Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Растения под напряжением электрическое поле планеты. Электрическое поле Земли — Источник энергии. Узнав технологию изготовления и принцип работы "электрогрядки", вы сможете сами создать это устройство по своему дизайну

Электризация почвы и урожай

В целях повышения продуктивности сельскохозяйственных растений человечество с давних пор обращается к почве. То, что электричество может повысить плодородие верхнего пахотного слоя земли, то есть усилить его способность формировать большой урожай, опытами учёных и практиков уже доказано давно. Но как это сделать лучше, как увязать электризацию почвы с существующими технологиями её обработки? Вот те проблемы, которые не решены до конца и сейчас. При этом нельзя забывать, что почва - объект биологический. И при неумелом вмешательстве в этот сложившийся организм, особенно столь мощным средством, каким является электричество, можно нанести ему непоправимый ущерб.

При электризации почвы видят, прежде всего, способ влияния на корневую систему растений. К настоящему времени накоплено много данных, показывающих, что слабый электрический ток, пропущенный через почву, стимулирует в растениях ростовые процессы. Но результат ли это прямого действия электричества на корневую систему, и через неё и на все растение, или итог физико-химических изменений в почве? Определённый шаг к пониманию проблемы сделали в свое время ленинградские учёные.

Проведенные ими опыты были весьма изощрёнными, ведь предстояло выяснить глубоко спрятанную истину. Брали небольшие полиэтиленовые трубки-камеры с отверстиями, в которые высаживали проростки кукурузы. Трубки заполняли питательным раствором с полным набором необходимых проросткам химических элементов. И через него с помощью инертных в химическом отношении платиновых электродов пропускали постоянный электрический ток величиной 5-7 мкА/кв. см. Объём раствора в камерах поддерживали на одном уровне, добавляя дистиллированную воду. Воздух, а он крайне нужен корням, систематически подавали (в виде пузырьков) из специальной газокамеры. За составом питательного раствора непрерывно следили датчики того или иного элемента - ионоселективные электроды. И по зарегистрированным изменениям делали вывод, что и в каком количестве поглощено корнями. Все другие каналы утечки химических элементов были перекрыты. Параллельно работал контрольный вариант, в котором всё было абсолютно таким же, за исключением одного - через раствор электрический ток не пропускали. И что же?

Не прошло и 3 часов с начала эксперимента, а разница между контрольным и электрическим вариантами уже выявилась. В последнем элементы питания поглощались корнями активнее. Но, возможно, дело не в корнях, а в ионах, которые под действием внешнего тока стали быстрее передвигаться в растворе? Для ответа на этот вопрос в одном из опытов предусмотрели измерение биопотенциалов проростков и в определённое время включали в «работу» гормоны роста. Почему? Да потому, что они без всякой дополнительной электростимуляции изменяют активность поглощения корнями ионов и биоэлектрическую характеристику растений.

По окончанию эксперимента авторами были сделаны следующие выводы: «Пропускание слабого электрического тока через питательный раствор, в который погружена корневая система проростков кукурузы, оказывает стимулирующее действие на поглощение растениями ионов калия и нитратного азота из питательного раствора». Значит, всё-таки электричество стимулирует деятельность корневой системы? Но как, через какие механизмы? Для полной убедительности в корневом эффекте электричества поставили ещё один опыт, в котором также был питательный раствор, были корни, теперь уже огурцов, измеряли также биопотенциалы. И в этом эксперименте работа корневой системы при электростимуляции улучшалась. Однако до разгадки путей её действия ещё далеко, хотя уже познано, что электрический ток оказывает на растение как прямое, так и косвенное воздействие, степень влияния которых определяется целым рядом факторов.

Тем временем исследования эффективности электризации почвы расширялись и углублялись. Сегодня их, как правило, проводят в теплицах или в условиях вегетационных опытов. Это и понятно, поскольку только так можно уйти от ошибок, которые невольно допускаются тогда, когда эксперименты ставились в полевых условиях, в которых невозможно наладить контроль за каждым отдельным фактором.

