Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Тепловые потери дома. Расчёт теплопотерь ограждающими конструкциями. Тепловые потери на вентиляцию

Расчет отопления частного дома можно сделать самостоятельно, проведя некоторые замеры и подставив свои значения в нужные формулы. Расскажем, как это делается.

Вычисляем теплопотери дома

От расчета теплопотерь дома зависит несколько критических параметров системы отопления и в первую очередь – мощность котла.

Последовательность расчета следующая:

Вычисляем и записываем в столбик площадь окон, дверей, наружных стен, пола, перекрытия каждой комнаты. Напротив каждого значения записываем коэффициент , из которых построен наш дом.

Если вы не нашли нужный материал в , то посмотрите в расширенной версии таблицы, которая так и называется – коэффициенты теплопроводности материалов (скоро на нашем сайте). Далее, по ниже приведенной формуле вычисляем потери тепла каждого элемента конструкции нашего дома.

Q = S * ΔT / R,

где Q – потери тепла, Вт
S — площадь конструкции, м2
ΔT — разница температур внутри и снаружи помещения для самых холодных дней °C

R — значение теплосопротивления конструкции, м2·°C/Вт

R слоя = V / λ

где V — толщина слоя в м,

λ — коэффициент теплопроводности (см. таблицу по материалам).

Суммируем теплосопротивление всех слоев. Т.е. для стен учитывается и штукатурка и материал стен и наружное утепление (если есть).

Складываем все Q для окон, дверей, наружных стен, пола, перекрытия

К полученной сумме добавляем 10-40% вентиляционных потерь. Их тоже можно вычислить по формуле, но при хороших окнах и умеренном проветривании, смело можно ставить 10%.

Результат делим на общую площадь дома. Именно общую, т.к. косвенно тепло будет тратиться и на коридоры, где радиаторов нет. Вычисленная величина удельных теплопотерь может колебаться в пределах 50-150 Вт/м2. Самые высокие потери тепла у комнат верхних этажей, самые низкие у средних.

После окончания монтажных работ, проведите стен, потолков и других элементов конструкции, чтобы убедиться, что нигде нет утечек тепла.

Приведенная ниже таблица поможет точнее определиться с показателями материалов.

Определяемся с температурным режимом

Этот этап напрямую связан с выбором котла и способом отопления помещений. Если предполагается установка «теплых полов», возможно, лучшее решение – конденсационный котел и низкотемпературный режим 55С на подаче и 45С в «обратке». Такой режим обеспечивает максимальный кпд котла и соответственно, наилучшую экономию газа. В будущем, при желании использовать высокотехнологичные способы обогрева, ( , солнечные коллекторы) не придется переделывать систему отопления под новое оборудование, т.к. оно рассчитано именно на низкотемпературные режимы. Дополнительные плюсы – не пересушивается воздух в помещении, интенсивность потоков ниже, меньше собирается пыли.

В случае выбора традиционного котла, температурный режим лучше выбрать максимально приближенным к европейским нормам 75С – на выходе из котла, 65С – обратная подача, 20С — температура помещения. Такой режим предусмотрен в настройках почти всех импортных котлов. Кроме выбора котла, температурный режим влияет на расчет мощности радиаторов.

Подбор мощности радиаторов

Для расчета радиаторов отопления частного дома материал изделия не играет роли. Это дело вкуса хозяина дома. Важна только указанная в паспорте изделия мощность радиатора. Часто производители указывают завышенные показатели, поэтому результат вычислений будем округлять в большую сторону. Расчет производится для каждой комнаты отдельно. Несколько упрощая расчеты для помещения с потолками 2,7 м, приведем простую формулу:

K=S * 100 / P

Где К — искомое количество секций радиатора

S – площадь комнаты

P – мощность, указанная в паспорте изделия

Пример вычисления: Для комнаты площадью 30 м2 и мощности одной секции 180 Вт получаем: K= 30 х 100/180

K=16,67 округленно 17 секций

Тот же расчет можно применить для чугунных батарей, принимая что

1 ребро(60 см) = 1 секция.

Гидравлический расчет системы отопления

Смысл этого расчета – правильно выбрать диаметр труб и характеристики . Из-за сложности расчетных формул, для частного дома проще выбрать параметры труб по таблице.

Здесь приведена суммарная мощность радиаторов, для которых труба подает тепло.

Диаметр трубы Мин. мощность радиатора квт Макс. мощность радиатора квт
Металлопластиковая труба 16 мм 2,8 4,5
Металлопластиковая труба 20 мм 5 8
Металлопластиковая труба 25 мм 8 13
Металлопластиковая труба 32 мм 13 21
Полипропиленовая труба 20 мм 4 7
Полипропиленовая труба 25 мм 6 11
Полипропиленовая труба 32 мм 10 18
Полипропиленовая труба 40 мм 16 28

Вычисляем объем системы отопления

Эта величина необходима для подбора правильного объема расширительного бака. Вычисляется как сумма объема в радиаторах, трубопроводах и котле. Справочная информация по радиаторам и трубопроводам приведена ниже, по котлу – указана в его паспорте.

