Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

В чем заключаются преимущества qpsk. Цифровая фазовая модуляция: BPSK, QPSK, DQPSK. Двоичная фазовая манипуляция

Фазоманипулированный сигнал имеет вид:

где и – постоянные параметры, – несущая частота.

Информация передается посредством фазы . Так как при когерентной демодуляции в приемнике имеется несущая , то путем сравнения сигнала (3.21) с несущей вычисляется текущий сдвиг фазы . Изменение фазы взаимнооднозначно связано с информационным сигналом .

Двоичная фазовая манипуляции (BPSK – Binary Phase Shift Keying)

Множеству значений информационного сигнала ставится в однозначное соответствие множество изменений фазы . При изменении значения информационного сигнала фаза радиосигнала изменяется на 180º. Таким образом, сигнал BPSK можно записать в виде

Следовательно, . Таким образом, для осуществления BPSK достаточно умножить сигнал несущей на информационный сигнал, который имеет множество значений . На выходе модулятора сигналы

, .


Рис. 3.38. Временная форма и сигнальное созвездие сигнала BPSK:

а – цифровое сообщение; б – модулирующий сигнал; в – модулированное ВЧ-колебание; г – сигнальное созвездие

Временная форма сигнала и его созвездие показаны на рис.3.38.

Подвидом семейства BPSK является дифференциальная (относительная) BPSK (DBPSK). Необходимость относительной модуляции обусловлена тем, что большинство схем восстановления несущей частоты приводят к фазовой неоднозначности восстановленной несущей. В результате восстановления может образоваться постоянный фазовый сдвиг, кратный 180º. Сравнение принимаемого сигнала с восстановленной несущей приведет в этом случае к инвертированию (изменению значений всех битов на противоположные). Этого можно избежать, если кодировать не абсолютный сдвиг фазы, а его изменение относительно значения на предыдущем битовом интервале. Например, если на текущем битовом интервале значение бита изменилось по сравнению с предыдущим, то изменяется и значение фазы модулированного сигнала на 180º, если осталось прежним, то фаза также не изменяется.

Спектральная плотность мощности сигнала BPSK совпадает с плотностью сигнала OOK за исключением отсутствия в спектре сигнала несущей частоты:

, (3,22)

Квадратурная фазовая манипуляция (QPSK – Quadrature Phase Shift Keying)

Квадратурная фазовая манипуляция является четырехуровневой фазовой манипуляцией ( =4), при которой фаза высокочастотного колебания может принимать 4 различных значения с шагом, кратным π / 2 .

Соотношение между сдвигом фазы модулированного колебания из множества и множеством символов (дибитов) цифрового сообщения устанавливается в каждом конкретном случае стандартом на радиоканал и отображается сигнальным созвездием рис.3.39. Стрелками показаны возможные переходы из одного фазового состояния в другое.

Из рисунка видно, что соответствие между значениями символов и фазой сигнала установлено таким образом, что в соседних точках сигнального созвездия значения соответствующих символов отличаются лишь в одном бите. При передаче в условиях шума наиболее вероятной ошибкой будет определение фазы соседней точки созвездия. При указанном кодировании, несмотря на то, что произошла ошибка в определении значения символа, это будет соответствовать ошибке в одном (а не двух) бите информации. Таким образом, достигается снижение вероятности ошибки на бит. Указанный способ кодирования называется кодом Грея.

Каждому значению фазы модулированного сигнала соответствует 2 бита информации, и поэтому изменение модулирующего сигнала при QPSK-модуляции происходит в 2 раза реже, чем при BPSK-модуляции при одинаковой скорости передачи информации. Известно, что спектральная плотность мощности многоуровневого сигнала совпадает со спектральной плотностью мощности бинарного сигнала при замене символьного интервала на символьный . Для четырехуровневой модуляции =4 и, следовательно, .

Спектральная плотность мощности QPSK-сигнала при модулирующем сигнале с импульсами прямоугольной формы на основании (3.22) определяется выражением:

.

Из данной формулы видно, что расстояние между первыми нулями спектральной плотности мощности сигнала QPSK равно , что в 2 раза меньше, чем для сигнала BPSK. Другими словами, спектральная эффективность квадратурной модуляции QPSK в 2 раза выше, чем бинарной модуляции ВPSK.