Весьма обстоятельные опыты с электризацией почвы в своё время в Ленинграде провёл научный работник В. А. Шустов. В слабо подзолистую суглинистую почву он добавил 30% перегноя и 10% песка и через эту массу перпендикулярно корневой системе между двумя стальными или угольными электродами (лучше себя показали последние) пропускал ток промышленной частоты плотностью 0,5 мА/кв. см. Урожай редиса вырос на 40-50%. А вот постоянный ток такой же плотности снизил сбор этих корнеплодов по сравнению с контролем. И лишь понижение его плотности до 0,01-0,13 мА/кв. см вызвало повышение урожая до уровня, полученного при использовании переменного тока. В чём тут причина?

Используя меченый фосфор, установили, что переменный ток выше указанных параметров благотворно влияет на поглощение растениями этого важного электрического элемента. Проявилось также и положительное действие постоянного тока. При его плотности 0,01 мА/кв. см получен урожай примерно равный тому, что был получен при применении переменного тока плотностью 0,5 мА/ кв. см. Кстати, из четырех испытываемых частот переменного тока (25, 50, 100 и 200 Гц) лучшей оказалась частота в 50 Гц. Если же растения прикрывали заземлёнными экранирующими сетками, то урожай овощных культур значительно снижался.

В Армянской НИИ механизации и электрификации сельского хозяйства применяли электричество для стимуляции растений табака. Изучали широкий спектр плотностей тока, пропускаемого в поперечном сечении корнеобитаемого слоя. У переменного тока он был 0,1; 0,5; 1,0; 1,6; 2,0; 2,5; 3,2 и 4,0 а/кв. м, у постоянного - 0,005; 0,01; 0,03; 0,05; 0,075; 0,1; 0,125 и 0,15 а/кв. м. В качестве питательного субстрата использовали смесь, состоящую на 50% из чернозёма, на 25% из перегноя и на 25% из песка. Наиболее оптимальными оказались плотности тока 2,5 а/кв. м для переменного и 0,1 а/кв. м для постоянного при непрерывной подаче электричества в течение полутора месяцев. При этом выход сухой массы табака в первом случае превышал контроль на 20, а во втором - на 36%.

Или вот томаты. Экспериментаторы создавали в их корнеобитаемой зоне постоянное электрическое поле. Растения развивались намного быстрее контрольных, особенно в фазу бутонизации. У них была больше площадь листовой поверхности, повысилась активность фермента пероксидазы, усиливалось дыхание. В результате прибавка урожая составила 52%, и произошло это в основном за счёт увеличения размеров плодов и их количества на одном растении.

Постоянный ток, пропускаемый через почву, благотворно влияет и на плодовые деревья. Это подметил ещё И. В. Мичурин и успешно применял его ближайший помощник И. С. Горшков, который в своей книге «Статьи по плодоводству» (Москва, Изд. Сельск. литер., 1958 г.) посвятил данному вопросу целую главу. В указанном случае плодовые деревья быстрее проходят детский (учёные говорят «ювенильный») этап развития, повышается их холодостойкость и устойчивость к другим неблагоприятным факторам среды, в итоге увеличивается урожайность. Чтобы не быть голословным, приведу конкретный пример. Когда через почву, на которой росли молодые хвойные и лиственные деревья, непрерывно в течение светлого периода суток пропускали постоянный ток, в их жизни происходил целый ряд примечательных явлений. В июне-июле опытные деревья отличались более интенсивным фотосинтезом, что явилось результатом стимулирования электричеством роста биологической активности почвы, повышения скорости движения почвенных ионов, лучшего поглощения их корневыми системами растений. Более того, ток, протекающий в почве, создавал большую разность потенциалов между растениями и атмосферой. А это, как уже говорилось, фактор сам по себе благоприятный для деревьев, особенно молодых. В следующем опыте, проведённом под плёночным укрытием, при непрерывном пропускании постоянного тока фитомасса однолетних сеянцев сосны и лиственницы увеличилась на 40-42%. Если бы такой темп прироста сохранить в течение нескольких лет, то нетрудно представить, какой огромной выгодой бы это обернулось.

