Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Чему равна эдс источника тока. Электрические цепи. Электродвижущая сила

Электрическая цепь состоит из источника тока, потребителей электроэнергии, соединительных проводов и ключа, служащего для размыкания и замыкания цепи и других элементов (рис. 1).

Рисунки, на которых изображены способы соединения электрических приборов в цепь, называются электрическими схемами . Приборы на схемах обозначаются условными знаками.

Как отмечалось, для поддержания в цепи электрического тока необходимо, чтобы на концах ее (рис. 2) существовала постоянная разность потенциалов φ A - φ B . Пусть в начальный момент времени φ A > φ B , тогда перенос положительного заряда q из точки А в точку В приведет к уменьшению разности потенциалов между ними. Для сохранения постоянной разности потенциалов необходимо перенести точно такой же заряд из B в A . Если в направлении А В заряды движутся под действием сил электростатического поля, то в направлении В А перемещение зарядов происходит против сил электростатического поля, т.е. под действием сил неэлектростатической природы, так называемых сторонних сил. Это условие выполняется в источнике тока, который поддерживает движение электрических зарядов. В большинстве источников тока движутся только электроны, в гальванических элементах - ионы обоих знаков.

Источники электрического тока могут быть различны по своей конструкции, но в любом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделение зарядов происходит под действием сторонних сил . Сторонние силы действуют лишь внутри источника тока и могут быть обусловлены химическими процессами (аккумуляторы, гальванические элементы), действием света (фотоэлементы), изменяющимися магнитными полями (генераторы) и т.д.

Любой источник тока характеризуют электродвижущей силой - ЭДС.

Электродвижущей силой ε источника тока называют физическую скалярную величину, равную работе сторонних сил по перемещению единич ного положительного заряда вдоль замкнутой цепи

Единицей электродвижущей силы в СИ является вольт (В).

ЭДС является энергетической характеристикой источника тока.

В источнике тока в процессе работы по разделению заряженных частиц происходит превращение механической, световой, внутренней и т.п. энергии в электрическую. Разделенные частицы накапливаются на полюсах источника тока (места, к которым с помощью клемм или зажимов подсоединяют потребители). Один полюс источника тока заряжается положительно, другой - отрицательно. Между полюсами источника тока создается электростатическое поле. Если полюса источника тока соединить проводником, то в такой электрической цепи возникает электрический ток. При этом характер поля меняется, оно перестает быть электростатическим.

На рисунке 3 схематично в виде сферического проводника изображена отрицательная клемма источника тока и сечение присоединенного к ней конца металлического провода. Пунктиром показаны некоторые линии напряженности поля клеммы до внесения в него провода, а стрелками - силы, действующие на свободные электроны провода, находящиеся в точках, помеченных цифрами. Электроны в различных точках поперечного сечения провода под действием кулоновских сил поля клеммы приобретают движение не только вдоль оси провода. Например, электрон, находящийся в точке 1 , оказывается вовлеченным в "токовое" движение. Но вблизи точек 2, 3, 4, 5 электроны имеют возможность скапливаться на поверхности провода. Причем поверхностное распределение электронов по длине провода не будет равномерным. Следовательно, подключение провода к клемме источника тока приведет к тому, что некоторые электроны начнут двигаться вдоль провода, а часть электронов будет скапливаться на поверхности. Неравномерное распределение электронов на его поверхности обеспечивает неэквипотенциальность этой поверхности, наличие составляющих напряженности электрического поля, направленных вдоль поверхности проводника. Это поле перераспределенных электронов самого проводника и обеспечивает упорядоченное движение других электронов. Если распределение электронов по поверхности проводника с течением времени не изменяется, то такое поле называют стационарным электрическим полем . Таким образом, главную роль в создании стационарного электрического поля играют заряды, находящиеся на полюсах источника тока. При замыкании электрической цепи взаимодействие именно этих зарядов со свободными зарядами проводника приводит к появлению на всей поверхности проводника нескомпенсированных поверхностных зарядов. Именно эти заряды создают стационарное электрическое поле внутри проводника по всей его длине. Это поле внутри проводника однородное, и линии напряженности направлены вдоль оси проводника (рис. 4). Процесс установления электрического поля вдоль проводника происходит со скоростью c ≈ 3·10 8 м/с.