Объем теплоносителя в радиаторе:

  • алюминиевая секция - 0,450 литра
  • биметаллическая секция - 0,250 литра
  • новая чугунная секция - 1,000 литр
  • старая чугунная секция - 1,700 литра

Объем теплоносителя в 1 п.м. трубы:

  • ø15 (G ½») - 0,177 литра
  • ø20 (G ¾») - 0,310 литра
  • ø25 (G 1,0″) - 0,490 литра
  • ø32 (G 1¼») - 0,800 литра
  • ø15 (G 1½») - 1,250 литра
  • ø15 (G 2,0″) - 1,960 литра

Монтаж системы отопления частного дома — выбор труб

Выполняется трубами из разных материалов:

Стальные

  • Имеют большой вес.
  • Требуют должного навыка, специальных инструментов и оборудования для монтажа.
  • Подвержены коррозии
  • Могут накапливать статическое электричество.

Медные

  • Выдерживают температуру до 2000 С, давление до 200 атм. (в частном доме совершенно излишние достоинства)
  • Надежны и долговечны
  • Имеют высокую стоимость
  • Монтируются специальным оборудованием, серебряным припоем

Пластиковые

  • Антистатичны
  • Стойкие к коррозии
  • Недорогие
  • Обладают минимальным гидравлическим сопротивлением
  • Не требуют специальных навыков при монтаже

Подведем итог

Правильно сделанный расчёт системы отопления частного дома обеспечивает:

  • Комфортное тепло в помещениях.
  • Достаточное количество горячей воды.
  • Тишину в трубах (без бульканья и рычания).
  • Оптимальные режимы работы котла
  • Правильную нагрузку на циркуляционный насос.
  • Минимальные затраты на монтаж

Чтобы ваш дом не оказался бездонной ямой для расходов на отопление, предлагаем изучить базовые направления теплотехнических изысканий и методологию расчётов.

Чтобы ваш дом не оказался бездонной ямой для расходов на отопление, предлагаем изучить базовые направления теплотехнических изысканий и методологию расчётов.

Без предварительного расчёта тепловой проницаемости и влагонакопления теряется вся суть жилищного строительства.

Физика теплотехнических процессов

Различные области физики имеют много схожего в описании явлений, которые ими изучаются. Так и в теплотехнике: принципы, описывающие термодинамические системы, наглядно перекликаются с основами электромагнетизма, гидродинамики и классической механики. В конце концов, речь идёт об описании одного и того же мира, поэтому не удивительно, что модели физических процессов характеризуются некоторыми общими чертами во многих областях исследований.

Суть тепловых явлений понять легко. Температура тела или степень его нагрева есть не что иное, как мера интенсивности колебаний элементарных частиц, из которых это тело состоит. Очевидно, что при столкновении двух частиц та, у которой энергетический уровень выше, будет передавать энергию частице с меньшей энергией, но никогда наоборот.

Однако это не единственный путь обмена энергией, передача возможна также посредством квантов теплового излучения. При этом базовый принцип обязательно сохраняется: квант, излученный менее нагретым атомом, не в состоянии передать энергию более горячей элементарной частице. Он попросту отражается от неё и либо пропадает бесследно, либо передаёт свою энергию другому атому с меньшей энергией.

Термодинамика хороша тем, что происходящие в ней процессы абсолютно наглядны и могут интерпретироваться под видом различных моделей. Главное - соблюдать базовые постулаты, такие как закон передачи энергии и термодинамического равновесия. Так что если ваше представление соответствует этим правилам, вы легко поймёте методику теплотехнических расчётов от и до.

Понятие сопротивления теплопередаче

Способность того или иного материала передавать тепло называется теплопроводностью. В общем случае она всегда выше, чем больше плотность вещества и чем лучше его структура приспособлена для передачи кинетических колебаний.

Величиной, обратно пропорциональной тепловой проводимости, является термическое сопротивление. У каждого материала это свойство принимает уникальные значения в зависимости от структуры, формы, а также ряда прочих факторов. Например, эффективность передачи тепла в толще материалов и в зоне их контакта с другими средами могут отличаться, особенно если между материалами есть хотя бы минимальная прослойка вещества в другом агрегатном состоянии. Количественно термическое сопротивление выражается как разница температур, разделённая на мощность теплового потока:

Rt = (T2 – T1) / P

где:

  • Rt - термическое сопротивление участка, К/Вт;
  • T2 - температура начала участка, К;
  • T1 - температура конца участка, К;
  • P - тепловой поток, Вт.

В контексте расчёта теплопотерь термическое сопротивление играет определяющую роль. Любая ограждающая конструкция может быть представлена как плоскопараллельная преграда на пути теплового потока. Её общее термическое сопротивление складывается из сопротивлений каждого слоя, при этом все перегородки складываются в пространственную конструкцию, являющуюся, собственно, зданием.

Rt = l / (λ·S)

где:

  • Rt - термическое сопротивление участка цепи, К/Вт;
  • l - длина участка тепловой цепи, м;
  • λ - коэффициент теплопроводности материала, Вт/(м·К);
  • S - площадь поперечного сечения участка, м2.

Факторы, влияющие на теплопотери

Тепловые процессы хорошо коррелируют с электротехническими: в роли напряжения выступает разница температур, тепловой поток можно рассматривать как силу тока, ну а для сопротивления даже своего термина придумывать не нужно. Также в полной степени справедливо и понятие наименьшего сопротивления, фигурирующего в теплотехнике как мостики холода.