Сигнал QPSK можно записать в виде

где .

Сигнал QPSK можно представить в виде синфазной и квадратурной составляющих

где - синфазная составляющая - го символа,

Квадратурная модуляция и ее характеристики (QPSK, QAM)

Рассмотрим квадратурную фазовую манипуляцию (QPSK). Исходный поток данных dk(t)=d0, d1, d2,… состоит из биполярных импульсов, т.е. dk принимают значения +1 или -1 (рис. 3.5.а)), представляющие двоичную единицу и двоичный нуль. Этот поток импульсов разделяется на синфазный поток dI(t) и квадратурный - dQ(t), как показано на рис. 3.5.б).

dI(t)=d0, d2, d4,… (четные биты)

dQ(t)=d1, d3, d5,… (нечетные биты)

Удобную ортогональную реализацию сигнала QPSK можно получить, используя амплитудную модуляцию синфазного и квадратурного потоков на синусной и косинусной функциях несущей.

С помощью тригонометрических тождеств s(t) можно представить в следующем виде: s(t)=cos(2рf0t+и(t)). Модулятор QPSK, показанный на рис. 3.5.в), использует сумму синусоидального и косинусоидального слагаемых. Поток импульсов dI(t) используется для амплитудной модуляции (с амплитудой +1 или -1) косинусоиды.

Это равноценно сдвигу фазы косинусоиды на 0 или р; следовательно, в результате получаем сигнал BPSK. Аналогично поток импульсов dQ(t) модулирует синусоиду, что дает сигнал BPSK, ортогональный предыдущему. При суммировании этих двух ортогональных компонентов несущей получается сигнал QPSK. Величина и(t) будет соответствовать одному из четырех возможных сочетаний dI(t) и dQ(t) в выражении для s(t): и(t)=00, ±900 или 1800; результирующие векторы сигналов показаны в сигнальном пространстве на рис. 3.6. Так как cos(2рf0t) и sin(2рf0t) ортогональны, два сигнала BPSK можно обнаруживать раздельно. QPSK обладает рядом преимуществ перед BPSK: т.к. при модуляции QPSK один импульс передает два бита, то в два раза повышается скорость передачи данных или при той же скорости передачи данных, что и в схеме BPSK, используется в два раза меньшая полоса частот; а так же повышается помехоустойчивость, т.к. импульсы в два раза длиннее, а следовательно и больше по мощности, чем импульсы BPSK.



Рис. 3.5.

Рис. 3.6.

Квадратурную амплитудную модуляцию (KAM, QAM) можно считать логическим продолжением QPSK, поскольку сигнал QAM также состоит из двух независимых амплитудно-модулированных несущих.

При квадратурной амплитудной модуляции изменяется как фаза, так и амплитуда сигнала, что позволяет увеличить количество кодируемых бит и при этом существенно повысить помехоустойчивость. Квадратурное представление сигналов является удобным и достаточно универсальным средством их описания. Квадратурное представление заключается в выражении колебания линейной комбинацией двух ортогональных составляющих - синусоидальной и косинусоидальной (синфазной и квадратурной):

s(t)=A(t)cos(щt + ц(t))=x(t)sinщt + y(t)cosщt, где

x(t)=A(t)(-sinц(t)),y(t)=A(t)cosц(t)

Такая дискретная модуляция (манипуляция) осуществляется по двум каналам, на несущих, сдвинутых на 900 друг относительно друга, т.е. находящихся в квадратуре (отсюда и название).

Поясним работу квадратурной схемы на примере формирования сигналов четырехфазной ФМ (ФМ-4) (рис. 3.7).


Рис. 3.7.

Рис. 3.8. 16

Исходная последовательность двоичных символов длительностью Т при помощи регистра сдвига разделяется на нечетные импульсы y, которые подаются в квадратурный канал (cosщt), и четные - x, поступающие в синфазный канал (sinщt). Обе последовательности импульсов поступают на входы соответствующих формирователей манипулированных импульсов, на выходах которых образуются последовательности биполярных импульсов x(t) и y(t) с амплитудой ±Um и длительностью 2T. Импульсы x(t) и y(t) поступают на входы канальных перемножителей, на выходах которых формируются двухфазные (0, р) ФМ колебания. После суммирования они образуют сигнал ФМ-4.

