывает средства»). Отсюда возникло понятие «макиавеллизм» как обозначение вседозволенности в политике.

В противовес жестокости реальной общественной жизни, целый ряд мыслителей начинает поиски идеального общественного строя. Возникает утопический социализм. Название новому учению дала книга Томаса Мора «Утопия» («утопия» в переводе с греческого - место, которого нет). Главной причиной бед народа автор считал частную собственность. Размышления об идеальном государстве продлил Томазо Компанелла. Свою книгу «Город Солнца» он написал в тюрьме, куда был брошен за организацию заговора против испанского владычества в Италии.

Уже с середины, а особенно с конца XVI века наступает кризис ренессансного гуманизма как мировоззрению определенной эпохи. Но общечеловеческой ценностью на все времена остается гуманизм как система убеждений, которая пропитана любовью к человеку, уважением к его достоинству.

Промышленной революции (XVIII – XIX вв.)

Проблематика лекции

Механистическая картина мира. Условия развития естествознания. Наука как движущая сила общественного прогресса. Энциклопедия. Организация научных исследований. Деятельность научных академий. Математика. Математический аппарат механики и физики. Теория вероятностей. Начертательная геометрия. Математический анализ. Физика и механика. Термодинамика. Электродинамика. Практическое применение электричества. Открытие электрона. Открытие радиоактивности. Квантовая теория. Теория относительности. Химия. Д.И.Менделеев и периодическая система элементов. Открытие новых элементов. Изотопы. Физическая химия. Развитие органической химии. Биология. Систематизация видов. Учение о происхождении видов. Естественный отбор. Клеточная теория. Пастер и бактериология. Основание научной медицины. Рождение генетики. Изучение вопросов наследственности. Генетика. Развитие биохимии. Физиология и психология. Микробиология и медицина. Механизация текстильной промышленности. Создание паровой машины. Использование паровой машины на транспорте. Изобретение парохода и паровоза. Развитие железнодорожного транспорта. Достижения в металлургии. Использование каменного угля. Горячее дутье. Пудлингование. Конвертер Бессмера. Мартеновская печь. Томасовский способ производства стали. Механические прессы. Паровой молот. Прокатные станы. Сварка металлов. Техника и технология сельского хозяйства. Минеральные удобрения. Опытно-селекционные станции. Механические культиваторы, сеялки и жатки. Локомобили. Паровые тракторы. Социальные последствия промышленной революции.

XVIII – XIX вв. характеризуются радикальными изобретениями и инновациями, которые привели к созданию машинного производства. Были освоены новые виды энергии, появились новые виды производственной деятельности, разрабатывались и внедрялись новые производственные технологии, началось сближение науки и промышленного производства.

Познавательная модель нового времени базировалась на достижениях классической науки, классического естествознания (т.е. физики). Формировался комплекс отдельных научных программ, направлений и дисциплин, которые основывались на исходных представлениях Ньютона о дискретности структур мира и механическом характере происходящих в нем процессов. Это была механистическая картина мира , где мир представлялся как механизм.

Впервые научное знание развивалось на собственном основании. И, хотя в нем были ошибочные положения, для него характерно сознательное исключение вненаучных (прежде всего религиозных) факторов при рассмотрении научных проблем. Механистическое представление было широко распространено на понимание биологических, электрических, химических и даже социально-экономических процессов. Дисциплинарная структура науки развивалась по схеме: механика – физика – химия – биология.

Механицизм стал синонимом научности как таковой. На данном концептуальном подходе строилась система общего и профессионального образования. Радикально новые техника и технологии развивались эмпирически и были инструментом познания и освоения единого «социоприродного» мира.

Первая половина XVIII в. характеризовалась некоторым упадком науки. Это объяснялось тем, что значение открытий Ньютона и его предшественников было настолько мощным, что никто не решался продолжить эти исследования. Кроме того, научное сообщество оказалось не готовым к восприятию и осмыслению новой научной картины мира. В науке интерес сместился к медико-биологическим проблемам и частным вопросам. В то же время наука становилась модной, и авторитет научности возрастал.

Обоснование рационального мировоззрения (естественный свет разума) распространялось как на естествознание, так и на социальные процессы. Принцип историзма, концепция общественного прогресса порождали утопические идеи господства над природой, возможности волевого рационального переустройства общества. Провозглашался лозунг «Знание – сила» .

Своеобразным научным манифестом эпохи Просвещения стала «Энциклопедия, или Толковый словарь наук, искусств и ремесел», изданная в 1751 – 1765 и 1776 – 1777 гг., в 17 томах текста и 11 томах иллюстраций, благодаря деятельности Дени Дидро, Жана Д"Аламбера, Вольтера, Этьена Кондильяка, Клода Гельвеция, Поля Гольбаха, Шарля Монтескье, Жан Жака Руссо, Жоржа Бюффона, Жана Кондорсе. Представителями Просвещения были Джон Локк в Англии; Готхольд Лессинг, Иоганн Гердер, Иоганн Гете, Иоганн Шиллер, Иммануил Кант в Германии; Томас Пейн, Бенджамин Франклин, Томас Джефферсон в США; Николай Иванович Новиков и Александр Николаевич Радищев в России.

В XVIII в. наука оставалась уделом любителей, часть из них сосредотачивалась в академиях, научный уровень которых был не слишком высок. Исследования велись в основном в области теплоты и энергии, металлургических процессов, электричества, химии, биологии, астрономии.

XIX в. прошел под знаком промышленной революции . В результате изобретений и инноваций в энергетике и «рабочих машинах» произошел переход к новому технологическому базису производства (машинному производству ) . Однако технико-технологические преобразования весьма слабо поддерживались научными исследованиями вплоть до конца XIX в.

Имперское положение Великобритании радикально расширило рынок сбыта ее промышленных товаров, в первую очередь текстильных, что чрезвычайно интенсифицировало их производство. Ручной труд стал тормозом роста производства. В связи с этим во второй половине XVIII в. были изобретены: «Дженни» – прядильная машина Джеймса Харгривса (1765), в которой были механизированы операции вытягивания и закручивания нити; прядильная ватермашина Ричарда Аркрайта (1769), прядильная «мюль-машина» Сэмюэла Кромптона (1779), механический ткацкий станок с ножным приводом Эдмунда Картрайта (1785).

Резкая концентрация производства, развитие железообрабатывающей и химической промышленности на фоне острой нехватки древесины интенсифицировали рост добычи каменного угля, что стимулировало появление новых направлений в горном деле и транспорте. Это, в свою очередь, привело к широкому применению чугуна, в том числе и как строительного материала.

