Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Преднапряженные конструкции в каркасном строительстве. Предварительно напряженный железобетон в конструкциях мостов Чем отличаются строительные растворы от бетонов

(преднапряжённый железобетон ) - это строительный материал, предназначенный для преодоления неспособности бетона сопротивляться значительным растягивающим напряжениям . Конструкции из преднапряженного железобетона по сравнению с ненапряженным имеют значительно меньшие прогибы и повышенную трещиностойкость, обладая одинаковой прочностью , что позволяет перекрывать бо́льшие пролёты при равном сечении элемента.

При изготовлении железобетона прокладывается арматура из стали с высокой прочностью на растяжение, затем сталь натягивается специальным устройством и укладывается бетонная смесь. После схватывания сила предварительного натяжения освобождённой стальной проволоки или троса передаётся окружающему бетону, так что он оказывается сжатым. Такое создание напряжений сжатия позволяет частично или полностью устранить растягивающие напряжения от эксплуатационной нагрузки.

Способы натяжения арматуры:

Grants Pass, преднапряжённый железобетонный мост в ботаническом саду, Oregon, USA

По виду технологии устройства подразделяется на:

  • натяжение на упоры (до укладки бетона в опалубку);
  • натяжение на бетон (после укладки и набора прочности бетона).

Чаще второй метод применяется при строительстве мостов с большими пролётами, где один пролёт изготавливается в несколько этапов (захваток) . Материал из стали (трос или арматура) укладывается в форму для бетонирования в каналообразователи (гофрированная тонкостенная металлическая или пластиковая труба). После изготовления монолитной конструкции трос (арматуру) специальными механизмами (домкратами) натягивают до определённой степени. После чего в каналообразователь с тросом (арматурой) закачивается жидкий цементный (бетонный) раствор. Таким образом обеспечивается прочное соединение сегментов пролёта моста.

В то время как натяжение на упоры подразумевает только прямолинейную форму натянутой арматуры, важной отличительной особенностью натяжения на бетон является возможность натяжения арматуры сложной формы, что повышает эффективность армирования. Например, в мостах арматурные элементы поднимаются внутри несущих железобетонных балок на участках над опорами-«быками», что позволяет более эффективно использовать их натяжение для предотвращения прогиба.

У истоков создания предварительно напряжённого железобетона стояли Эжен Фрейсине (Франция) и Виктор Васильевич Михайлов (Россия) .

Предварительно напряжённый железобетон является главным материалом междуэтажных перекрытий высотных зданий и защитных гермооболочек ядерных реакторов , а также колонн и стен зданий в зонах повышенной

Сущность железобетона. Его достоинства и недостатки

Железобетон - это комплексный строительный материал, состоящий из бетона и стальной арматуры , деформирующихся совместно вплоть до разрушения конструкции.

В приведенном определении выделены ключевые слова, отражающие сущность материала. Для выявления роли каждого из выделенных понятий рассмотрим более подробно суть каждого из них.

Бетон - это искусственный камень, который, как и любой каменный материал, имеет достаточно высокое сопротивление сжатию, а сопротивление растяжению у него в 10¸20 раз меньше.

Стальная арматура имеет достаточно высокое сопротивление как при сжатии, так и при растяжении.

Объединение этих двух материалов в одном позволяет рационально использовать достоинства каждого из них.

На примере бетонной балки рассмотрим, как используется прочность бетона в изгибаемом элементе (рис. 1а). При изгибе балки выше нейтрального слоя возникают сжимающие напряжения, а нижняя зона растянута. Максимальные напряжения в сечениях будут в крайних верхних и нижних волокнах сечения Как только при загружении балки напряжения в растянутой зоне достигнут предела прочности бетона при растяжении R bt , произойдет разрыв крайнего волокна, т.е. появится первая трещина. За этим последует хрупкое разрушение, т.е. излом балки. Напряжения в сжатой зоне бетона s bc в момент разрушения составят всего 1/10 ¸ 1/15 часть от предела прочности бетона при сжатии R b , т.е. прочность бетона в сжатой зоне будет использована на 10% и меньше.