На рис. 3.8. показано двухмерное пространство сигналов и набор векторов сигналов, модулированных 16-ричной QAM и изображенных точками, которые расположены в виде прямоугольной совокупности.

Из рис. 3.8. видно, что расстояние между векторами сигналов в сигнальном пространстве при QAM больше, чем при QPSK, следовательно, QAM является более помехоустойчивой по сравнению с QPSK,

Как следует из названия, quadrature phase shift keying (QPSK) – квадратурная фазовая манипуляция является модификацией двоичной фазовой манипуляции - binary phase shift keying (BPSK). Вспомните, что метод BPSK на самом деле представляет собой DSBSC модуляцию с цифровым сообщением в качестве модулирующего сигнала. Важно отметить, что при BPSK модуляции информация передается последовательно бит за битом. QPSK также является разновидностью DSBSC модуляции, однако здесь передаются по два бита в течение каждого интервала времени, не используя другую несущую частоту.

В связи с тем, что при QPSK биты передаются парами, может возникнуть иллюзия, что скорость передачи в два раза выше, чем при BPSK. На самом деле, преобразование последовательности одиночных бит в последовательность сдвоенных бит обязательно снижает скорость передачи в два раза, что не позволяет получить выигрыш в скорости.

Тогда зачем этот метод модуляции нужен? Снижение в два раза скорости передачи сигналов методом QPSK позволяет занимать в два раз меньший участок радиочастотного спектра, чем BPSK сигнал. Это дает возможность увеличить количество абонентов в канале связи.

На рисунке 1 приведена блок-схема реализации математической модели QPSK модулятора.

На входе модулятора четные биты (с номерами 0, 2, 4 и т.д.) выделяются с помощью “расщепителя бит” из потока данных и перемножаются с несущей, формируя BPSK сигнал, обозначенный как PSKI. В то же время, нечетные биты (с номерами 1, 3, 5 и т.д.) также выделяются из потока данных и перемножаются с той же несущей, сдвинутой на 90°, формируя второй BPSK сигнал, обозначенный PSK Q . В этом и заключается принцип работы QPSK модулятора.

Перед передачей QPSK сигнала два BPSK сигнала просто складываются и, поскольку они имеют одну и ту же несущую частоту, эти сигналы занимают один и тот же участок спектра. Однако, для того чтобы разделить сигналы, несущие которых сдвинуты на 90º, требуется приемник с фазовым дискриминатором.

На рисунке 2 приведена блок-схема реализации математической модели QPSK демодулятора.

В приведенной схеме демодуляцию двух BPSK сигналов независимо и одновременно осуществляют два детектора на основе умножителей. На выходах детекторов появляются пары битов исходных данных, которые с помощью компаратора очищаются от искажений, и собираются в исходную последовательность с помощью 2-разрядного параллельно-последовательного преобразователя.

Чтобы понять, каким образом каждый детектор выделяет только один BPSK сигнал, а не оба вместе, вспомните, что детектирование DSBSC сигналов обладает “чувствительностью” к фазовому сдвигу. Таким образом, прием сообщения будет оптимальным, только в том случае, если несущие колебания передатчика и приемника будут точно совпадать по фазе. Важно отметить, что при фазовом рассогласовании 90º прием сообщения становится невозможным, т.к. амплитуда восстановленного сигнала становится равной нулю. Другими словами, сообщение полностью подавляется.

QPSK демодулятор данное обстоятельство превращает в преимущество. Обратите внимание, что детекторы произведения на рисунке 2 используют одну несущую, но для одного из детекторов несущая сдвинута на 90°. В этом случае один детектор восстанавливает данные из одного BPSK сигнала, одновременно подавляя другой BPSK сигнал, а второй детектор восстанавливает второй BPSK сигнал, подавляя первый BPSK сигнал.

  • При квадратурной модуляции со сдвигом QPSK (Offset QPSK ) разовые (одномоментные) фазовые перемещения сигнальной точки ограничены 90 градусами. Одновременные ее перемещения по I и Q каналам, т.е. переход на 180 градусов невозможны, что исключает перемещение сигнальной точки через нуль

Одним из недостатков канонической квадратурной фазовой модуляции является то, что при одновременной смене символов в обоих квадратурных каналах модулятора в сигнале QPSK происходит скачок фазы несущей на 180°. При формировании сигнала обычной QPSK в этот момент происходят перемещения сигнальной точки через нуль, то есть имеются перемещения сигнальной точки на 180 градусов. В момент такого перемещения происходит уменьшение амплитуды формируемого РЧ сигнала до нуля.