Торговое процветание привело к обогащению английских купцов, к появлению избыточных капиталов, которые требовали помещения в какое-нибудь дело. В результате эмиграции людей в Америку, Англия испытывала недостаток рабочей силы. Англичане попытались возместить нехватку рабочей силы введением машин. Попытки использования на мануфактурах машин имели место и раньше – первым примером такого рода была шелкомотальная машина итальянского механика Франческо Боридано, созданная еще в XIII в. Машина приводилась в движение водяным колесом и заменяла 400 рабочих. Этот пример показывает, что промышленная революция могла произойти раньше.

Однако машина Боридано осталась уникальным примером потому, что внедрение техники наталкивалось на противодействие ремесленников, которые боялись потерять работу. В 1579 г. в Данциге был казнен механик, создавший лентоткацкий станок. В 1598 г. из Англии был вынужден бежать изобретатель вязальной машины Вильям Ли. В 1733 г. ткач Джон Кей изобрел «летающий челнок». Он подвергся преследованиям ткачей, его дом был разгромлен, и он был вынужден бежать во Францию. Многие ткачи втайне продолжали использовать челнок Кея. В 1765 г. ткач и плотник Харгривс создал механическую прялку, которую он назвал в честь своей дочери «Дженни». Эта прялка увеличивала производительность труда прядильщика в 20 раз. Рабочие ворвались в дом Харгривса и сломали его машину. Несмотря на это сопротивление, через некоторое время «Дженни» стала использоваться прядильщиками. В 1767 г. в Лондоне произошло большое столкновение между ткачами. В 1769 г. Аркрайт запатентовал прядильную машину, рассчитанную на водяной привод. С этого момента машины стали использоваться на мануфактурах, и изобретатели получили поддержку владельцев крупных капиталов.

Первые машины создавались механиками-самоучками, они изготавливались из дерева и не требовали инженерных расчетов. Техника развивалась независимо от науки. После того как сопротивление противников машин ослабевало, новые машины стали появляться одна за другой. В 1774 – 1779 гг. Кромптон сконструировал прядильную мюль-машину, выпускавшую более качественную ткань, чем машина Аркрайта. В 1785 г. Картрайт создал ткацкий станок, который увеличил производительность ткачей в 40 раз.

Особенно остро встала проблема энергетики. До конца XVII – начала XVIII вв. общество не создало никаких новых двигателей, кроме конной тяги, водяного и ветряного колес. Вместе с возрастанием потребностей человека встал вопрос о двигателе, который бы не зависел от ветра и воды, а работал бы за счет нового вида энергии в любом месте и в любое время года. Таким двигателем стал тепловой (паровой), над созданием которого работали изобретатели в разных странах.

В 90-е гг. XVII в. французский физик и изобретатель Дени Папен построил паровой двигатель, который был несовершенным и имел низкий КПД. Однако заслугой изобретателя стало правильное описание термодинамического цикла.

Промышленная революция была сложным процессом, происходившим одновременно в различных отраслях промышленности. В горной промышленности одной из основных производственных проблем была откачка воды из шахт. В 1698 г. англичанин Томас Севери создал машину, использовавшую для этой цели силу пара.

В 1705 г. английский изобретатель, кузнец Томас Ньюкомен вместе с лудильщиком Дж. Коули создал пароатмосферную машину для откачки воды в шахтах, которая использовалась более 90 лет. Ее недостатками были низкий КПД и длительные промежутки рабочего хода поршня. В машине Ньюкомена находившийся в цилиндре пар конденсировался впрыскиванием воды. В нем создавалось разряжение, и поршень втягивался внутрь цилиндра под воздействием атмосферного давления. К 1770 г. в Англии работало уже около 200 машин Ньюкомена, однако они имели неравномерный ход, часто ломались и использовались только на шахтах. В разных странах делались попытки усовершенствовать эти машины.

В 1763 г. российский теплотехник Иван Иванович Ползунов разработал проект универсального теплового двигателя непрерывного действия, но осуществить его не смог. В 1765 г. он построил по другому проекту паротеплосиловую установку для заводских нужд. За неделю до пуска Ползунов умер. Машина проработала 43 дня и сломалась.

В 1763 г. к работе по усовершенствованию машины Ньюкомена приступил английский изобретатель Джеймс Уатт. В то время Уатт был лаборантом университета в Глазго и ему поручили отремонтировать сломавшуюся модель машины Ньюкомена. Разобравшись в недостатках модели, Уатт создал принципиально новую машину. Во-первых, поршень в машине Уатта двигало не атмосферное давление, а пар, впускавшийся из парового котла; во-вторых, после завершения хода поршня отработанный пар выводился в специальный конденсатор. В 1769 г. Уатт получил патент на конструкцию машины «прямого» действия. В 1774 – 1784 г. Уатт изобрел и получил патент на паровую машину с цилиндром двойного действия, в которой применил центробежный регулятор, автоматически поддерживавший заданное число оборотов, передачу от штока цилиндра к балансиру с параллелограммом и др. Уатту удалось привлечь к делу крупного английского фабриканта Мэтью Болтона, который ради этой идеи поставил на карту все свое состояние. В 1775 г. на заводе Болтона в Бирмингеме было налажено производство паровых машин. Однако только через десять лет это производство стало давать ощутимую прибыль.

Специалисты утверждали, что идея Уатта не может быть практически реализована. При существовавшей в то время технике невозможно было обточить математически правильный паровой цилиндр. Массовое производство паровых машин было невозможно без точных токарных станков. Решающий шаг в этом направлении был сделан английским механиком Генри Модсли, который в 1797 г. создал токарно-винторезный станок с механизированным суппортом. С этого времени стало возможным изготовление деталей с допуском в доли миллиметра – это было начало современного машиностроения.

В первых двигателях Уатта давление в цилиндре лишь немного превышало атмосферное. В 1804 г. английский инженер А. Вулф запатентовал машину, работающую при давлении 3 – 4 атмосферы, повысив КПД более чем в 3 раза.

Возникновение машин вызвало потребность в металле. Раньше чугун плавили на древесном угле, а лесов в Англии почти не осталось. В 1784 г. английский металлург Генри Корт изобрел способ производства чугуна на каменном угле. Добыча угля стала одной из основных отраслей промышленности.

Одним из первых, кто пытался использовать паровую машину для нужд транспорта, был французский техник Никола Жозеф Кюньо. В 1769 – 1770 гг. он построил трехколесную повозку с паровым котлом для перевозки артиллерийских снарядов. Она не нашла практического применения и хранится в Музее искусств и ремесел в Париже.

На многих рудниках существовали рельсовые пути, по которым лошади тащили вагонетки с рудой. В 1801 – 1803 гг. английский изобретатель Ричард Тревитик создал в Уэльсе сначала безрельсовую повозку, а затем первый паровоз для рельсового пути. Однако Тревитику не удалось получить поддержку предпринимателей. Пытаясь привлечь внимание к своему изобретению, Тревитик устроил аттракцион с использованием паровоза, но, в конце концов, разорился и умер в нищете.