Если рассматривать произвольный материал в разрезе, достаточно легко установить путь теплового потока как на микро-, так и на макроуровне. В качестве первой модели примем бетонную стену, в которой по технологической необходимости выполнены сквозные крепления стальными стержнями произвольного сечения. Сталь проводит тепло несколько лучше бетона, поэтому мы можем выделить три основных тепловых потока:

  • через толщу бетона
  • через стальные стержни
  • от стальных стержней к бетону

Модель последнего теплового потока наиболее занимательна. Поскольку стальной стержень прогревается быстрее, то ближе к наружной части стены будет наблюдаться разница температур двух материалов. Таким образом, сталь не только «перекачивает» тепло наружу сама по себе, она также увеличивает тепловую проводимость прилегающих к ней масс бетона.

В пористых средах тепловые процессы протекают похожим образом. Практически все строительные материалы состоят из разветвлённой паутины твёрдого вещества, пространство между которым заполнено воздухом.

Таким образом, основным проводником тепла служит твёрдый, плотный материал, но за счёт сложной структуры путь, по которому распространяется теплота, оказывается больше поперечного сечения. Таким образом, второй фактор, определяющий термическое сопротивление, это неоднородность каждого слоя и ограждающей конструкции в целом.

Третьим фактором, влияющим на теплопроводность, мы можем назвать накопление влаги в порах. Вода имеет термическое сопротивление в 20–25 раз ниже, чем у воздуха, таким образом, если она наполняет поры, в целом теплопроводность материала становится даже выше, чем если бы пор вообще не было. При замерзании воды ситуация становится ещё хуже: теплопроводность может возрасти до 80 раз. Источником влаги, как правило, служит комнатный воздух и атмосферные осадки. Соответственно, три основных метода борьбы с таким явлением - это наружная гидроизоляция стен, использование парозащиты и расчёт влагонакопления, который обязательно производится параллельно прогнозированию теплопотерь.

Дифференцированные схемы расчёта

Простейший способ установить размер тепловых потерь здания - суммировать значения теплового потока через конструкции, которыми это здание образовано. Такая методика полностью учитывает разницу в структуре различных материалов, а также специфику теплового потока сквозь них и в узлах примыкания одной плоскости к другой. Такой дихотомический подход сильно упрощает задачу, ведь разные ограждающие конструкции могут существенно отличаться в устройстве систем теплозащиты. Соответственно, при раздельном исследовании определить сумму теплопотерь проще, ведь для этого предусмотрены различные способы вычислений:

  • Для стен утечки теплоты количественно равны общей площади, умноженной на отношение разницы температур к тепловому сопротивлению. При этом обязательно берётся во внимание ориентация стен по сторонам света для учёта их нагрева в дневное время, а также продуваемость строительных конструкций.
  • Для перекрытий методика та же, но при этом учитывается наличие чердачного помещения и режим его эксплуатации. Также за комнатную температуру принимается значение на 3–5 °С выше, расчётная влажность тоже увеличена на 5–10%.
  • Теплопотери через пол рассчитывают зонально, описывая пояса по периметру здания. Связано это с тем, что температура грунта под полом выше у центра здания по сравнению с фундаментной частью.
  • Тепловой поток через остекление определяется паспортными данными окон, также нужно учитывать тип примыкания окон к стенам и глубину откосов.

Q = S · (ΔT / Rt)

где:

  • Q -тепловые потери, Вт;
  • S - площадь стен, м2;
  • ΔT - разница температур внутри и снаружи помещения, ° С;
  • Rt - сопротивление теплопередаче, м2·°С/Вт.

Пример расчёта

Прежде чем перейти к демонстрационному примеру, ответим на последний вопрос: как правильно рассчитать интегральное термическое сопротивление сложных многослойных конструкций? Это, конечно, можно сделать вручную, благо, что в современном строительстве используется не так много типов несущих оснований и систем утепления. Однако учесть при этом наличие декоративной отделки, интерьерной и фасадной штукатурки, а также влияние всех переходных процессов и прочих факторов достаточно сложно, лучше воспользоваться автоматизированными вычислениями. Один из лучших сетевых ресурсов для таких задач - smartcalc.ru, который дополнительно составляет диаграмму смещения точки росы в зависимости от климатических условий.

Для примера возьмём произвольное здание, изучив описание которого читатель сможет судить о наборе исходных данных, необходимых для расчёта. Имеется одноэтажный дом правильной прямоугольной формы размерами 8,5х10 м и высотой потолков 3,1 м, расположенный в Ленинградской области.

В доме выполнен неутеплённый пол по грунту досками на лагах с воздушным зазором, высота пола на 0,15 м превышает отметку планирования грунта на участке. Материал стен - шлаковый монолит толщиной 42 см с внутренней цементно-известковой штукатуркой толщиной до 30 мм и наружной шлаково-цементной штукатуркой типа «шуба» толщиной до 50 мм. Общая площадь остекления - 9,5 м2, в качестве окон использован двухкамерный стеклопакет в теплосберегающем профиле с усреднённым термическим сопротивлением 0,32 м2·°С/Вт.

Перекрытие выполнено на деревянных балках: снизу оштукатурено по дранке, заполнено доменным шлаком и сверху укрыто глиняной стяжкой, над перекрытием - чердак холодного типа. Задача расчёта теплопотерь - формирование системы теплозащиты стен.