На примере железобетонной балки с арматурой рассмотрим, как здесь используется прочность бетона и арматуры. Первые трещины в растянутой зоне бетона появятся практически при той же нагрузке, что и в бетонной балке. Но, в отличие от бетонной балки, появление трещины не приводит к разрушению железобетонной балки. После появления трещин растягивающее усилие в сечении с трещиной будет восприниматься арматурой, и балка будет способна воспринимать возрастающую нагрузку. Разрушение железобетонной балки произойдет только тогда, когда напряжения в арматуре достигнут предела текучести, а напряжения в сжатой зоне - предела прочности бетона при сжатии. При этом, вначале, когда в арматуре достигается предел текучести s тек, балка начинает интенсивно прогибаться за счет развития в арматуре пластических деформаций. Этот процесс продолжается до тех пор, пока раздавится бетон сжатой зоны при достижении в нем предела прочности при сжатии R b . Так как уровень напряжений в бетоне и арматуре в этом состоянии гораздо выше, чем величина R bt , то это означает, что оно должно быть вызвано большей нагрузкой (N на рис. 1-б). Вывод - целесообразность железобетона состоит в том, что растягивающие усилия воспринимает арматура, а сжимающие - бетон. Следовательно, основное назначение арматуры в железобетоне состоит в том, что именно она должна воспринимать растяжение ввиду незначительной прочности бетона растяжению. Путем армирования несущая способность изгибаемого элемента, по сравнению с бетонным, можно повысить более чем в 20 раз.



Совместное деформирование бетона и арматуры, установленной в нем, обеспечивается за счет сил сцепления , которые возникают при твердении бетонной смеси. При этом сцепление формируется за счет нескольких факторов, а именно: во-первых, благодаря адгезии (приклеивания) цементного теста к арматуре (очевидно, что доля этой составляющей сцепления невелика); во-вторых, за счет обжатия арматуры бетоном вследствие усадки его при твердении; в-третьих, за счет механического зацепления бетона о периодическую (рифленую) поверхность арматуры. Естественно, что для арматуры периодического профиля эта составляющая сцепления наиболее существенна, поэтому сцепление арматуры периодического профиля с бетоном в несколько раз превышает таковую для арматуры с гладкой поверхностью.

Само существование железобетона и его хорошая долговечность оказались возможными благодаря выгодному сочетанию некоторых важных физико - механических свойств бетона и стальной арматуры, а именно:

1) бетон при твердении прочно сцепляется со стальной арматурой и под нагрузкой оба этих материала деформируются совместно;

2) бетон и сталь имеют близкие значения коэффициентов линейного температурного расширения. Именно поэтому при изменениях температуры окружающей среды в пределах +50 о С ¸ -70 о С не происходит нарушения сцепления между ними, так как они деформируются на одинаковую величину;



3) бетон защищает арматуру от коррозии и непосредственного действия огня. Первое из этих обстоятельств обеспечивает долговечность железобетона, а второе – огнестойкость его при возникновении пожара. Толщина защитного слоя бетона и назначается именно из условий обеспечения необходимой долговечности и огнестойкости железобетона.

При использовании железобетона в качестве материала для строительных конструкций очень важно понимать достоинства и недостатки материала, что позволит применять его рационально, уменьшая неблагоприятное влияние его недостатков на эксплуатационные качества конструкции.

К достоинствам (положительным свойствам) железобетона относят:

1. Долговечность - при правильной эксплуатации железобетонные конструкции могут служить неопределенно долгое время без снижения несущей способности.

2. Хорошая сопротивляемость статическим и динамическим нагрузкам.

3. Огнестойкость.

4. Малые эксплуатационные расходы.

5. Дешевизна и хорошие эксплуатационные качества.

К основным недостаткам железобетона относятся:

1. Значительный собственный вес. Этот недостаток в некоторой степени устраняется при использовании легких заполнителей, а также при применении прогрессивных пустотных и тонкостенных конструкций (то есть за счет выбора рациональной формы сечений и очертания конструкций).