Судьба была более благосклонна к Джорджу Стефенсону, английскому механику-самоучке, получившему заказ на постройку локомотива для одной из шахт близ Ньюкасла. В 1814 г. Стефенсон построил первый практически пригодный паровоз «Блюхер» для работы на руднике, а затем руководил строительством железной дороги протяженностью более 50 км. Главной идеей Стефенсона было выравнивание пути с помощью создания насыпей и прорезки выемок. Таким образом достигалась высокая скорость движения. В 1825 г. в Великобритании была построена железная дорога общественного пользования. В 1829 г. в Лондоне был проведен конкурс на лучший локомотив. Им оказался английский локомотив «Ракета» Стефенсона, на котором впервые был применен трубчатый паровой котел (скорость – 21 км/ч, масса поезда – 17 т). Позднее скорость паровоза с вагоном для пассажиров была доведена до 60 км/ч. В 1830 г. Стефенсон завершил строительство первой большой железной дороги между городами Манчестер и Ливерпуль. Ему сразу же предложили руководить строительством дороги через всю Англию от Манчестера до Лондона. Позже он строил железные дороги в Бельгии и в Испании. В 1832 г. была пущена первая железная дорога во Франции, немного позже – в Германии и США. Локомотивы для этих дорог изготовлялись на заводе Стефенсона в Англии.

В 1834 г. в России на Нижнетагильском заводе Ефим Алексеевич и Мирон Ефимович Черепановы построили первый отечественный паровоз для перевозки руды (скорость – 15 км/ч, масса поезда – 3,5 т). Первая железная дорога общественного пользования в России была построена в 1837 г. (Петербург – Царское Село).

Уже вскоре после появления паровой машины начались попытки создания пароходов. В 1803 г. американец ирландского происхождения Роберт Фултон построил в Париже небольшую лодку с паровым двигателем и продемонстрировал ее членам Французской академии. Однако ни академики, ни Наполеон, которому Фултон предлагал свое изобретение, не заинтересовались идей парохода. Фултон вернулся в Америку и на деньги своего друга Ливингстона построил первый в мире колесный пароход «Клермонт». Машина для этого парохода была изготовлена на заводе Уатта. В 1807 г. «Клермонт» под восторженные крики зрителей совершил первый рейс по Гудзону. Через четыре года Фултон и Левингстон были уже владельцами пароходной компании. Через 9 лет в Америке было 300 пароходов, а в Англии – 150. В 1819 г. американский пароход «Саванна» пересек Атлантический океан, а в 1830-х гг. начинает действовать первая регулярная трансатлантическая пароходная линия. На этой линии курсировал самый большой по тем временам пароход «Грейт Уэстерн», имевший водоизмещение 2 тыс. тонн и паровую машину мощностью 400 л. с. Через двадцать лет пароходы стали гораздо больше. Плававшие в Индию пароходы имели водоизмещение 27 тыс. тонн и две машины общей мощностью 7,5 тыс. л. с.

Создание паровой машины ознаменовало радикальный переворот в технологиях XIX вв. Это привело к возможности свободного размещения паровых машин на промышленных предприятиях, к значительному увеличению мощности и использованию автономного двигателя на транспорте и в производстве.

Внедрение в производство и общественную жизнь станков, паровых машин, паровозов и пароходов коренным образом изменило жизнь людей. Появление фабрик, выпускающих огромное количество дешевых тканей, разорило ремесленников, которые работали на дому или на мануфактурах. В 1811 г. в Ноттингеме вспыхнуло восстание ремесленников, которые ломали машины на фабриках. Их называли луддитами. Восстание было подавлено. Разоренные ремесленники были вынуждены уезжать в Америку или идти работать на фабрики. Труд рабочего на фабрике был менее квалифицированным, чем труд ремесленника. Фабриканты часто нанимали женщин и детей. За 12 – 15 часов работы платили гроши. Было много безработных и нищих, после голодных бунтов 1795 г. им стали платить пособия, которых хватало на две булки хлеба в день.

Население стекалось к фабрикам, и фабричные поселки вскоре превращались в огромные города. В 1844 г. в Лондоне было 2,5 млн. жителей, причем рабочие жили в перенаселенных домах, где в одной комнатке, часто без камина, теснилось по несколько семей. Рабочие составляли большую часть населения Англии. Это было новое индустриальное общество, непохожее на общество Англии XVIII в. Основной отраслью промышленности Англии в первой половине XIX в. было производство хлопчатых тканей. Новые машины позволяли получать 300 и более процентов прибыли в год и выпускать дешевые ткани, которые продавались по всему миру. Это был колоссальный промышленный бум, производство тканей увеличилось в десятки раз.

Для новых фабрик требовалось сырье – хлопок; поначалу хлопок был дорог из-за того, что его очистка производилась вручную. В 1793 г. американский изобретатель и промышленник Эли Уитни создал хлопкоочистительную машину; после этого в южных штатах наступила «эра хлопка», здесь создавались огромные хлопковые плантации, на которых работали рабы-негры. Таким образом, расцвет американского рабства оказался непосредственно связан с промышленной революцией.

К 1840-м гг. Англия превратилась в «мастерскую мира», на ее долю приходилось более половины производства металла и хлопчатобумажных тканей, основная часть производства машин. Дешевые английские ткани заполонили весь мир и разорили ремесленников не только в Англии, но и во многих странах Европы и Азии. В Индии от голода погибли миллионы людей. Вымерли многие большие ремесленные города, такие как Дакка и Ахмадабад. Доходы, на которые раньше существовали ремесленники Европы и Азии, теперь уходили в Англию. Многие государства пытались закрыться от английской товарной интервенции – в ответ Англия провозгласила «свободу торговли». Она всячески, зачастую с использованием военной силы, добивалась снятия протекционистских таможенных барьеров, «открытия» других стран для английских товаров.

В 1870-х гг. в развитии мировой экономики наступил знаменательный перелом. Он был связан с колоссальным расширением мирового рынка. В предыдущий период масштабное строительство железных дорог привело к включению в мировую торговлю обширных континентальных областей. Появление пароходов намного удешевило перевозки по морю. На рынки огромным потоком хлынула американская и русская пшеница. Цены на нее упали в полтора – два раза. Эти события традиционно называют «мировым аграрным кризисом». Они привели к разорению многих помещиков в Европе, но вместе с тем обеспечили дешевым хлебом рабочих. С этого времени наметилась промышленная специализация Европы: многие европейские государства теперь жили за счет обмена своих промышленных товаров на продовольствие. Рост населения больше не сдерживался размером пахотных земель. Бедствия и кризисы, порождаемые перенаселением, ушли в прошлое. На смену прежним законам истории пришли законы нового индустриального общества.