Подобные значительные изменения сигнала нежелательны, поскольку приводят к увеличению полосы частот сигнала. Для усиления такого сигнала, имеющего значительную динамику, требуются высоколинейные тракты передачи и, в частности, усилители мощности. Исчезновение РЧ сигнала в момент перехода сигнальной точки через нуль ухудшает и качество функционирования систем синхронизации радиооборудования.


На рисунке ниже сравнивается перемещение сигнальной точки на векторной диаграмме для первых двух символов последовательности — от состояния 11 к 01 для традиционной QPSK и для QPSK со сдвигом.

Сравнение перемещений сигнальной точки с QPSK (слева) и OQPSK (справа) для двух символов 11 01


Для обозначения OQPSK используют ряд терминов: cдвиговая QPSK, офсетная QPSK, QPSK модуляция со смещением, четырехфазная ФМ со сдвигом. Эта модуляция используется, например, в системах CDMA для организации канала связи вверх, в устройствах стандарта ZigBee.

  • Формирование OQPSK

В модуляции ОQPSK используется то же самое сигнальное кодирование, что и в QPSK. Отличие заключается в том, что перемещение от одного модуляционного состояния к другому (от одной точки в созвездии до другой) выполняется за два шага. Вначале, в тактовый момент в начале символа изменяется компонента I и после половины символа — компонента Q (или наоборот).
Для этого квадратурные компоненты информационной последовательности I(t) и Q(t) смещаются во времени на длительность одного информационного элемента Т=Ts/2, т.е. на половину длительности символа, как показано на рисунке.



Формирование сигналов QPSK и OQPSK для последовательности 110100101110010011


При таком смещении компонентных сигналов каждое изменение фазы формируемого сигнала, по очереди производимое квадратурными сигналами, определяется лишь одним элементом исходной информационной последовательности, а не одновременно двумя (дибитом), как при QPSK. В результате переходы фазы на 180° отсутствуют, так как каждый элемент исходной информационной последовательности, поступающий на вход модулятора синфазного или квадратурного канала, может вызвать изменение фазы лишь на 0, +90° или -90°.

Резкие фазовые перемещения сигнальной точки при формировании сигнала OQPSK происходят вдвое чаще по сравнению с QPSK, так как компонентные сигналы не изменяются одновременно, но они нерезкие. Другими словами, величина фазовых переходов является в OQPSK меньшей по сравнению с QPSK, но частота их вдвое больше.



Частота фазовых переходов сигналов QPSK и OQPSK для повторяющейся битовой последовательности 1101


В традиционной схеме квадратурного модулятора формирование сигнала QPSK можно получить, применив в одном из управляющих квадратурных каналов задержку компонентов цифрового сигнала на длительность бита Т.

Если при формировании OQPSK используется соответствующий фильтр, перемещение между различными точками сигнального созвездия может быть выполнено почти полностью по окружности (рисунок). В результате амплитуда формируемого сигнала остается почти постоянной.

Посетовал на отсутствие статей описывающей физическую сторону передачи информации по радио каналу.
Мы решили исправить это упущение и написать цикл постов о беспроводной передаче данных.
В первом из них мы расскажем о главном аспекте передачи информации посредством радиосигнала – модуляции.


Модуля́ция (лат. modulatio - размерность) - процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала.
Передаваемая информация заложена в управляющем сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим.
Модуляция может осуществляться изменением амплитуды, фазы или частоты высокочастотной несущей.
Эта техника дает несколько важных преимуществ:

  1. Позволяет сформировать радиосигнал, который будет обладать свойствами соответствующими свойствам несущей частоты. О свойствах волн разных частотных диапазонов можно почитать, например, .
  2. Позволяет использовать антенны малого размера, ведь размер антенны должен быть пропорционален длине волны.
  3. Позволяет избежать интерференции с другими радиосигналами.
Передаваемый в сетях WiMax поток данных соответствует частоте в районе 11 кГц. Если мы попробуем передавать этот низкочастотный сигнал по воздуху, нам понадобится антенна следующих размеров:


Антенна длинной 24 километра не кажется достаточно удобной в использовании.
Если же мы будем передавать этот сигнал наложенным на несущую частоту в 2.5 ГГц (частота используемая в Yota WiMax), то нам понадобится антенна длиной 12 см.