Пол

Первым делом определяются тепловые потери через пол. Поскольку их доля в общем оттоке тепла наименьшая, а также по причине большого числа переменных (плотность и тип грунта, глубина промерзания, массивность фундамента и т. д.), расчёт теплопотерь проводится по упрощённой методике с использованием приведённого сопротивления теплопередаче. По периметру здания, начиная от линии контакта с поверхностью земли, описывается четыре зоны - опоясывающих полосы шириной по 2 метра.

Для каждой из зон принимается собственное значение приведённого сопротивления теплопередаче. В нашем случае имеется три зоны площадью по 74, 26 и 1 м2. Пусть вас не смущает общая сумма площадей зон, которая больше площади здания на 16 м2, причина тому - двойной пересчёт пересекающихся полос первой зоны в углах, где теплопотери значительно выше по сравнению с участками вдоль стен. Применяя значения сопротивления теплопередаче в 2,1, 4,3 и 8,6 м2·°С/Вт для зон с первой по третью, мы определяем тепловой поток через каждую зону: 1,23, 0,21 и 0,05 кВт соответственно.

Стены

Используя данные о местности, а также материалы и толщину слоёв, которыми образованы стены, на упомянутом выше сервисе smartcalc.ru нужно заполнить соответствующие поля. По результатам расчёта сопротивление теплопередаче оказывается равным 1,13 м2·°С/Вт, а тепловой поток через стену - 18,48 Вт на каждом квадратном метре. При общей площади стен (за вычетом остекления) в 105,2 м2 общие теплопотери через стены составляют 1,95 кВт/ч. При этом потери тепла через окна составят 1,05 кВт.

Перекрытие и кровля

Расчёт теплопотерь через чердачное перекрытие также можно выполнить в онлайн-калькуляторе, выбрав нужный тип ограждающих конструкций. В результате сопротивление перекрытия теплопередаче составляет 0,66 м2·°С/Вт, а потери тепла - 31,6 Вт с квадратного метра, то есть 2,7 кВт со всей площади ограждающей конструкции.

Итого суммарные теплопотери согласно расчётам составляют 7,2 кВт·ч. При достаточно низком качестве строительных конструкций здания этот показатель очевидно сильно ниже реального. На самом деле такой расчёт идеализирован, в нём не учтены специальные коэффициенты, продуваемость, конвекционная составляющая теплообмена, потери через вентиляцию и входные двери.

В действительности, из-за некачественной установки окон, отсутствия защиты на примыкании кровли к мауэрлату и плохой гидроизоляции стен от фундамента реальные теплопотери могут быть в 2 или даже 3 раза больше расчётных. Тем не менее, даже базовые теплотехнические исследования помогают определиться, будут ли конструкции строящегося дома соответствовать санитарным нормам хотя бы в первом приближении.

Напоследок дадим одну важную рекомендацию: если вы действительно хотите получить полное представление о тепловой физике конкретного здания, необходимо использовать понимание описанных в этом обзоре принципов и специальную литературу. Например, очень хорошим подспорьем в этом деле может стать справочное пособие Елены Малявиной «Теплопотери здания», где весьма подробно объяснена специфика теплотехнических процессов, даны ссылки на необходимые нормативные документы, а также приведены примеры расчётов и вся необходимая справочная информация.опубликовано