Интересный опыт по влиянию электрического поля между растениями и атмосферой провели учёные Института физиологии растений АН СССР. Они установили, что фотосинтез идёт тем быстрее, чем больше разность потенциалов между растениями и атмосферой. Так, например, если около растения держать отрицательный электрод и постепенно увеличивать напряжение (500, 1000, 1500, 2500 В), то интенсивность фотосинтеза будет возрастать. Если же потенциалы растения и атмосферы близки, то растение перестает поглощать углекислый газ.

Нужно отметить, что опытов по электризации почвы проведено очень много, как у нас, так и за рубежом. Установлено, что это воздействие изменяет передвижение различных видов почвенной влаги, способствует размножению ряда трудноусвояемых для растений веществ, провоцирует самые разнообразные химические реакции, в свою очередь изменяющие реакцию почвенного раствора. При электровоздействии на почву слабыми токами в ней лучше развиваются микроорганизмы. Определены и параметры электрического тока, оптимальные для разнообразных почв: от 0,02 до 0,6 мА/кв. см для постоянного тока и от 0,25 до 0,5 мА/кв. см для переменного тока. Однако на практике ток указанных параметров даже на аналогичных почвах может и не дать прибавки урожая. Это объясняется тем многообразием факторов, которые возникают при взаимодействии электричества с почвой и возделываемыми на ней растениями. В почве, принадлежащей к одной и той же классификационной категории, в каждом конкретном случае могут быть совершенно различные концентрации водорода, кальция, калия, фосфора, других элементов, могут быть несхожие условия аэрации, а, следовательно, и прохождение собственных окислительно-восстановительных процессов и т.д. Наконец, не надо забывать о постоянно изменяющихся параметрах атмосферного электричества и земного магнетизма. Многое также зависит от применяемых электродов и способ электровоздействия (постоянное, кратковременное и т.д.). Короче говоря, надо в каждом конкретном случае пробовать и подбирать, пробовать и подбирать...

Вследствие этих и ряда других причин электризация почвы, хотя и способствует повышению урожайности сельскохозяйственных растений, и нередко довольно значительному, но широкого практического применения пока ещё не приобрела. Понимая это, учёные ищут новые подходы к данной проблеме. Так, предложена обработка почвы электрическим разрядом для фиксации в ней азота - одного из главных «блюд» для растений. Для этого в почве и в атмосфере создают высоковольтный маломощный непрерывный дуговой разряд переменного тока. И там, где он «работает», часть атмосферного азота переходит в нитратные формы, усвояемые растениями. Однако происходит это, конечно, на небольшом участке поля и достаточно затратно.

Более эффективен другой способ увеличения количества усвояемых форм азота в почве. Он заключается в применение кистевого электрического разряда, создаваемого непосредственно в пахотном слое. Кистевой разряд - это одна из форм газового разряда, возникающая при атмосферном давлении на металлическом остриё, к которому подведён высокий потенциал. Величина потенциала зависит от положения другого электрода и от радиуса кривизны острия. Но в любом случае он должен измеряться десятком киловольт. Тогда на кончике острия возникает кистеобразный пучок перемежающихся и быстро смешивающихся электрических искр. Такой разряд вызывает образование в почве большого количества каналов, в которые проходит значительное количество энергии и, как показали лабораторные и полевые эксперименты, способствует увеличению в почве усвояемых растениями форм азота и, как следствие, повышению урожая.

Ещё более эффективно использование при обработке почвы электрогидравлического эффекта, заключающегося в создании электрического разряда (электрической молнии) в воде. Если поместить в сосуд с водой порцию почвы и произвести в этом сосуде электрический разряд, то произойдёт дробление частиц почвы с высвобождением большого количества необходимых для растений элементов и связывание атмосферного азота. Такое воздействие электричества на свойства почвы и на воду очень благотворно сказывается на росте растений и их урожайности. Учитывая большую перспективу этого способа электризации почвы, я попробую рассказать о нем более подробно в отдельной статье.