Аналоговая модуляция.

Прежде чем перейти непосредственно к цифровой модуляции, приведу картинку, иллюстрирующую аналоговую AM (амплитудную) и FM (частотную) модуляцию, которая освежит у многих школные познания:


исходный сигнал


AM (амплитудная модуляция)


FM (частотная модуляция)

Цифровая модуляция и ее типы.

В цифровой модуляции аналоговый несущий сигнал модулируется цифровым битовым потоком.
Существуют три фундаментальных типа цифровой модуляции (или шифтинга) и один гибридный:
  1. ASK – Amplitude shift keying (Амплитудная двоичная модуляция).
  2. FSK – Frequency shift keying (Частотая двоичная модуляция).
  3. PSK – Phase shift keying (Фазовая двоичная модуляция).
  4. ASK/PSK.
Упомяну, что существует традиция в русской терминологии радиосвязи использовать для модуляции цифровым сигналом термин «манипуляция».

В случае амплитудного шифтинга амплитуда сигнала для логического нуля может быть (например) в два раза меньше логической и единицы.
Частотная модуляция похожим образом представляет логическую единицу интервалом с большей частотой, чем ноль.
Фазовый шифтинг представляет «0» как сигнал без сдвига, а «1» как сигнал со сдвигом.
Да, тут мы как раз имеем дело со «сдвигом по фазе»:)
Каждая из схем имеет свои сильные и слабые стороны.
  • ASK хороша с точки зрения эффективности использования полосы частот, но подвержена искажениям при наличии шума и недостаточно эффективна с точки зрения потребляемой мощности.
  • FSK – с точностью до наоборот, энергетически эффективна, но не эффективно использует полосу частот.
  • PSK – хороша в обоих аспектах.
  • ASK/PSK – комбинация двух схем. Она позволяет еще лучше использовать полосу частот.
Самая простая PSK схема (показанная на рисунке) имеет собственное название - Binary phase-shift keying. Используется единственный сдвиг фазы между «0» и «1» - 180 градусов, половина периода.
Существуют также QPSK и 8-PSK:
QPSK использует 4 различных сдвига фазы (по четверти периода) и может кодировать 2 бита в символе (01, 11, 00, 10). 8-PSK использует 8 разных сдвигов фаз и может кодировать 3 бита в символе.

Одна из частных реализаций схемы ASK/PSK которая называется QAM - Quadrature Amplitude Modulation (квадратурная амплитудная модуляция (КАМ). Это метод объединения двух AM-сигналов в одном канале. Он позваляет удвоить эффективную пропускную способность. В QAM используется две несущих с одинаковой частотой но с разницей в фазе на четверть периода (отсюда и возникает слово квадратура). Более высокие уровни QAM строятся по тому же принципы, что и PSK. Если вас интересуют детали, вы без труда можете их найти в сети.
Теоретическая эффективность использования полосы пропускания:
Формат Эффективность (бит/с/Гц)
BPSK 1
QPSK 2
8-PSK 3
16-QAM 4
32-QAM 5
64-QAM 6
256-QAM 8

Чем сложнее схема модуляции, тем более пагубное воздействие на нее оказывают искажения при передаче, и тем меньше расстояние от базовой станции, на котором сигнал может быть успешно принят.
Теоретически возможны PSK и QAM схемы еще более высокого уровня, но на практике при их использовании возникает слишком большое количество ошибок.
Теперь, когда мы рассмотрели основные моменты, можно написать какие схемы модуляции применяются в сетях WiMax.

Модуляция сигнала в сетях WiMax.

В WiMax используется «динамическая адаптивная модуляция», которая позволяет базовой станции делать выбор между пропускной способностью и максимальным расстоянием до приемника. Чтобы увеличить дальность, базовая станция может переключиться между 64-QAM, 16-QAM и QPSK.

Заключение.

Я надеюсь, что у меня получилось соблюсти баланс между популярностью изложения и техничностью содержания. Если данная статья окажется востребованной, я продолжу работать в этом направлении. Технология WiMax имеет множество нюансов, о которых можно рассказать.

Похожие публикации