2. Низкая трещиностойкость железобетона (из рассмотренного выше примера следует, что в растянутом бетоне должны быть трещины при эксплуатации конструкции, что не снижает несущей способности конструкции). Указанный недостаток может быть снижен с применением преднапряженного железобетона, которое служит радикальным средством повышения его трещиностойкости (сущность преднапряженного железобетона рассмотрена в теме 1.3 ниже.

3. Повышенная звуко- и теплопроводность бетона в отдельных случаях требуют дополнительных затрат на тепло- или звукоизоляцию зданий.

4. Невозможность простого контроля по проверке армирования изготовленного элемента.

5. Трудности усиления существующих железобетонных конструкций при реконструкции зданий, когда увеличиваются нагрузки на них.

Преднапряженный железобетон: его сущность и способы создания предварительного напряжения

Иногда образование трещин в конструкциях, в которых недопустимо по условиям эксплуатации (например, в резервуарах; трубах; конструкциях, экспуатирующихся при воздействии агрессивных сред). Чтобы исключить этот недостаток железобетона, применяют предварительно напряженные конструкции. Таким образом, можно избежать появления трещин в бетоне и уменьшить деформации конструкции в стадии эксплуатации.

Рассмотрим краткое определение предварительно напряженного железобетона.

Предварительно напряженной называют такую железобетонную конструкцию, в которой в процессе изготовления создают значительные сжимающие напряжения в бетоне той зоны сечения конструкции, которая при эксплуатации испытывает растяжение (рис.2).

Как правило, начальные сжимающие напряжения в бетоне создают с использованием предварительно растягиваемой высокопрочной арматуры

За счет этого повышается трещиностойкость и жесткость конструкции, а также создаются условия для применения высокопрочной арматуры, что приводит к экономии металла и снижению стоимости конструкции.

Удельная стоимость арматуры снижается с увеличением прочности арматуры. Поэтому высокопрочная арматура значительно выгоднее обычной. Однако применять высокопрочную арматуру в конструкциях без преднапряжения не рекомендуется, т. к. при высоких растягивающих напряжениях в арматуре трещины в растянутых зонах бетона будут значительно раскрыты, снижая при этом необходимые эксплуатационные качества конструкции.

Преимущества преднапряженного железобетона перед обычным – это, прежде всего, его высокая трещиностойкость; повышенная жесткость конструкции (за счет обратного выгиба, получаемого при обжатии конструкции); лучшее сопротивление динамическим нагрузкам; коррозионная стойкость; долговечность; а также определенный экономический эффект, достигаемый применением высокопрочной арматуры.

В предварительно напряженной балке под нагрузкой (рис. 2) бетон испытывает растягивающие напряжения только после погашения начальных сжимающих напряжений. На примере двух балок видно, что трещины в преднапряженной балке образуются при более высокой нагрузке, но разрушающая нагрузка для обеих балок близка по значению, поскольку предельные напряжения в арматуре и бетоне этих балок одинаковы. Гораздо меньше также и прогиб преднапряженной балки.

При производстве преднапряженных железобетонных конструкций в заводских условиях возможны две принципиальные схемы создания преднапряжения в железобетоне:

преднапряжение с натяжением арматуры на упоры и на бетон.

При натяжении на упоры арматуру заводят в форму до бетонирования элемента, один конец ее закрепляют на упоре, другой натягивают домкратом или иным приспособлением до контролируемого напряжения. Затем изделие бетонируется, пропаривается и после приобретения бетоном необходимой кубиковой прочности для восприятия обжатия R bp арматуру отпускают с упоров. Арматура, стремясь укоротиться в пределах упругих деформаций, при наличии сцепления с бетоном увлекает его за собой и обжимает его (рис. 3-а).