Весьма любопытен другой способ электризации почвы - без внешнего источника тока. Это направление развивает кировоградский исследователь И. П. Иванько. Он рассматривает почвенную влагу как своеобразный электролит, находящийся под воздействием электромагнитного поля Земли. На границе раздела металл-электролит, в данном случае металлопочвенный раствор, возникает гальвано-электрический эффект. В частности, при нахождении в почве стального провода на его поверхности в результате окислительно-восстановительных реакций образуются катодные и анодные зоны, происходит постепенное растворение металла. В итоге на межфазных границах возникает разность потенциалов, достигающая 40-50 мВ. Образуется она и между двумя проводами, уложенными в почве. Если провода находятся, например, на расстоянии 4 м, то разность потенциалов составляет 20-40 мВ, но сильно изменяется в зависимости от влажности и температуры почвы, её механического состава, количества удобрений и других факторов.

Электродвижущую силу между двумя проводами в почве автор назвал «агро-ЭДС», ему удалось не только её измерить, но и объяснить общие закономерности, по которым она образуется. Характерно, что в определённые периоды, как правило, при смене фаз Луны и изменении погоды, стрелка гальванометра, при помощи которого замеряют возникающий между проводами ток, резко меняет положение - сказывается сопровождающие подобные явления перемены в состоянии электромагнитного поля Земли, передающиеся почвенному «электролиту».

Исходя из этих представлений, автор предложил создавать электролизуемые агрономические поля. Для чего специальный тракторный агрегат щелевателем-проводоукладчиком распределяет сматываемый с барабана стальной провод диаметром 2,5 мм по дну щели на глубину 37 см. Пройдя гон, тракторист включает гидросистему на подъём, рабочий орган выглубляется из почвы, а провод обрубается на высоте 25 см от поверхности почвы. Через 12 м по ширине поля операция повторяется. Заметим, что размещенная таким образом проволока не мешает проведению обычных агротехнических работ. Ну, а если потребуется, то стальные проводки легко удалить из почвы при помощи узла размотки и намотки мерной проволоки.

Экспериментами установлено, что при таком способе на электродах наводится «агро-ЭДС» величиной 23-35 мВ. Поскольку электроды имеют разную полярность, между ними через влажную почву возникает замкнутая электрическая цепь, по которой течёт постоянный ток плотностью от 4 до 6 мкА/кв. см анода. Проходя через почвенный раствор как через электролит, этот ток поддерживает в плодородном слое процессы электрофореза и электролиза, благодаря чему необходимые растениям химические вещества почвы переходят из трудноусвояемых в легкоусвояемые формы. Кроме того, под воздействием электрического тока все растительные остатки, семена сорняков, отмершие животные организмы быстрее гумифицируются, что ведёт к росту плодородия почвы.

Как видно, в данном варианте электризация почвы возникает без искусственного источника энергии, лишь в результате действия электромагнитных сил нашей планеты.

Между тем за счёт этой «даровой» энергии в экспериментах получена весьма высокая прибавка урожая зерна - до 7 ц/га. Учитывая простоту, доступность и неплохую эффективность предложенной технологии электризации, садоводы-любители, заинтересовавшиеся этой технологией, могут прочесть о ней более подробно в статье И. П. Иванько «Использование энергии геомагнитных полей», опубликованной в журнале «Механизация и электрификация сельского хозяйства» № 7 за 1985 г. При внедрении указанной технологии автор советует располагать проволоки в направлении с севера на юг, а возделываемые над ними сельскохозяйственные растения с запада на восток.

Данной статьей я попытался заинтересовать садоводов-любителей в применении в процессе возделывания различных растений помимо известных технологий ухода за почвой электротехнологии. Относительная простота большинства способов электризации почвы, доступная для лиц, получивших знания по физике даже в объёме программы средней школы, делает возможным их применение и проверку практически на каждом садовом участке при выращивании овощей, плодовых и ягодных, цветочно-декоративных, лекарственных и других растений. Я тоже экспериментировал с электризацией почвы постоянным током в 60-е годы прошлого века при выращивании сеянцев и саженцев плодовых и ягодных культур. В большинстве опытов наблюдалась стимуляция роста, причем, иногда очень значительная, особенно при выращивании сеянцев вишни и сливы. Так что, уважаемые садоводы-любители, попробуйте проверить какой-нибудь способ электризации почвы в предстоящем сезоне на какой-либо культуре. А вдруг у вас всё получится хорошо, и всё это может оказаться одной из золотых жил?