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Железобетон Бетон на гравии или щебне из природного камня Плотный силикатный бетон Керамзитобетон на керамз. песке и керамзитопенобетон Р=1800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1400 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1200 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1000 Керамзитобетон на керамз. песке и керамзитопенобетон Р=800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=500 Керамзитобетон на кварцевом песке с поризацией Р=1200 Керамзитобетон на кварцевом песке с поризацией Р=1000 Керамзитобетон на кварцевом песке с поризацией Р=800 Перлитобетон Р=1200 Перлитобетон Р=1000 Перлитобетон Р=800 Перлитобетон Р=600 Аглопоритобетон и бетоны на топливных шлаках Р=1800 Аглопоритобетон и бетоны на топливных шлаках Р=1600 Аглопоритобетон и бетоны на топливных шлаках Р=1400 Аглопоритобетон и бетоны на топливных шлаках Р=1200 Аглопоритобетон и бетоны на топливных шлаках Р=1000 Бетон на зольном гравии Р=1400 Бетон на зольном гравии Р=1200 Бетон на зольном гравии Р=1000 Полистиролбетон Р=600 Полистиролбетон Р=500 Газо- и пенобетон. газо- и пеносиликат Р=1000 Газо- и пенобетон. газо- и пеносиликат Р=900 Газо- и пенобетон. газо- и пеносиликат Р=800 Газо- и пенобетон. газо- и пеносиликат Р=700 Газо- и пенобетон. газо- и пеносиликат Р=600 Газо- и пенобетон. газо- и пеносиликат Р=500 Газо- и пенобетон. газо- и пеносиликат Р=400 Газо- и пенобетон. газо- и пеносиликат Р=300 Газо- и пенозолобетон Р=1200 Газо- и пенозолобетон Р=100 Газо- и пенозолобетон Р=800 Цементно-песчаный раствор Сложный (песок. известь. цемент) раствор Известково-песчаный раствор Цементно-шлаковый раствор P=1400 Цементно-шлаковый раствор P=1200 Цементно-перлитовый раствор P=1000 Цементно-перлитовый раствор P=800 Гипсоперлитовый раствор Поризованный гипсо­перлитовый раствор P=500 Поризованный гипсо­перлитовый раствор P=400 Плиты из гипса P=1200 Плиты из гипса P=1000 Листы гипсовые обшивочные (сухая штукатурка) Глиняный обыкновенный кирпич Силикатный кирпич P=2000 Силикатный кирпич P=1900 Силикатный кирпич P=1800 Силикатный кирпич P=1700 Силикатный кирпич P=1600 Керамический кирпич Р=1600 Керамический кирпич Р=1400 Камень керамический Р=1700 Кирпича силикатного утолщенного Р=1600 Кирпича силикатного утолщенного Р=1400 Камень силикатный Р=1400 Камень силикатный Р=1300 Гранит. гнейс и базальт Мрамор Известняк Р=2000 Известняк Р=1800 Известняк Р=1600 Известняк Р=1400 Туф Р=2000 Туф Р=1800 Туф Р=1600 Туф Р=1400 Туф Р=1200 Туф Р=1000 Сосна и ель поперек волокон Сосна и ель вдоль волокон Дуб поререк волокон Дуб вдоль волокон Фанера клееная Картон облицовочный Картон строительный многослойный Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=1000 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=800 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=400 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=200 Плиты фибролитовые и арболит на портландцементе Р=800 Плиты фибролитовые и арболит на портландцементе Р=600 Плиты фибролитовые и арболит на портландцементе Р=400 Плиты фибролитовые и арболит на портландцементе Р=300 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=175 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=150 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=125 Плиты льнокострич­ные изоляционные Плиты торфяные теплоизоляционные Р=300 Плиты торфяные теплоизоляционные Р=200 Пакля Маты минераловатные прошивные Р=125 Маты минераловатные прошивные Р=100 Маты минераловатные прошивные Р=75 Маты минераловатные прошивные Р=50 Плиты минераловатные на синтетическом связующем Р=250 Плиты минераловатные на синтетическом связующем Р=200 Плиты минераловатные на синтетическом связующем Р=175 Плиты минераловатные на синтетическом связующем Р=125 Плиты минераловатные на синтетическом связующем Р=75 Плиты пенополистирольные Р=50 Плиты пенополистирольные Р=35 Плиты пенополистирольные Р=25 Плиты пенополистирольные Р=15 Пенополиуретан Р=80 Пенополиуретан Р=60 Пенополиуретан Р=40 Плиты из резольно­фенолформальдегидного пенопласта Р=100 Плиты из резольно­фенолформальдегидного пенопласта Р=75 Плиты из резольно­фенолформальдегидного пенопласта Р=50 Плиты из резольно­фенолформальдегидного пенопласта Р=40 Плиты полистиролбетонные теплоизоляционные Р=300 Плиты полистиролбетонные теплоизоляционные Р=260 Плиты полистиролбетонные теплоизоляционные Р=230 Гравий керамзитовый Р=800 Гравий керамзитовый Р=600 Гравий керамзитовый Р=400 Гравий керамзитовый Р=300 Гравий керамзитовый Р=200 Щебень и песок из перлита вспученного Р=600 Щебень и песок из перлита вспученного Р=400 Щебень и песок из перлита вспученного Р=200 Песок для строительных работ Пеностекло и газостекло Р=200 Пеностекло и газостекло Р=180 Пеностекло и газостекло Р=160 Листы асбестоцементные плоские Р=1800 Листы асбестоцементные плоские Р=1600 Битумы нефтяные строительные и кровельные Р=1400 Битумы нефтяные строительные и кровельные Р=1200 Битумы нефтяные строительные и кровельные Р=1000 Асфальтобетон Изделия из вспученного перлита на битумном связующем Р=400 Изделия из вспученного перлита на битумном связующем Р=300 Рубероид. пергамин. толь Линолеум поливинилхлоридный многослойный Р=1800 Линолеум поливинилхлоридный многослойный Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1800 Линолеум поливинилхлоридный на тканевой подоснове Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1400 Сталь стержневая арматурная Чугун Алюминий Медь Стекло оконное

Расчет теплопотерь дома

Дом теряет тепло через ограждающие конструкции (стены, окна, крыша, фундамент), вентиляцию и канализацию. Основные потери тепла идут через ограждающие конструкции — 60-90% от всех теплопотерь.

Расчет теплопотерь дома нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме. Вот пример расчёта для газового котла и электрического . Также можно благодаря расчётам провести анализ финансовой эффективности утепления, т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя.

Теплопотери через ограждающие конструкции

Приведу пример расчета для внешних стен двухэтажного дома.
1) Вычисляем сопротивление теплопередаче стены , деля толщину материала на его коэффициент теплопроводности. Например, если стена построена из тёплой керамики толщиной 0,5 м с коэффициентом теплопроводности 0,16 Вт/(м×°C), то делим 0,5 на 0,16:

0,5 м / 0,16 Вт/(м×°C) = 3,125 м 2 ×°C/Вт

Коэффициенты теплопроводности строительных материалов можно взять .