Промышленная революция дала в руки европейцев новое оружие – винтовки и стальные пушки. Давно было известно, что ружья с нарезами в канале ствола придают пуле вращение, отчего дальность увеличивается вдвое, а кучность в 12 раз. Однако зарядить такое ружье с дула стоило немалого труда, и скорострельность была очень низкой, не более одного выстрела в минуту. В 1808 г. по заказу Наполеона французский оружейник Поли создал казнозарядное ружье. В бумажном патроне помещался порох и затравка, взрываемая уколом игольчатого ударника. Если бы Наполеон вовремя получил такие ружья, он был бы непобедим. Помощник Поли, немец Дрейзе сконструировал игольчатое ружье, которое в 1841 г. было принято на вооружение прусской армии. Ружье Дрезе делало 9 выстрелов в минуту – в 5 раз больше, чем гладкоствольные ружья других армий. Дальность выстрела составляла 800 м – втрое больше, чем у других ружей.

Одновременно произошла еще одна революция в военном деле, вызванная появлением стальных пушек. Чугун был слишком хрупок, и чугунные пушки часто разрывались при выстреле. Стальные пушки позволяли использовать значительно более мощный заряд. В 1850-х гг. английский изобретатель и предприниматель Генри Бессемер изобрел бессемеровский конвертер, а в 60-х гг. XIX в. французский инженер Эмиль Мартен создал мартеновскую печь. Было налажено промышленное производство стали и стальных пушек.

В России первые стальные пушки были изготовлены на златоустовском заводе под руководством металлурга Павла Матвеевича Обухова, который разработал способ производства высококачественной литой стали. Затем было организовано производство на заводе Обухова в Петербурге.

Наибольших успехов в производстве артиллерийских орудий достиг немецкий промышленник Альфред Крупп, в 60-х гг. XIX в. Крупп наладил массовое производство казнозарядных нарезных орудий. Винтовки Дрейзе и пушки Круппа обеспечили победы Пруссии в войнах с Австрией и Францией – могущественная Германская империя была обязана своим рождением этому новому оружию.

Изобретение ткацкого станка, паровой машины, паровоза, парохода, винтовки и скорострельной пушки – все это были фундаментальные открытия, вызвавшие появление нового общества, которое называют промышленной цивилизацией. Волна новой культуры исходила из Англии. Она быстро охватила европейские государства – прежде всего Францию и Германию. В Европе происходит быстрая модернизация по английскому образцу, на первой стадии она включает заимствование техники – станков, паровых машин, железных дорог. На второй стадии начинается политическая модернизация. В 1848 г. Европу охватывает волна революций, знаменем которых являются свержение монархий и парламентские реформы. Россия пытается противиться этой модернизации – начинается война с Англией и Францией, и винтовки заставляют Россию вступить на путь реформ. В 60-х гг. XIX в. культурная экспансия промышленной цивилизации сменяется военной экспансией – фундаментальное открытие всегда порождает волну завоеваний. Начинается эпоха колониальных войн. Весь мир оказывается поделенным между промышленными державами. Англия, воспользовавшись своим первенством, создает огромную колониальную империю с населением в 390 млн. чел.

XIX в. принципиально отличался от предыдущего века как по характеру социальных процессов, так и по глубине содержательного развития науки и масштабам распространения технических нововведений. Постепенно выделилась схема основных, наиболее активных направлений в научном развитии: физика, химия, биология, а в техническом: транспорт, связь, технологии машинного производства и к концу века – электротехника.

Изобретатели машин, произведших промышленную революцию, не были учеными, это были мастера-самоучки. Некоторые из них были неграмотны; к примеру, Стефенсон научился читать в 18 лет. В период промышленного переворота наука и техника развивались независимо друг от друга. В особенности это касалось математики. В это время был разработан векторный анализ. Французский математик Огюстен Коши создал теорию функций комплексного переменного, а ирландский математик Уильям Гамильтон и немецкий математик, физик и филолог Герман Грассман создали векторную алгебру. В работах французских ученых Пьера Лапласа, Андриена Лежандра и Симеона Пуассона была разработана теория вероятностей. Основные достижения физики были связаны с исследованием электричества и магнетизма.

В развитии физики в XIX в. рассматриваются три этапа. Первая треть столетия ознаменовалась созданием фундамента классической физики, в котором анализ и особенно дифференциальные уравнения с частными производными заняли ключевое положение. Это был золотой период развития французской теоретической мысли (математическая электростатика и магнитостатика – уравнение Лапласа и Пуассона, теория Жана Фурье – уравнение теплопроводности, волновая оптика Огюстена Френеля и электродинамика Андре Ампера).

В период с 1830 г. по 1870 г. эстафета переходит к немецким и английским ученым: Герман Гельмгольц, Густав Кирхгоф, Рудольф Клаузиус. Классическая физика получила полное признание в середине века, когда после утверждения закона сохранения энергии, благодаря английским физикам Уильяму Томсону (барон Кельвин), Джеймсу Максвеллу и другим, возникли термодинамика, кинетическая теория газов и теория электромагнитного поля.

В последнее тридцатилетие XIX в. наметились подступы к квантово-релятивистской революции. Развитие кинетической теории материи приводит к статистической механике и вторжению в физику вероятностной математики. В классической термодинамике следует отметить открытие закона сохранения энергии, математизацию теории теплоты французского физика Сади Карно, разработку основ кинетической теории газов и статической механики.

В области электродинамики на рубеже XVIII – XIX вв. итальянский физик Вольта создал гальваническую батарею. Такого рода батареи долгое время были единственным источником электрического тока и необходимым элементом всех опытов. В 1820 г. датский физик Ханс Эрстед обнаружил, что электрический ток воздействует на магнитную стрелку, затем французский физик, математик и химик Ампер установил, что вокруг проводника появляется магнитное поле и между двумя проводниками возникают силы притяжения или отталкивания, открыл эффект взаимодействия токов, положив начало электродинамике.

В 1831 г. английский физик Майкл Фарадей открыл явление электромагнитной индукции. Это явление состоит в том, что если замкнутый проводник при своем перемещении пересекает магнитные силовые линии, то в нем возбуждается электрический ток. После открытия электромагнитной индукции Фарадеем была проведена серия экспериментов по изучению связи электрических, магнитных и световых явлений. В 1833 г. российский физик и электротехник Эмилий Ленц создал общую теорию электромагнитной индукции. В 1841 г. английский физик Джеймс Джоуль исследовал эффект выделения теплоты при прохождении электрического тока. В 1869 г. выдающийся английский ученый Джеймс Максвелл создал теорию электромагнитного поля. В конце 80-х гг. немецким физиком Генрихом Герцем было установлено существование электромагнитных волн.