При натяжении арматуры на бетон(рис. 3-б) сначала изготавливают бетонный или слабоармированный элемент, затем по достижении бетоном прочности R bp создают в нем предварительное сжимающее напряжение. Это осуществляется следующим образом: напрягаемую арматуру заводят в каналы или пазы, оставляемые при бетонировании элемента, и натягивают с помощью домкрата, упираясь прямо в торец изделия. При этом обжатие бетона происходит уже в процессе натяжения арматуры. При этом способе напряжения в арматуре контролируют после окончания обжатия бетона. Каналы в бетоне, превышающие диаметр арматуры на (5¸15)мм создают укладкой извлекаемых впоследствии пустотообразователей (стальных спиралей, резиновых трубок и т.д.). Сцепление арматуры с бетоном достигается за счет того, что после обжатия инъецируют (нагнетают в каналы цементное тесто или раствора под давлением через заложенные при изготовлении элемента тройники – отводы). Если напрягаемую арматуру располагают с внешней стороны элемента (кольцевая арматура трубопроводов, резервуаров и т.п.), то навивку ее с одновременным обжатием бетона выполняют специальными навивочными машинами. В этом случае на поверхность элемента после натяжения арматуры наносят торкретированием защитный слой бетона.

Натяжение на упоры является более индустриальным способом в заводском производстве. Натяжение на бетон применяется главным образом для крупноразмерных конструкций, создаваемых непосредственно на месте их возведения.

Натяжение арматуры на упоры можно осуществлять не только с помощью домкрата, но и электротермическим способом. Для этого стержни с высаженными головками разогревают электротоком до 300 - 350°С, заводят в форму и закрепляют в упорах форм. При восстановлении начальной длины в процессе остывания арматура оказывается растянутой. Арматуру можно также натягивать электротермомеханическим способом (представляет собой комбинацию первых двух способов).

Железобетон находит применение практически во всех областях промышленного и гражданского строительства:

В промышленных и гражданских зданиях из железобетона выполняют: фундаменты, колонны, плиты покрытий и перекрытий, стеновые панели, балки и фермы, подкрановые балки, т.е. практически все элементы каркасов одно- и многоэтажных зданий.

Специальные сооружения при строительстве промышленных и гражданских комплексов - подпорные стены, бункеры, силосы, резервуары, трубопроводы, опоры линий электропередач и т.д.

В гидротехническом и дорожном строительстве из железобетона выполняют плотины, набережные, мосты, дороги, взлетные полосы и т.д

Предварительно-напряженные конструкции – это конструкции или их элементы, в которых предварительно, т.е. в процессе изготовления, искусственно созданы в соответствии с расчетом начальные напряжения растяжения в арматуре и обжатия в бетоне.

Обжатие бетона на величину σ bp осуществляется предварительно натянутой арматурой, которая после отпуска натяжных устройств стремится возвратится в первоначальное состояние. Проскальзывание арматуры в бетоне исключается их взаимным сцеплением или специальной анкеровкой торцов арматуры в бетоне.

Начальные сжимающие напряжения создают в тех зонах бетона, которые впоследствии испытывают растяжение.

Железобетонные элементы без предварительного напряжения работают при наличии трещин: ,

где
- эксплуатационная нагрузка,

- нагрузка, при которой образуются трещины;

- разрушающая нагрузка.

Железобетонные предварительно-напряженные элементы работают под нагрузкой без трещин или с ограниченным по ширине их раскрытием:
.

Таким образом, предварительное напряжение не повышает прочность конструкции, а увеличивает ее жесткость и трещиностойкость!

Преимущества предварительно-напряженных конструкций:

    повышенная жесткость и трещиностойкость конструкции;

    возможность использования высокопрочной арматуры (A-IV и выше);

    предварительное напряжение приводит к уменьшению сечения элемента

    возможность выполнения эффективных стыков сборных элементов;

    предварительное напряжение позволяет изготавливать комбинированные конструкции (например, обжимаемую зону выполнять из тяжелого бетона, а остальную – из легкого);

    повышенная выносливость при многократно повторяемых, динамических нагрузках;

    преднапряженные конструкции более безопасны, т.к. перед разрушением имеют большой прогиб и тем самым сигнализируют, что прочность конструкции почти исчерпана;

    повышенная сейсмостойкость;

    повышенная долговечность.