2) Вычисляем общую площадь внешних стен. Приведу упрощённый пример квадратного дома:

(10 м ширина × 7 м высота × 4 стороны) - (16 окон × 2,5 м 2) = 280 м 2 - 40 м 2 = 240 м 2

3) Делим единицу на сопротивление теплопередаче, тем самым получая теплопотери с одного квадратного метра стены на один градус разницы температуры.

1 / 3,125 м 2 ×°C/Вт = 0,32 Вт / м 2 ×°C

4) Cчитаем теплопотери стен. Умножаем теплопотери с одного квадратного метра стены на площадь стен и на разницу температур внутри дома и снаружи. Например, если внутри +25°C, а снаружи -15°C, то разница 40°C.

0,32 Вт / м 2 ×°C × 240 м 2 × 40 °C = 3072 Вт

Вот это число и является теплопотерей стен. Измеряется теплопотеря в ваттах, т.е. это мощность теплопотери.

5) В киловатт-часах удобнее понимать смысл теплопотерь. За 1 час через наши стены при разнице температур в 40°C уходит тепловой энергии:

3072 Вт × 1 ч = 3,072 кВт×ч

За 24 часа уходит энергии:

3072 Вт × 24 ч = 73,728 кВт×ч


Понятное дело, что за время отопительного периода погода разная, т.е. разница температур всё время меняется. Поэтому, чтобы вычислить теплопотери за весь отопительный период, нужно в пункте 4 умножать на среднюю разницу температур за все дни отопительного периода.

Например, за 7 месяцев отопительного периода средняя разница температур в помещении и на улице была 28 градусов, значит теплопотери через стены за эти 7 месяцев в киловатт-часах:

0,32 Вт / м 2 ×°C × 240 м 2 × 28 °C × 7 мес × 30 дней × 24 ч = 10838016 Вт×ч = 10838 кВт×ч

Число вполне «осязаемое». Например, если бы отопление было электрическое, то можно посчитать сколько бы ушло денег на отопление, умножив полученное число на стоимость кВт×ч. Можно посчитать сколько ушло денег на отопление газом, вычислив стоимость кВт×ч энергии от газового котла. Для этого нужно знать стоимость газа, теплоту сгорания газа и КПД котла.

Кстати, в последнем вычислении вместо средней разницы температур, количества месяцев и дней (но не часов, часы оставляем), можно было использовать градусо-сутки отопительного периода — ГСОП, некоторая информация . Можно найти уже посчитанные ГСОП для разных городов России и перемножать теплопотери с одного квадратного метра на площадь стен, на эти ГСОП и на 24 часа, получив теплопотери в кВт*ч.

Аналогично стенам нужно посчитать значения теплопотерь для окон, входной двери, крыши, фундамента. Потом всё просуммировать и получится значение теплопотерь через все ограждающие конструкции. Для окон, кстати, не нужно будет узнавать толщину и теплопроводность, обычно уже есть готовое посчитанное производителем сопротивление теплопередаче стеклопакета . Для пола (в случае плитного фундамента) разница температур не будет слишком большой, грунт под домом не такой холодный, как наружный воздух.

Теплопотери через вентиляцию

Примерный объем имеющегося воздуха в доме (объём внутренних стен и мебели не учитываю):

10 м х10 м х 7 м = 700 м 3

Плотность воздуха при температуре +20°C 1,2047 кг/м 3 . Удельная теплоемкость воздуха 1,005 кДж/(кг×°C). Масса воздуха в доме:

700 м 3 × 1,2047 кг/м 3 = 843,29 кг

Допустим, весь воздух в доме меняется 5 раз в день (это примерное число). При средней разнице внутренней и наружной температур 28 °C за весь отопительный период на подогрев поступающего холодного воздуха будет в среднем в день тратится тепловой энергии:

5 × 28 °C × 843,29 кг × 1,005 кДж/(кг×°C) = 118650,903 кДж

118650,903 кДж = 32,96 кВт×ч (1 кВт×ч = 3600 кДж)

Т.е. во время отопительного периода при пятикратном замещении воздуха дом через вентиляцию будет терять в среднем в день 32,96 кВт×ч тепловой энергии. За 7 месяцев отопительного периода потери энергии будут:

7 × 30 × 32,96 кВт×ч = 6921,6 кВт×ч

Теплопотери через канализацию

Во время отопительного периода поступающая в дом вода довольно холодная, допустим, она имеет среднюю температуру +7°C. Нагрев воды требуется, когда жильцы моют посуду, принимают ванны. Также частично нагревается вода от окружающего воздуха в бачке унитаза. Всё полученное водой тепло жильцы смывают в канализацию.

Допустим, что семья в доме потребляет 15 м 3 воды в месяц. Удельная теплоёмкость воды 4,183 кДж/(кг×°C). Плотность воды 1000 кг/м 3 . Допустим, что в среднем поступающая в дом вода нагревается до +30°C, т.е. разница температур 23°C.

Соответственно в месяц теплопотери через канализацию составят:

1000 кг/м 3 × 15 м 3 × 23°C × 4,183 кДж/(кг×°C) = 1443135 кДж

1443135 кДж = 400,87 кВт×ч

За 7 месяцев отопительного периода жильцы выливают в канализацию:

7 × 400,87 кВт×ч = 2806,09 кВт×ч

Заключение

В конце нужно сложить полученные числа теплопотерь через ограждающие конструкции, вентиляцию и канализацию. Получится примерное общее число теплопотерь дома.