Теория электромагнетизма была первой областью, в которой научные разработки стали непосредственно внедряться в технику. В 1832 г. русский подданный барон Павел Львович Шиллинг продемонстрировал первый образец электрического телеграфа. В приборе Шиллинга импульсы электрического тока вызывали отклонение стрелки, соответствующее определенной букве.

В 1837 г. американский художник и изобретатель Сэмюэл Морзе усовершенствовал телеграф, в котором передаваемые сообщения отмечались на бумажной ленте с помощью специальной азбуки. Однако потребовалось шесть лет, прежде чем американское правительство оценило это изобретение и выделило деньги на постройку первой телеграфной линии между Вашингтоном и Балтимором. После этого телеграф стал стремительно развиваться, в 1850 г. телеграфный кабель соединил Лондон и Париж, а в 1858 г. был проложен кабель через Атлантический океан.

Важные события происходили в химии . Прежде алхимики считали, что все вещества состоят из четырех элементов – огня, воздуха, воды и земли. В 1789 г. французский химик Антуан Лавуазье экспериментально доказал закон сохранения вещества. Затем в 1803 г. английский химик и физик Джон Дальтон ввел понятие «атомный вес», предложил атомистическую теорию строения вещества; он утверждал, что каждый атом имеет различную химическую структуру и атомный вес, что химические соединения образуются сочетанием атомов в определенных численных соотношениях. На почве атомно-молекулярного учения выросло учение о валентности и химической связи. В 1812 – 1813 гг. шведский химик и минералог Йенс Берцелиус создал электрохимическую теорию сродства и классификацию элементов, соединений и минералов. В 1853 г. английский химик-органик Эдуард Франкленд ввел понятие валентности, т.е. числового выражения свойств атомов различных элементов вступать в химические соединения друг с другом.

Еще в 1809 г. был открыт закон кратных объемов при химическом взаимодействии газов. Это явление было объяснено Дальтоном и Жозефом Гей-Люссаком как свидетельство того, что в равных объемах газа содержится одинаковое количество молекул. В 1811 г. итальянский химик и физик Амедео Авогадро выдвинул гипотезу, что в определенном объеме любого газа содержится одинаковое количество молекул. Эта гипотеза была экспериментально подтверждена в 40-х гг. французским химиком Шарлем Жераром. Открытие новых химических элементов и изучение их соединений подготовило почву для открытия периодического закона. Создание теории химического строения (органической химии) российским химиком-органиком Александром Михайловичем Бутлеровым в 1861 г. и открытие Дмитрием Ивановичем Менделеевым в 1869 г. периодического закона химических элементов завершало становление классической химии.

Химическая промышленность в первой половине XIX в. производила в основном серную кислоту, соду и хлор. В 1785 г. французский химик Клод Бертолле предложил отбеливать ткани хлорной известью. В 1842 г. русский химик Николай Николаевич Зинин синтезировал первый искусственный краситель – анилин. В 50-е гг. немецкий химик Август Гофман и его ученик Уильям Перкин получили два других анилиновых красителя – розанелин и мовеин. В результате этих работ стало возможным создание анилинокрасочной промышленности, получившей быстрое развитие в Германии. Другой важной отраслью химической промышленности было производство взрывчатых веществ. В 1845 г. немецкий химик Кристиан Фридрих Шенбейн изобрел пироксилин, а итальянский химик Асканьо Собреро в 1847 г. впервые синтезировал нитроглицерин и нитроманнит. В 1862 г. шведский изобретатель и промышленник Альфред Нобель наладил промышленное производство нитроглицерина, а затем перешел к производству динамита.

В 1840-х гг. немецкий химик Юстус Либих обосновал принципы применения минеральных удобрений в сельском хозяйстве. С этого времени начинается производство суперфосфатных и калиевых удобрений. Германия становится центром европейской химической промышленности.

Одним из достижений экспериментальной химии было создание фотографии. В XVIII в. был распространен аттракцион с использованием камеры-обскуры. Это был ящик с небольшим отверстием, в которое вставлялось увеличительное стекло; на противоположной стенке можно было видеть изображение находящихся перед камерой предметов. В 1820-х гг. французский художник Нисефор Ньепс попытался зафиксировать это изображение. Покрыв слоем горной смолы медную пластинку, он вставлял ее в камеру, потом пластинку подвергали действию различных химикалий, чтобы проявить изображение. Все дело было в подборе фотонесущего слоя, проявителя и закрепителя. Потребовались долгие годы экспериментов, которые после смерти Ньепса продолжал его помощник Луи Жак Дагер. К 1839 г. Дагеру удалось получить изображение на пластинках, покрытых йодистым серебром, после проявления их парами ртути. Таким образом появилась дагерротипия. Французское правительство оценило это изобретение и назначило Дагеру пожизненную пенсию в 6 тысяч франков.

В середине XIX в. в биологии особое внимание привлекла идея эволюции, сформулированная английским естествоиспытателем Чарлзом Дарвиным. Она наложила свой отпечаток на мировоззрение людей. Особо импонировали публике два аспекта теории: во-первых, это был первый существенный выпад против догмата церкви о сотворении богом человека, во-вторых, идея выживания сильнейшего в то время отвечала настроениям литературного движения «Бури и натиска». Однако дарвинизм за счет своей декларативности содержал к себе ряд недостатков, приведших его затем к кризису.

Вообще для этого периода характерно становление биологии как науки в ее классической форме (натуралистической биологии). Ее методами стали наблюдение и описание природы, а главной задачей – классификация. Все живое на планете сводилось в определенные группы и классы. Одним из первых в этом направлении работал немецкий биолог-эволюционист Эрнст Геккель. Зарождается такое направление, как экспериментальная биология, связанная с работами Клода Бернара, Луи Пастера, Ивана Михайловича Сеченова. Они проложили путь к исследованиям процессов жизнедеятельности точными физико-химическими методами.

Принципиально новым средством познания стала оптическая спектроскопия. Первый спектроскоп был создан в 1859 г. немецкими учеными Густавом Кирхгофом и Робертом Бунзеном. С помощью этого прибора были открыты цезий, рубидий и таллий.

К концу ХIХ в. центрами научной жизни становятся университеты и вновь созданные научно-исследовательские лаборатории, которые финансировались как государством, так и частными лицами. Первым такую лабораторию создал у себя дома английский физик и химик Генри Кавендиш. В память об этом Максвелл в 1871 г. основал Кавендишскую лабораторию в университете в Кембридже.

Научно-техническое развитие обеспечивалось взаимным обменом стажерами и публикациями, а в области промышленного и технического развития – проведением регулярных международных промышленных выставок.

Необычайно возросла роль образования, которое радикально повлияло на содержательную структуру науки. Вводится дисциплинарность знания, появляются учебники (достоверное знание).