Недостатки предварительно-напряженных конструкций:

    повышенная трудоемкость и необходимость специального оборудования и классифицированных работников;

    большая масса;

    большая тепло- и звукопроводность;

    усиление преднапряженных конструкций всегда сложнее, чем без преднапряжения;

    меньшая огнестойкость;

    при коррозии высокопрочная арматура быстрее теряет пластические свойства, возникает опасность хрупкого разрушения.

10.1.1. Способы и методы натяжения арматуры

Способы натяжения арматуры:

    На упоры (до бетонирования). Арматуру заводят в форму до бетонирования элемента, один конец закрепляют в упоре, другой – натягивают домкратом до заданного напряжения σ sp . Затем в форму заливают бетон. После достижения бетоном передаточной прочности R bp арматуру отпускают с упоров, при этом она обжимает окружающий бетон. Чтобы избежать разрушения бетона в торцах элементов, отпуск натяжения арматуры производят постепенно, снижая сначала на 50%, а затем до 0.

    На бетон . Сначала изготавливают бетонный элемент, в котором предусматривают каналы или пазы. После приобретения бетоном передаточной прочности Rbp, в каналы пропускают рабочую арматуру и натягивают ее на бетон. После натяжения концы арматуры закрепляют анкерами. Для обеспечения сцепления арматуры с бетоном каналы и пазы заполняют под давлением цементным раствором.

Методы натяжения арматуры:

    Электротермический – необходимое относительное удлинение арматуры еsp получают электрическим нагревом арматуры до соответствующей температуры.

    Механический – необходимое относительное удлинение арматуры получают вытяжкой арматуры натяжными механизмами (гидравлические и винтовые домкраты, лебедки, тарировочные ключи, намоточные машины и т.д.).

    Электротермомеханический – совокупность механического и электротермического методов.

    Физико-химический – заключается в самонапряжении конструкции вследствие использования энергии расширяющегося цемента.

Железобетонные конструкции - основа современного строительства. Однако они имеют существенные изъяны, связанные, в первую очередь, с недостаточной нагрузочной способностью и образованием трещин в камне при эксплуатационных нагрузках. Усовершенствование технологии изготовления изделий из бетона и стальной арматуры привело к созданию преднапряженного железобетона, который обладает рядом преимуществ.

Определение

Предварительно напряженные железобетонные конструкции - строительные изделия, бетон которых на этапе создания принудительно получает начальную расчетную напряженность сжатия. Она создается за счет предварительного формирования напряжения растяжения в рабочей высокопрочной арматуре и обжатия ею бетона на тех участках, которым предстоит испытывать растяжение (прогиб) при эксплуатации. Сжимаясь, арматура не проскальзывает, так как сцеплена с материалом или удерживается анкерным закреплением арматуры на торцах изделий. Таким образом, напряжение растяжения, которое приобретает железобетонный состав с помощью армирования, уравновешивает напряженность заблаговременного обжатия камня.

Преимущества

Предварительно напряженный железобетон долгосрочно отодвигает время начала формирования расколов в изделиях, работающих на прогиб, сокращает глубину их раскрывания. Вместе с тем изделия приобретают повышенную жесткость, не снижая прочности.

Предварительно напряженным железобетонным балкам свойственно хорошо работать на сжатие и прогиб, имея одинаковую прочность по длине, что позволяет увеличивать ширину перекрываемых пролетов. В таких конструкциях уменьшаются размеры поперечного сечения, следовательно, сокращаются объем и вес комплектующих элементов (на 20 – 30%), а также расход цемента. Более рациональное использование свойств стали позволяет сокращать (стержневой и проволочной) до 50%, особенно из высокопрочных марок (A-IV и выше), имеющих значительный предел прочности. Химическая нейтральность бетона к стали способствует предохранению арматуры от коррозии. Вместе с тем повышенная трещиностойкость предохраняет напряженную арматуру от ржавления в сооружениях, которые находятся под постоянным давлением воды, иных жидкостей, газов.