Надо сказать, что теплопотери через вентиляцию и канализацию довольно стабильные, их трудно уменьшить. Не будете же вы реже мыться под душем или плохо вентилировать дом . Хотя частично теплопотери через вентиляцию можно снизить с помощью рекуператора.

Если я где-то допустил ошибку, напишите в комментарии, но вроде всё перепроверил несколько раз. Надо сказать, что есть значительно более сложные методики расчета теплопотерь, там учитываются дополнительные коэффициенты, но их влияние незначительное.

Дополнение.
Расчет теплопотерь дома также можно сделать с помощью СП 50.13330.2012 (актуализированная редакция СНиП 23-02-2003). Там есть приложение Г «Расчет удельной характеристики расхода тепловой энергии на отопление и вентиляцию жилых и общественных зданий», сам расчет будет значительно сложнее, там используется больше факторов и коэффициентов.


Показаны 25 последних комментариев. Показать все комментарии (54).





















Андрей Владимирович (11.01.2018 14:52)
В целом все отлично для простых смертных. Единственное я бы посоветовал, для тех кто любит указывать на неточности, в начале статьи указать более полную формулу
Q=S*(tвн-tнар)*(1+∑β)*n/Rо и объяснить,что (1+∑β)*n с учетом всех коэффициентов будет незначительно отличаться от 1 и не может грубо исказить расчет теплопотерь всей ограждающей конструкции, т.е. берем за основу формулу Q=S*(tвн-tнар)*1/Rо. С расчетом теплопотерь вентиляции не согласен, считаю по другому.Я бы высчитал общую теплоемкость всего объема, а затем умножил на реальную кратность. Удельную теплоемкость воздуха я бы все таки взял морозного (греть то будем уличный воздух), а она будет прилично выше. Да и теплоемкость воздушной смеси лучше взять сразу в Вт, равна 0.28 Вт / (кг °С).


Энергоэффективная реконструкция здания поможет сэкономить тепловую энергию и повысить комфортность жизни. Наибольший потенциал экономии заключается в хорошей теплоизоляции наружных стен и крыши. Самый простой способ оценить возможности эффективного ремонта – это потребление тепловой энергии. Если в год потребляется более 100 кВт ч электроэнергии (10 м³ природного газа) на квадратный метр отапливаемой площади, включая площадь стен, то энергосберегающий ремонт может быть выгодным.

Потери тепла через внешнюю оболочку

Основная концепция энергосберегающего здания – это сплошной слой теплоизоляции над нагретой поверхностью контура дома.

  1. Крыша. С толстым слоем теплоизоляции потери тепла через крышу можно уменьшить;

Важно! В деревянных конструкциях теплозащитное уплотнение крыши затруднено, так как древесина набухает и может повреждаться от большой влажности.

  1. Стены. Как и с крышей, потери тепла снижаются при применении специального покрытия. В случае внутренней теплоизоляции стен существует риск того, что конденсат будет собираться за изоляцией, если влажность в помещении слишком высокая;

  1. Пол или подвал. По практическим соображениям тепловая изоляция производится изнутри здания;
  2. Термические мосты. Тепловые мосты представляют собой нежелательные охлаждающие ребра (теплопроводники) снаружи здания. Например, бетонный пол, который одновременно является балконным полом. Многие тепловые мосты находятся в области почвы, парапетах, оконных и дверных рамах. Существуют также временные тепловые мосты, если детали стен закреплены металлическими элементами. Термомосты могут составлять значительную часть потерь тепла;
  3. Окна. За последние 15 лет теплоизоляция оконного стекла улучшилась в 3 раза. Сегодняшние окна обладают специальным отражающим слоем на стеклах, что уменьшает потери излучения, это одно,- и двухкамерные стеклопакеты;
  4. Вентиляция. Обычное здание имеет воздушные утечки, особенно в области окон, дверей и на крыше, что обеспечивает необходимый воздухообмен. Однако в холодное время года это вызывает значительные теплопотери дома от выходящего нагретого воздуха. Хорошие современные здания достаточно воздухонепроницаемы, и необходимо регулярно вентилировать помещения, открывая окна на несколько минут. Чтобы уменьшить потери тепла за счет вентиляции, все чаще устанавливаются комфортные вентиляционные системы. Этот вид теплопотерь оценивается в 10-40%.

Термографические съемки в здании с плохой изоляцией дают представление о том, как много тепла теряется. Это очень хороший инструмент для контроля качества ремонта или нового строительства.

Способы оценки теплопотерь дома

Существуют сложные методики расчетов, учитывающие различные физические процессы: конвекционный обмен, излучение, но они часто являются излишними. Обычно используются упрощенные формулы, а при необходимости можно добавить к полученному результату 1-5%. Ориентация здания учитывается в новых постройках, но солнечное излучение также не влияет значительно на расчет теплопотерь.

Важно! При применении формул для расчетов потерь тепловой энергии всегда учитывается время нахождения людей в том или ином помещении. Чем оно меньше, тем меньшие температурные показатели надо брать за основу.