Началом нового образования стало появление инженерных школ: школа мостов и дорог, школа военных инженеров во Франции. Главное место в техническом образовании занимала Парижская политехническая школа. Преподавательская работа считалась престижной. Здесь впервые была разработана лекционно-учебная литература по механике и математической физике. Такие же центры появились в Германии – Кенигсберг и Геттинген, в Англии – Кембридж.

Развитие техники и технологии в XIX в. носило взрывной характер как по масштабам, так и по количеству радикальных изобретений и нововведений. К наиболее крупным открытиям того времени следовало бы отнести следующие:

· применение приводного ремня на паровых машинах в производстве;

· создание и распространение судов с паровым двигателем;

· создание и распространение паровозов;

· освоение новых металлургических процессов;

· разработка и освоение химических технологий;

· создание электротехники (включая производство, передачу и разнообразные сферы и способы применения).

Что касается области обществознания, то у современной гуманитарной науки было два основоположника: это Френсис Бэкон – основатель эмпиризма и Галилео Галилей – основатель современной теоретической и экспериментальной физики. Первый установил закон эмпирического исследования, описал методы систематизации и иерархиезации эмпирической индукции. Эти приемы в той или иной степени используются и сегодня при работе с первичным материалом и отвечают распространению представления о развитии науки. Галилей стал основоположником не только теоретической и экспериментальной физики, а во многом и естественной науки вообще.

Центральным для философии был вопрос о происхождении знания. В формулировке английского философа Томаса Гоббса это звучит так: «Каким образом познавательный опыт, будучи опосредованным, может считаться соответствующим объективной реальности?».

Два противостоящих друг другу направления в философии – рационализм Декарта и эмпиризм Локка по-разному отвечали на этот вопрос. Декарт брал в качестве образца науки математику и, отдавая приоритет разуму, называл источником знания постигаемые посредством интуиции «врожденные идеи», из которых методом индукции выводились многочисленные следствия. Английский философ Джон Локк ориентировался на эмпирические науки и врожденным идеям Декарта противопоставлял метафору сознания как «чистого листа», которое заполняется посредством эмпирической индукции. Каждая из позиций исходной двойственностью осмысляемого материала отражалась в двух типах субстанции (духовной и материальной).

Позднее происходит распад эмпиризма на две противостоящие друг другу ветви – реалистическую, или материалистическую, и субъективно-идеалистическую в лице английского философа Джорджа Беркли и шотландского философа и историка Дэвида Юма. Кант пытался решить эти споры и противоречия, введя понятие «вещь в себе». Предложенное им решение смещало проблему в мир вещей в себе, т.е. в философию, которая тогда стремительно развивалась. В области естественных и технических дисциплин под флагом борьбы с метафизикой произошло возвращение к докантовскому периоду. Здесь распространился механицизм и позитивизм.

Общей чертой позитивизма было стремление решить характерные для философской теории познания проблемы, опираясь на естественнонаучный разум, противопоставляемый метафизике и сближенный с обыденным разумом.

Родоначальник позитивизма французский философ Огюст Конт считал, что наука представляет собой систематическое расширение простого здравого смысла на все действительно доступные умозрения, простое методическое продолжение всеобщей мудрости. Наука не должна ставить вопрос о причине явлений, а только о том, как они происходят.

Наука как форма познания мира практически вытеснила к этому времени философию и религию, став единственным интеллектуальным авторитетом в обществе. Религия и метафизическая философия под напором успехов и практических результатов науки и техники медленно, но неуклонно сдавали свои позиции, отступая на задворки интеллектуального пространства общества. Знаковым свидетельством этого стала знаменитая концепция Конта о трех периодах в развитии знания: религиозном, метафизическом и научном, последовательно сменяющим друг друга.

Претензии естествознания на исключительную прерогативу в достоверности знания законов природы и мира подтверждались практически и ни у кого не вызывали возражения ввиду строгой точности, безличностной объективности научных теорий. Религия и философия вынуждены были сообразовывать свои доктрины с научными положениями, иначе они вообще не воспринимались культурным сообществом. Религиозная вера и разум были окончательно разведены: рационализм вытеснил религиозные убеждения (по крайней мере, в среде культурно образованных людей). Он сформировал концепцию человека как высшей формы, чем положил начало развитию светского гуманизма, а также концепцию материального мира как единственной реальности, создав основы научного диалектического материализма. Именно в науке мировидение людей обрело реалистическую и устойчивую основу.

Супероптимизм в отношении науки и техники окончательно формируется в XIX в. Даже религиозно настроенный французский писатель и историк религии Жозеф Ренан в одном из своих ранних произведений «Будущее науки», написанном под влиянием идей французской революции 1848 г., но впервые опубликованном в 1890 г., утверждал в качестве высшего пункта, возникающего из христианской формы мышления и традиций, научную веру. С его точки зрения, сама наука обладает способностью откровения, поскольку ее задачей становится организация не только человечества, но и самого Бога, и она требует полной автономии и безграничной свободы. Лишь в этом случае исследователь становится сам себе хозяином, не признающим никакого контроля. Именно благодаря такой науке человек, а значит, и дух, получает господство над материей.

Но уже и тогда, в XIX в., раздавались голоса, критикующие отрыв техники и научно-технического прогресса от моральных норм. В России это был религиозный философ Николай Александрович Бердяев. В работе «Человек и машина» он писал, что техника есть последняя любовь человека, и он (человек) готов изменить свой образ под влиянием предмета своей любви. Все, что происходит с миром, питает эту новую веру человека. Именно техника производит настоящие чудеса. Ссылаясь на Ренана, Бердяев предупреждает, что техника может обладать в руках человека или группы людей огромной силой: «Скоро мирные ученые смогут производить потрясения не только исторического, но и космического характера». Да и сам Ренан двумя десятилетиями позже, поняв, что результаты научно-технического прогресса могут служить не только добру, но и злу, а последствия их невозможно предвидеть даже в обозримом будущем, пришел к выводу, что ожидание людьми безграничного счастья с помощью научно-технического прогресса лишь очередная иллюзия.

Оставаясь в целом механической и метафизической, классическая наука, в силу логики саморазвития, создает внутри себя предпосылки для собственной модернизации. В математике Ньютон и Лейбниц создают теорию бесконечно малых величин, Декарт – аналитическую геометрию; идеи движения и эволюции оформляются в космогонической гипотезе Канта-Лапласа и т.д. Постепенно создаются предпосылки крупных научных перемен, качественных скачков, даже переворотов, сразу в нескольких областях знаний.

Это были комплексные научные революции, начавшиеся в первой половине XIX в. и протекающие поначалу в рамках классической и научно-исследовательской парадигмы. Общим в них было утверждение о взаимной связи всех наук, их эволюции и стихийном проникновении в естествознание идей диалектики.