Методы возведения зданий, используемые в строительстве каркаса, базируются на технологии предварительного напряжения конструкций из железобетона в процессе строительства.

Напряженная арматура, обжимающая бетон сборочных единиц, обеспечивает практичную их стыковку путем значительного сокращения расходования металла на стыках. Сборные и сборно-монолитные изделия из железобетонных напряженных конструкций могут состоять из стыкуемых частей с одинаковым поперечным сечением, которые по краям выполняются из ненапряженных облегченных (тяжелых) бетонов, а нагружаемый фрагмент - преднапряженный железобетон. Такая продукция имеет повышенную выносливость, компенсируя повторяющиеся динамические воздействия.

Данное свойство позволяет демпфировать изменения напряжений в бетоне и арматуре, вызываемые колебаниями внешних нагрузок. Повышенная сейсмическая стойкость зданий повышается за счет большой конструкционной устойчивости напряженного железобетона, обжимающего отдельные их фрагменты. Конструкция в предварительно напряженном виде обеспечивает большую безопасность, так как ее разрушению предшествует запредельный прогиб, сигнализирующий об исчерпании конструкцией прочности.

Недостатки

Состояние предварительного напряжения в материале достигается спецоборудованием, точными расчетами, трудоемким конструированием и затратным производством. Продукция требует бережного хранения, транспортировки и монтажа, которые не вызывают ее аварийного состояния еще до начала использования.

Сосредоточенные нагрузки могут способствовать возникновению продольных трещин, которые снижают несущую способность. Просчеты в проектировании и технологии производства могут вызывать полное разрушение создаваемого железобетонного изделия на стапеле. Предварительно напряженные конструкции требуют металлоемкой опалубки повышенной прочности, увеличенного расхода стали на закладные и арматуру.

Большие значения звуко– и теплопроводности требуют закладывания в тело камня компенсирующих материалов. Подобными железобетонными конструкциями обеспечивается более низкий порог огнестойкости (ввиду меньшей критической температуры нагрева преднапряженной арматурной стали) по сравнению с обычным железобетоном. На преднапряженную бетонную конструкцию критично воздействуют выщелачивание, растворы кислот и сульфатов, солей, приводящие к коррозии цементного камня, раскрытию трещин и коррозии арматуры. Это может приводить к резкому снижению несущей способности стали и внезапному хрупкому разрушению. Также к минусам стоит отнести значительный вес изделий.

Материалы для конструкций

Железобетон - многокомпонентный материал, основными составляющими которого являются бетон и стальная арматура. Параметры их качества определяются особыми требованиями при проектировании к элементам конструкций на месте применения.

Бетон


Формы для заливки бетона с прутьями для передачи предварительного напряжения.

Предварительное напряжение в железобетоне обеспечивается применением тяжелых составов средней плотности от 2200 до 2500 кг/м3, которые имеют классы по прочности на осевое растяжение выше Bt0,8, по прочности от В20 и больше, марки по водонепроницаемости от W2 и выше, по морозостойкости от F50. Требования к продукции гарантируют бетону нормативную прочность не ниже установленной с вероятностью 0,95 (в 95% случаев). Смесь должна набрать возраст не меньше 28 суток до получения материалом предварительных напряжений. На ранних стадиях эксплуатации бетонный камень способен частично утерять напряженное качество за счет общего снижения напряженности стали (до 16%). Коэффициент надежности материала на растяжение и сжатие в предельных состояниях установлен для эксплуатационной пригодности не ниже 1,0.