  1. Усредненные величины. Самый приблизительный метод, не обладает достаточной точностью. Существуют таблицы, составленные для отдельных регионов с учетом климатических условий и средних параметров здания. Например, для конкретной местности указывается значение мощности в киловаттах, необходимое для нагрева 10 м² площади помещения с потолками высотой 3 м и одним окном. Если потолки ниже или выше, и в комнате 2 окна, показатели мощности корректируются. Этот метод совершенно не учитывает степень теплоизоляции дома и не даст экономии тепловой энергии;
  2. Расчет теплопотерь ограждающего контура здания. Суммируется площадь внешних стен за вычетом размеров площадей окон и дверей. Дополнительно находится площадь крыши с полом. Дальнейшие расчеты ведутся по формуле:

Q = S x ΔT/R, где:

  • S – найденная площадь;
  • ΔT – разность между внутренней и наружной температурами;
  • R – сопротивление передаче тепла.

Результат, полученный для стен, пола и крыши, объединяется. Затем добавляются вентиляционные потери.

Важно! Такой подсчет теплопотерь поможет определиться с мощностью котла для здания, но не позволит рассчитать покомнатное количество радиаторов.

  1. Расчет теплопотерь по комнатам. При использовании аналогичной формулы рассчитываются потери для всех комнат здания по отдельности. Затем находятся теплопотери на вентиляцию путем определения объема воздушной массы и примерного количества раз в день ее смены в помещении.

Важно! При расчете вентиляционных потерь нужно обязательно учитывать назначение помещения. Для кухни и ванной комнаты необходима усиленная вентиляция.

Пример расчета теплопотерь жилого дома

Применяется второй способ расчета, только для внешних конструкций дома. Через них уходит до 90 процентов тепловой энергии. Точные результаты важны, чтобы выбрать необходимый котел для отдачи эффективного тепла без излишнего нагрева помещений. Также это показатель экономической эффективности выбранных материалов для теплозащиты, показывающий, как быстро можно окупить затраты на их приобретение. Расчеты упрощенные, для здания без наличия многослойного теплоизоляционного слоя.

Дом обладает площадью 10 х 12 м и высотой 6 м. Стены толщиной в 2,5 кирпича (67 см), покрытые штукатуркой, слоем 3 см. В доме 10 окон 0,9 х 1 м и дверь 1 х 2 м.

Расчет сопротивления передаче тепла стен:

  1. R = n/λ, где:
  • n – толщина стен,
  • λ – удельная теплопроводность (Вт/(м °C).

Это значение ищется по таблице для своего материала.

  1. Для кирпича:

Rкир = 0,67/0,38 = 1,76 кв.м °C/Вт.

  1. Для штукатурного покрытия:

Rшт = 0,03/0,35 = 0,086 кв.м °C/Вт;

  1. Общая величина:

Rст = Rкир + Rшт = 1,76 + 0,086 = 1,846 кв.м °C/Вт;

Вычисление площади внешних стен:

  1. Общая площадь внешних стен:

S = (10 + 12) х 2 х 6 = 264 кв.м.

  1. Площадь окон и дверного проема:

S1 = ((0,9 х 1) х 10) + (1 х 2) = 11 кв.м.

  1. Скорректированная площадь стен:

S2 = S – S1 = 264 – 11 = 253 кв.м.

Тепловые потери для стен будут определяться:

Q = S x ΔT/R = 253 х 40/1,846 = 6810,22 Вт.

Важно! Значение ΔT взято произвольно. Для каждого региона в таблицах можно отыскать среднее значение этой величины.

На следующем этапе идентичным образом высчитываются теплопотери через фундамент, окна, крышу, дверь. При вычислении показателя тепловых потерь для фундамента берется меньшая разность температур. Затем надо просуммировать все полученные цифры и получить итоговую.

Чтобы определить возможный расход электроэнергии на отопление, можно представить эту цифру в кВт ч и рассчитать ее за отопительный сезон.

Если использовать только цифру для стен, получается:

  • за сутки:

6810,22 х 24 = 163,4 кВт ч;

  • за месяц:

163,4 х 30 = 4903,4 кВт ч;

  • за отопительный сезон 7 месяцев:

4903,4 х 7 =34 323,5 кВт ч.

Когда отопление газовое, определяется расход газа, исходя из его теплоты сгорания и коэффициента полезного действия котла.

Тепловые потери на вентиляцию

  1. Найти воздушный объем дома:

10 х 12 х 6 = 720 м³;

  1. Масса воздуха находится по формуле:

М = ρ х V, где ρ – плотность воздуха (берется из таблицы).

М = 1, 205 х 720 = 867,4 кг.

  1. Надо определить цифру, сколько раз сменяется воздух во всем доме за сутки (например, 6 раз), и высчитать теплопотери на вентиляцию:

Qв = nxΔT xmx С, где С – удельная теплоемкость для воздуха, n – число раз замены воздуха.

Qв = 6 х 40 х 867,4 х 1,005 = 209217 кДж;

  1. Теперь надо перевести в Квт ч. Так как в одном киловатт-часе 3600 килоджоулей, то 209217 кДж = 58,11 кВт ч

Некоторые методики расчета предлагают взять потери тепла на вентиляцию от 10 до 40 процентов общих теплопотерь, не высчитывая их по формулам.

Для облегчения расчетов теплопотерь дома есть калькуляторы онлайн, где можно вычислить результат для каждой комнаты или дома целиком. В предлагаемые поля просто вводятся свои данные.

Видео

Похожие публикации