Среди естественных наук на передний край выдвигаются физика и химия (химическая атомистика), изучающие взаимопревращения веществ и энергии, биология (включая эмбриологию и палеонтологию); в геологии формируется теория эволюции Земли (английский естествоиспытатель Чарлз Лайель). Но особое значение имели три великих открытия второй трети XIX в.: клеточное строение животных объектов (немецкие ботаник Матиас Якоб Шлейден и биолог Теодор Шванн); закон сохранения и превращения энергии (английский физик Джеймс Джоуль и немецкий естествоиспытатель Юлиус Майер); эволюционная теория биологических видов (Ч. Дарвин).

Затем последовали открытия, воочию показавшие действие диалектических законов в природе: физиологии животных (И.М. Сеченов, 1866), периодической системы элементов (Д.И. Менделеев, 1869), электромагнитной природы света (Дж. Максвелл, 1873).

В результате естествознание поднялось на новую качественную ступень и стало дисциплинарно организованной наукой. Если в XVIII в. оно было по преимуществу наукой, собирающей факты и обобщающей их в форме теорий, то теперь оно стало систематизирующей наукой о причинах явлений и процессов, их возникновении и развитии, т.е. диалектико-эволюционной наукой. В естествознании шли активные процессы дифференциации, т.е. дробление крупных направлений на более узкие (например, в физике – на термодинамику, электромагнетизм, гидрогазодинамику) или образование новых самостоятельных дисциплин, особенно в биологии (генетика, цитология, эмбриология). Однако главной задачей естествознания становится синтез знаний, поиск путей интеграции наук на основе единых общих принципов. Возникает особая разновидность научных дисциплин – комплексные, на стыке наук (биохимия, физикохимия и др.), осуществляющие междисциплинарные исследования.

Хотя диалектические идеи и принципы стихийно проникли в естествознание, в целом оно продолжало оставаться на метафизических позициях. Лишь с появлением эволюционной теории Ч. Дарвина ситуация изменилась.

Данный период в развитии науки, техники и общества принято называть временем классической науки. Именно тогда сложилась и была доведена до своего логического завершения механическая картина мира, методология которой из сферы физики распространилась на области естественнонаучного, технического и гуманитарного знания.

Период Нового времени проходил для Уральского края под знаком становления металлургической промышленности. Медеплавильные, железоделательные, молотовые и другие заводы строились на основе использования гидротехники. В результате Урал стал крупным горнозаводским центром России.

В городах и при заводах устраивались школы (горные, словесные, арифметические, латинские, знаменования, т.е. черчения и рисования, и др.), где готовили квалифицированные кадры. Во второй половине XVIII в. в результате школьной реформы Екатерины II на Урале был открыт ряд народных училищ. В течение XIX в. сложилась система учебных заведений (заводские, земские и воскресные школы, городские, уездные и окружные училища, реальные и ремесленные училища) с широкой образовательной и специальной программой. Во второй половине ХIХ в. строительство железных дорог способствовало расширению связей с другими российскими регионами и созданию инфраструктуры края.

В Новое время Урал был известен своими организаторами и учеными, такими как Василий Никитич Татищев, Виллим Иванович Геннин, Иван Иванович Ползунов, Ефим Алексеевич и Мирон Ефимович Черепановы, Павел Петрович Аносов, Павел Матвеевич Обухов, Дмитрий Наркисович Мамин-Сибиряк, Наркис Константинович Чупин и другие.

Уральский край постепенно включался в научно-техническую жизнь не только России, но и мира. Здесь открывались научные общества (Уральское общество любителей естествознания – УОЛЕ), создавались естественно-исторические музеи и публичные библиотеки, проводились научные экспедиции (экспедиция Д.И. Менделеева).

1. Афанасьев Ю.Н. История науки и техники [Текст]: конспект лекций / Ю.Н. Афанасьев, Ю.С. Воронков, С.В. Кувшинов. М., 1998.

2. Бакс К. Богатства земных недр [Текст] / К. Бакс. М., 1986.

3. Беккерт М. Железо. Факты и легенды [Текст] / М. Беккерт. 2-е изд. М., 1988.

4. Бернал Д. Наука в истории общества [Текст] / Д. Бернал. М., 1996.

5. Боголюбов А.Н. Творения рук человеческих. Естественная история машин [Текст] /А.Н. Боголюбов. М., 1988.

6. Бом Д. Квантовая теория [Текст] /Д. Бом. М., 1965.

7. Бродель Ф. Материальная цивилизация, экономика и капитализм. XV – XVIII вв. [Текст] / Ф. Бродель. М., 1986. Т.3.

8. Виргинский В.С. Очерки истории науки и техники XV – XIX веков [Текст]: пособие для учителя / В.С. Виргинский. М., 1984.

9. Гаврилов Д.В. Горнозаводский Урал. XVII – XX вв. [Текст] / Д.В. Гаврилов. Екатеринбург, 2005.

10. Данилевский В.В. Очерки истории техники XVIII – XIXвв. [Текст] / В.В. Данилевский. М.;Л., 1934.

11. Запарий В.В. Черная металлургия Урала. XVIII – XX вв. [Текст] / В.В. Запарий. Екатеринбург, 2001.

12. Запарий В.В. История науки и техники [Текст]: курс лекций / В.В. Запарий, С.А. Нефедов. Екатеринбург, 2004.

13. Иванов Н.И. Философия техники [Текст] / Н.И. Иванов. Тверь, 1997.

14. История науки и техники [Текст]: курс лекций / А.В. Бармин, В.А. Дорошенко, В.В. Запарий, А.И. Кузнецов, С.А. Нефедов; под ред. проф., д-ра ист. наук В.В. Запария. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2005.

15. История науки и техники [Текст]: курс лекций / А.В. Бармин, В.А. Дорошенко, В.В. Запарий, А.И. Кузнецов, С.А. Нефедов; под ред. проф., д-ра ист. наук В.В. Запария. 2-е изд., испр. и доп. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2006.

16. Косарева Л.М. Социокультурный генезис науки нового времени. Философский аспект проблемы [Текст] / Л.М. Косарева. М., 1989.

17. Льоцци М. История физики [Текст] / М. Льоцци. М., 1970.

18. Манту П. Промышленная революция в Англии в конце XVIII в. [Текст] / П. Манту. М., 1937.

19. Паннекук А. История астрономии [Текст] / А. Паннекук. М., 1966.

20. Рыжов К.В. Сто великих изобретений [Текст] / К.В. Рыжов. М, 2000.

21. Соломатин В.А. История науки [Текст]: учебное пособие / В.А. Соломатин. М, 2003.

22. Степин В.С. Становление научной теории [Текст] / В.С. Степин. Минск, 1976.

23. Штрубе В. Пути развития химии [Текст] / В. Штрубе. М., 1984. Т. 1 – 2.