Как и электростатическое поле, оно потенциально. Но между этими полями имеются существенные отличия:

1. электростатическое поле - поле неподвижных зарядов. Источником стационарного электрического поля являются движущиеся заряды, причем общее число зарядов и картина их распределения в данном пространстве с течением времени не изменяются;

2. электростатическое поле существует вне проводника. Напряженность электростатического поля всегда равна 0 внутри объема проводника, а в каждой точке внешней поверхности проводника направлена перпендикулярно к этой поверхности. Стационарное электрическое поле существует и вне и внутри проводника. Напряженность стационарного электрического поля не равна нулю внутри объема проводника, а на поверхности и внутри объема имеются составляющие напряженности, не перпендикулярные к поверхности проводника;

3. потенциалы разных точек проводника, по которому проходит постоянный ток, разные (поверхность и объем проводника не эквипотенциальны). Потенциалы всех точек поверхности проводника, находящегося в электростатическом поле, одинаковы (поверхность и объем проводника эквипотенциальны);

4. электростатическое поле не сопровождается появлением магнитного поля, а стационарное электрическое поле сопровождается его появлением и неразрывно с ним связано.

Выясним, какая величина является основной характеристикой источника тока. Любой источник тока имеет два полюса: положительный и отрицательный. Чтобы он имел эти полюсы, необходимо внутри его собрать свободные положительные заряды на одном полюсе, а отрицательные - на другом. Для этого надо совершить работу. Эту работу не могут совершить электростатические силы, так как разноименные заряды притягиваются, а их надо разъединить. Работа по накоплению зарядов производится не электростатическими силами, а сторонними. Природа последних может быть различна. Например, в генераторах электрического тока разделение зарядов осуществляется силам магнитного поля, в аккумуляторах и гальванических элементах - химическими. Исследование источников тока показывает, что отношение работы сторонней силы к заряду, накопленному на полюсе, для данного источника тока есть величина постоянная и называется электродвижущей силой источника тока:

Электродвижущая сила источника тока

Скалярная величина, являющаяся характеристикой источника тока и измеряемая работой, совершенной сторонней силой внутри его по накоплению на каждом полюсе по 1 к заряда, называется электродвижущей силой источника тока. Заряд в 1 к , накопленный на полюсе источника тока, обладает потенциальной электрической энергией, численно равной э. д. с. источника.

Единица э. д. с.


Замерим э. д. с. источника тока. К демонстрационному гальваническому элементу подключим вольтметр (рис. 75, а) * . Меняя взаимное расположение электродов в электролите, а также величину погружения их в электролит, видим, что показания вольтметра (1,02 в ) не изменяются. Э. д. с. не зависит от размера источника тока. Она зависит только от природы сторонних сил, вызывающих накопление зарядов на полюсах. Каждый источник тока имеет свою э. д. с.

* (При таком замере э. д. с. показание вольтметра будет немного меньше, чем величина э. д. с. Чем больше сопротивление катушки вольтметра по сравнению с внутренним сопротивлением источника, тем меньше будет эта разница, что и наблюдается в описываемом опыте. )

При замыкании электрической цепи источник тока образует в проводах стационарное электрическое поле и передает ему энергию, накопленную зарядами на его полюсах. За счет этой энергии стационарное поле совершает работу на образование тока, передавая ему свою энергию, которую потребитель тока преобразует в другие виды энергии.

Внутренняя часть цепи, которую составляет источник тока, как и любой проводник, обладает сопротивлением; оно называется внутренним сопротивлением источника тока r . У генератора тока внутренним сопротивлением является сопротивление обмотки якоря, у химических источников сопротивление электролита.

При замыкании цепи электрическое поле, перемещая заряд 1 к из точки А в точку В по внешнему участку цепи (рис. 75, б), совершает работу, которая численно равна напряжению U на этом участке. Достигнув полюса В, заряд 1 к должен перейти на внутренний участок цепи и переместиться на полюс А. Чтобы он снова оказался на полюсе А и имел такую же энергию Е, как и при выходе из точки А, над ним сторонние силы источника тока должны совершить работу, равную работе, затраченной на его перемещение по внешнему участку цепи, которая численно равна напряжению U на этом участке, плюс работа, затраченная на преодоление внутреннего сопротивления r источника. Последняя численно равна напряжению u на внутреннем участке цепи. Следовательно, э. д. с. источника численно равна Е = U + u. Электродвижущая сила численно равна работе, которую источник тока совершает, перемещая заряд 1 к по всей цепи .

Замерим напряжение на внешнем и внутреннем участках; цепи (рис. 75, в) * . Вольтметр А показывает напряжение на внешнем сопротивлении R, а вольтметр В - на внутреннем; сопротивлении r. Меняя величину сопротивления внешней цепи; замечаем, что при этом изменяется напряжение на участках цепи (табл. 4).