Предварительно напряженными называют такие железобетонные конструкции, в которых до приложения нагрузок в процессе изготовления искусственно создаются здачительные сжимающие напряжения в бетоне nyтем натяжения высокопрочной арматуры. Начальный сжимающие напряжения создаются в тех зонах бетона, которые впоследствии под воздействием нагрузок испытывают растяжение. При этом повышается трещиностойкость конструкции и создаются условия для применения высокопрочной арматуры, что приводит к экономии металла и снижению стоимости конструкции.
Удельная стоимость арматуры, равная отношению ее цены (руб/т) к расчетному сопротивлению Rs, снижается с увеличением прочности арматуры. Поэтому высокопрочная арматура значительно выгоднее горячекатаной. Однако применять высокопрочную арматуру в конструкциях без предварительного напряжения нельзя, так как при высоких растягивающих напряжениях в арматуре и соответствующих деформациях удлинения в растянутых зонах бетона появляются трещины значительного раскрытия, лишающие конструкцию необходимых эксплуатационных качеств.
Сущность предварительно напряженного железобетона в экономическом эффекте, достигаемом благодаря применению высокопрочной арматуры. Кроме того, высокая трещиностойкость предварительно напряженного железобетона повышает его жесткость, сопротивление динамическим нагрузкам, коррозионную стойкость, долговечность.
В предварительно напряженной балке под нагрузкой бетон испытывает растягивающие напряжения только после погашения начальных сжимающих напряжений. При этом сила, вызывающая образование трещин или ограниченное по ширине их раскрытие, превышает нагрузку, действующую при эксплуатации. С увеличением нагрузки на балку до предельного разрушающего значения напряжения в арматуре и бетоне достигают предельных значений.
Таким образом, железобетонные предварительно напряженные элементы работают под нагрузкой без трещин или с ограниченным по ширине их раскрытием, в то время как конструкции без предварительного напряжения эксплуатируются при наличии трещин и при больших значениях прогибов. В этом различие конструкций предварительно напряженных и без предварительного напряжения с вытекающими отсюда особенностями их расчета, конструирования и изготовления.
В производстве предварительно напряженных элементов возможны два способа создания предварительного напряжения: натяжение на упоры и натяжение на бетон. При натяжении на упоры до бетонирования элемента арматуру заводят в форму, один конец ее закрепляют в упоре, другой натягивают домкратом или другим приспособлением до заданного контролируемого напряжения. После приобретения бетоном необходимой кубиковой прочности перед обжатием арматуру отпускают с упоров. Арматура при восстановлении упругих деформаций в условиях сцепления с бетоном обжимает окружающий бетон. При так называемом непрерывном армировании форму укладывают на поддон, снабженный штырями, арматурную проволоку специальной навивочной машиной навивают на трубки, надетые на штыри поддона, с заданной величиной напряжения, и конец ее закрепляют плашечным зажимом. После того как бетон наберет необходимую прочность, изделие с трубками снимают со штырей поддона, при этом арматура обжимает бетон.
Стержневую арматуру можно натягивать на упоры электротермическим способом. Стержни с высаженными головками разогревают электрическим током до 300-350 °С, заводят в форму и закрепляют на концах в упорах форм. Арматура при восстановлении начальной длины в процессе остывания натягивается на упоры.
При натяжении на бетон сначала изготовляют бетонный или слабоармированный элемент, затем при достижении бетоном прочности создают в нем предварительное сжимающее напряжение. Напрягаемую арматуру заводят в каналы или в пазы, оставляемые при бетонировании элемента, и натягивают на бетон. При этом способе напряжения в арматуре контролируются после окончания обжатия бетона. Каналы, превышающие диаметр арматуры на 5-15 мм, создают в бетоне укладкой извлекаемых пустотообразователей (стальных спиралей, резиновых шлангов и т. п.) или оставляемых гофрированных стальных трубок и др. Сцепление арматуры с бетоном создается после обжатия инъецированием - нагнетанием в каналы цементного теста или раствора под давлением. Инъецирование производится через заложенные при изготовлении элемента тройники - отводы. Если напрягаемая арматура располагается с внешней стороны элемента (кольцевая арматура трубопроводов, резервуаров и т. п.), то навивка ее с одновременным обжатием бетона производится специальными навивочными машинами. В этом случае на поверхность элемента после натяжения арматуры наносят торкретированием (под давлением) защитный слой бетона.
Натяжение на упоры как более индустриальное является основным способом в заводском производстве.

Похожие публикации