Лекция 8

Несмотря на факторы, сдерживающие научный прогресс, вторая половина XIX в. - это период выдающихся достижений в науке и технике, позволивших русскую научно-исследовательскую деятельность ввести в мировую науку. Российская наука развивалась в тесной связи с европейской и американской наукой. «Возьмите любую книгу иностранного научного журнала, и Вы почти наверняка встретите русское имя. Русская наука заявила свою равноправность, а порою и превосходство», - писал К.А. Тимирязев. Русские ученые принимали участие в экспериментальных и лабораторных исследованиях в научных центрах Европы и Северной Америки, выступали с научными докладами, публиковали статьи в научных изданиях.

В стране возникли новые научные центры: Общество любителей естествознания, антропологии и этнографии (1863), Общество русских врачей. Русское техническое общество (1866). При всех российских университетах были созданы физико-математические общества. В 70-х гг. в России действовало более 20 научных обществ.

Крупным центром математических исследований стал Петербург, где сложилась математическая школа, связанная с именем выдающегося математика П.Л. Чебышева (1831-1894). Его открытия, до сих пор оказывающие влияние на развитие науки, относятся к теории приближения функций, теории чисел и теории вероятностей.

В Киеве возникла алгебраическая школа во главе с Д.А. Граве (1863- 1939).

Гениальным ученым-химиком, создавшим периодическую систему химических элементов, был Д. И. Менделеев (1834-1907). Он доказал внутреннюю силу между всеми видами химических веществ. Периодическая система явилась фундаментом в изучении неорганической химии и продвинула далеко вперед эту науку. Работа Д. И. Менделеева «Основы химии» была переведена на многие европейские языки, а в России только прижизненно была издана восемь раз.

Ученые Н.Н. Зинин (1812-1888) и А.М. Бутлеров (1828-1886) - основоположники органической химии. В середине XIX в. Зинин открыл реакцию ароматических производных в ароматические амины. Этим методом он синтезировал анилин - основу для создания промышленности синтетических красителей, взрывчатых веществ и фармацевтических препаратов. Бутлеров разработал теорию химического строения и был создателем крупнейшей казанской школы русских химиков-органиков.

Основоположник русской физической школы А.Г. Столетов (1839-1896) сделал ряд важнейших открытий в области магнетизма и фотоэлектрических явлений, в теории газового разряда, получившей признание во всем мире.

Из изобретений и открытий П.Н. Яблочкова (1847-1894) наиболее известна так называемая «свеча Яблочкова» - практически первая пригодная дуговая электрическая лампа без регулятора. За семь лет до изобретения американского инженера Эдисона А.Н. Лодыгин (1847-1923) создал лампу накаливания с применением вольфрама для накала.

Мировую известность приобрели открытия А.С. Попова (1859-1905). 25 апреля 1895 г. на заседании Русского физико-химического общества он сообщил об изобретении им прибора для приема и регистрации электромагнитных сигналов, а затем продемонстрировал работу «грозоотметчика» - радиоприемника, нашедшего очень скоро практическое применение.

А.Ф. Можайский (1825-1890) исследовал возможности создания летательных аппаратов. В 1876 г. с успехом прошла демонстрация полетов его моделей. В 80-х гг. он работал над созданием самолета. Н.Е. Жуковский (1848-1921) - автор исследований в области механики твердого тела, астрономии, математики, гидродинамики, гидравлики, теории регулирования машин. Он создал единую научную дисциплину - экспериментальную и теоретическую аэродинамику. Им была сооружена одна из первых в Европе аэродинамическая труба, определена подъемная сила крыла самолета и разработан метод ее вычисления.

Выдающееся значение имели работы К.Э. Циолковского (1857-1935), одного из пионеров космонавтики. Преподаватель гимназии в Калуге, Циолковский был ученым широкого масштаба, он первым указал пути развития ракетостроения и космонавтики, нашел решения конструкции ракет и ракетных двигателей.

Крупные научные и технические открытия были сделаны физиком П.Н. Лебедевым (1866-1912), который доказал и измерил давление света.

Огромны были успехи биологических наук. Русские ученые открыли целый ряд законов развития организмов.

Крупнейшие открытия были сделаны русскими учеными в физиологии. И.М. Сеченов (1829-1905) - основоположник естественно-научного направления в психологии и создатель русской физиологической школы. Он положил начало научному исследованию нервной деятельности человека. Его умение о рефлексах И. П. Павлов назвал «гениальным взмахом русской научной мысли».

Научные интересы И.П. Павлова (1849-1936) представляла физиология мозга. Он создал основанное на опыте учение о высшей нервной деятельности, современные представления о процессе пищеварения и кровообращения. Учеными всего мира он был признан величайшим авторитетом в области физиологии, в 1904 г. за огромный вклад в мировую науку ему была присуждена Нобелевская премия.

И.И. Мечников (1845-1915) - выдающийся эмбриолог, микробиолог и патолог, внесший большой вклад в развитие науки. Он основоположник (совместно с А.О. Ковалевским, 1840-1901) новой научной дисциплины - сравнительной эмбриологии и учения о фагоцитозе, имеющего огромное значение в современной микробиологии и патологии. Его труды в 1905 г. были отмечены Нобелевской премией (вместе с П. Эрлихом).

Крупнейшим представителем российской науки был К.А. Тимирязев (1843- 1920). Он исследовал явление фотосинтеза - процесса превращения неорганических веществ в органические в зеленом листе растений под воздействием солнечных лучей, доказав применимость закона сохранения энергии к органическому миру.

В.В. Докучаев (1846-1903) - создатель современного генетического почвоведения, изучил почвенный покров России. Его труд «Русский чернозем», признанный в мировой науке, содержит научную классификацию почв и систему их естественных типов. Много сделали в исследовании Севера России, Урала и Кавказа основатель русской геологической научной школы А.П. Карпинский (1846/47-1936) и А.А. Иностранцев.

Большой интерес в мире вызвали экспедиции по изучению Средней и Центральной Азии и Уссурийского края Н.М. Пржевальского (1839-1888), впервые описавшего природу этих регионов. Он внес огромный вклад в исследование флоры и фауны этих регионов, впервые описал дикого верблюда, дикую лошадь (лошадь Пржевальского). П.П. Семенов-Тян-Шанский (1827- 1914) - руководитель Русского географического общества, исследовал Тянь-Шань, инициатор ряда экспедиций в Центральную Азию, издал в соавторстве (с В. И. Ломанским) труд «Россия. Полное географическое описание нашего отечества».

Н.Н. Миклухо-Маклай (1846-1888) - русский ученый, путешественник, общественный деятель и гуманист. Во время путешествий в Юго-Восточную Азию, Австралию, на острова Океании он провел ценные географические исследования, не утратившие до сегодняшнего дня своего значения. Он доказывал, что отсталость в развитии народов этих регионов объясняется историческими причинами. Выступал против расизма и колониализма.

Похожие публикации