* (Щупы 1 и 2 изготовлены из толстого медного провода в хлорвиниловой изоляции, которая срезана со стороны, расположенной к середине сосуда. Щупы соприкасаются изоляцией с электродами. )


Видим, что сумма напряжений на внешнем и внутреннем участках цепи - величина постоянная (в пределах погрешностей опыта) и равна э. д. с. источника. Она показывает величину той энергии, которую источник тока в состоянии передать в электрическую цепь при перемещении по всей цепи заряда в 1 к.

Учреждение образования

«ВЫСШИЙ ГОСУДАРСТВЕННЫЙ КОЛЛЕДЖ СВЯЗИ»

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОДВИЖУЩЕЙ СИЛЫ ИСТОЧНИКА ТОКА МЕТОДОМ КОМПЕНСАЦИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ №3.3

по дисциплине

«ФИЗИКА»

для студентов всех специальностей

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОДВИЖУЩЕЙ СИЛЫ ИСТОЧНИКА ТОКА МЕТОДОМ КОМПЕНСАЦИИ

ЦЕЛЬ РАБОТЫ

Определить ЭДС не менее трех неизвестных источников.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ

1. Набор источников тока.

2. Нормальный элемент.

3. Реохорд.

4. Гальванометр.

5. Переключатели.

ЭЛЕМЕНТЫ ТЕОРИИ

Условием движения электрических зарядов в проводнике является наличие в нем электрического поля, которое создается и поддерживается особыми устройствами, получившими название источников тока .

Основной величиной, характеризующей источник тока, является его электродвижущая сила. Электродвижущей силой источника (сокращенно ЭДС) называется скалярная физическая величина – количественная мера способности источника создавать на его зажимах (полюсах) разность потенциалов. Она равна работе сторонних сил по перемещению заряженной частицы с положительным единичным зарядом от одного полюса источника к другому, т.е.

В СИ ЭДС измеряется в вольтах (В), т.е. в тех же единицах, что и напряжение.

Сторонние силы источника – это силы, которые осуществляют разделение зарядов в источнике и тем самым создают на его полюсах разность потенциалов. Эти силы могут иметь различную природу, но только не электрическую (отсюда и название).

Если электрическую цепь разделить на два участка – внешний, с сопротивлением R , и внутренний, с сопротивлением r , то ЭДС источника тока окажется равной сумме напряжений на внешнем и внутреннем участках цепи:


. (2)

По закону Ома напряжение на любом участке цепи определяется величиной протекающего тока и его сопротивлением:

Так как

, следовательно


, (3)

т.е. напряжение на полюсах источника при замкнутой цепи зависит от соотношения сопротивлений внутреннего и внешнего участков цепи. Если

, то приблизительно равно U . На этом основано приблизительное определение ЭДС при помощи вольтметра с большим сопротивлением, подключаемого к полюсам источника. Только в отсутствие тока в источнике его ЭДС будет равна напряжению на полюсах.

Величину ЭДС можно определить точно электростатическим или компенсационным методом. При измерении ЭДС электростатическим методом цепь остается разомкнутой, т.к. измерение разности потенциалов на полюсах источника проводится прибором, не потребляющим тока (электрометр, электростатический вольтметр). При измерении ЭДС компенсационным методом цепь источника замкнута, но необходимые отсчеты делаются в моменты отсутствия тока в источнике.

Компенсационный метод определения ЭДС

Сущность метода компенсации в измерении ЭДС заключается в подборе и определении напряжения на участке электростатической цепи, равного ЭДС исследуемого источника.

Схема электрической цепи для определения ЭДС методом компенсации изображена на рис.1.

Два источника ЭДС и x включены навстречу друг другу. Сопротивления R 1 и R 2 выполнены в виде однородной проволоки, натягиваемой между точками А и В , а точка С определяется скользящим контактом (при необходимости очень высокой точности измерений R 1 и R 2 представляют собой магазины сопротивлений).

Выберем положительные направления токов, как показано на рис.1, и применим к рассматриваемой схеме правила Кирхгофа. Первое правило для точек А и С дает


(4)

Второе правило для контуров А BCA и А x СА приводит к уравнениям:


(5)


(6)

Эти уравнения вполне определяют все неизвестные токи. Однако мы ограничимся частным случаем и предположим, что сопротивления R 1 и R 2 подобраны таким образом, что ток I x в цепи гальванометра G равен 0. В этом случае уравнения (4)-(6) принимают вид


,



Из двух последних уравнений находим


, (7)

где R – полное сопротивление струны, которое не зависит от положения скользящего контакта С .

Предположим теперь, что вместо источника с неизвестной ЭДС x мы включили в схему другой источник н с известной ЭДС и перемещением контакта С , а следовательно, изменением переменных сопротивлений, вновь добились компенсации (I 1 =0). Для этого вместо сопротивления r x потребовалось ввести сопротивление r н . Тогда


. (8)

Разделив почленно (7) на (8), получим


. (9)

Это равенство и лежит в основе сравнения ЭДС методом компенсации.

Отметим, что отношение сравниваемых ЭДС не зависит от внутренних сопротивлений источников и от других сопротивлений схемы, а определяется только отношением сопротивлений участка цепи, к которому поочередно подключают сравниваемые источники ЭДС. Не требуется знать и ЭДС вспомогательного источника , которая только должна быть достаточно постоянна во время измерения и больше обеих сравниваемых ЭДС и .

МЕТОДИКА ЭКСПЕРИМЕНТА И ОПИСАНИЕ УСТАНОВКИ

ЭДС гальванического элемента в данной работе определяется путем ее сравнения с ЭДС нормального элемента =1,00 В. Напряжение между электродами этого и подобных ему других нормальных элементов весьма постоянно. Поэтому они играют в электрической измерительной технике ту же роль, что и эталоны длины (метр) и массы (килограмм) при измерении механических величин.

Схема соединения приборов изображена на рис.2, где - вспомогательный источник питания; АВ – струна реохорда со скользящим контактом С ; и – нормальный и исследуемый элементы; G – гальванометр; П – двухполюсный переключатель; К – ключ, замыкающий цепь вспомогательного источника питания.

Решение равенства (9) относительно позволяет получить формулу для вычисления ЭДС исследуемого элемента


(10)

Струна АВ является однородным проводником постоянного сечения.

Сопротивления ее участков цепи R 1 и R (длиной l x и l н соответственно), входящих в (10), можно выразить как

R 1

и R 1н =

.

Подставляя эти значения в (10) , окончательно получаем расчетную формулу для определения ЭДС исследуемого источника тока


. (11)

Как видим, в этой формуле отношение сопротивлений участков струны равно отношению их соответствующих длин.

Метод компенсации практически можно осуществить при следующих условиях:

    ЭДС основного источника должна быть больше ЭДС как эталонного, так и исследуемого элементов;

2) цепь следует замыкать на малые промежутки времени, достаточные для фиксирования наличия или отсутствия тока в гальванометре.

Порядок выполнения работы

1. Собрать схему, изображенную на рис.2 (если она собрана, убедиться в ее соответствии рисунку).

2. Включить элемент в цепь гальванометра (тумблер П в верхнем положении). Перемещая контакт С АС , т.е. установления «0» на гальванометре. Измерить длину участка струны l н

3. Включить один из пяти неизвестных элементов в цепь гальванометра (тумблер П в нижнем положении). Перемещая контакт С , добиться компенсации этого элемента напряжением на участке струны АС , о чем свидетельствует установление «0» на гальванометре. Измерить длину участка струны l х , при которой осуществляется компенсация.

5. Повторить измерения, указанные в пунктах 2-4 еще несколько раз для получения более точных результатов. Рассчитать среднее значение ЭДС и погрешность результата. Результаты измерений и расчетов записать в таблицу 1 с обязательным указанием размерности всех используемых величин.

Таблица 1

№ элемента

№ опыта (i )

l н

l х

xср

| xi |

6. Окончательный результат записать в виде

, где s ‑ среднеквадратичное отклонение, вычисляемое по формуле:


,

где n – число измерений для одного элемента.

7. Повторить задания 2-7 для других элементов х . Составить для них аналогичные таблицы.

Контрольные вопросы

1. Дать определение электродвижущей силе источника. Какова ее размерность?

2. Какие силы вызывают разделение зарядов в источниках питания? Привести примеры.

3. Как можно определить значение ЭДС источника?

5. В чем сущность метода компенсации?

    Вывести расчетную формулу для определения ЭДС источника методом компенсации.

Литература

1. С.Г. Калашников. Электричество. М.: «Наука», 1977 г.

2. И.Е. Иродов. Основные законы электромагнетизма. М.: «Высшая школа», 1983 г.

Похожие публикации