В. Н. Шаламов

Глобальный конденсатор

В природе существует совершенно уникальный альтернативный источник энергии, экологически чистый, возобновляемый, простой в использовании, который до сих пор нигде не используется. Источник этот — атмосферный электрический потенциал.

Наша планета в электрическом отношении представляет собой подобие сферического конденсатора, заряженного примерно до 300 000 вольт. Внутренняя сфера — поверхность Земли — заряжена отрицательно, внешняя сфера — ионосфера — положительно. Изолятором служит атмосфера Земли (Рис.1).

Через атмосферу постоянно протекают ионные и конвективные токи утечки конденсатора, которые достигают многих тысяч ампер. Но несмотря на это разность потенциалов между обкладками конденсатора не уменьшается.

А это значит, что в природе существует генератор (G), который постоянно восполняет утечку зарядов с обкладок конденсатора. Таким генератором является магнитное поле Земли , которое вращается вместе с нашей планетой в потоке солнечного ветра.

Чтобы воспользоваться энергией этого генератора, нужно каким то образом подключит к нему потребитель энергии.

Подключиться к отрицательному полюсу — Земле — просто. Для этого достаточно сделать надежное заземление. Подключение к положительному полюсу генератора — ионосфере — является сложной технической задачей, решением которой мы и займемся.

Как и в любом заряженном конденсаторе, в нашем глобальном конденсаторе существует электрическое поле. Напряженность этого поля распределяется очень неравномерно по высоте: она максимальна у поверхности Земли и составляет примерно 150 В/м. С высотой она уменьшается приблизительно по закону экспоненты и на высоте 10 км составляет около 3% от значения у поверхности Земли.

Таким образом, почти всё электрическое поле сосредоточено в нижнем слое атмосферы, у поверхности Земли. Вектор напряженности эл. поля Земли E направлен в общем случае вниз. В своих рассуждениях мы будем использовать только вертикальную составляющую этого вектора. Электрическое поле Земли, как и любое электрическое поле, действует на заряды с определенной силой F, которая называется кулоновской силой. Если умножить величину заряда на напряженность эл. поля в этой точке, то получим как раз величину кулоновской силы Fкул.. Эта кулоновская сила толкает положительные заряды вниз, к земле, а отрицательные — вверх, в облака.

Проводник в электрическом поле

Установим на поверхности Земли металлическую мачту и заземлим ее. Внешнее электрическое поле моментально начнет двигать отрицательные заряды (электроны проводимости) вверх, к верхушке мачты, создавая там избыток отрицательных зарядов. А избыток отрицательных зарядов на верхушке мачты создаст свое электрическое поле, направленное навстречу внешнему полю. Наступает момент, когда эти поля сравняются по величине, и движение электронов прекращается. Это значит, что в проводнике, из которого сделана мачта, электрическое поле равно нулю.

Так работают законы электростатики.


Положим высота мачты h = 100 м., средняя напряженность по высоте мачты Еср. = 100 В/м.

Тогда разность потенциалов (э.д.с.) между Землей и верхушкой мачты будет численно равна: U = h * Eср. = 100 м * 100 В/м = 10 000 вольт. (1)

Это — совершенно реальная разность потенциалов, которую можно измерить. Правда, обычным вольтметром с проводами измерить ее не удастся — в проводах возникнет точно такая же э.д.с., как и в мачте, и вольтметр покажет 0. Эта разность потенциалов направлена противоположно вектору напряженности Е электрического поля Земли и стремится вытолкнуть электроны проводимости из верхушки мачты вверх, в атмосферу. Но этого не происходит, электроны не могут покинуть проводник. У электронов недостаточно энергии для того, чтобы покинуть проводник, из которого сделана мачта. Эта энергия называется работой выхода электрона из проводника и для большинства металлов она составляет менее 5 электронвольт — величина весьма незначительная. Но электрон в металле не может приобрести такую энергию между столкновениями с кристаллической решеткой металла и поэтому остается на поверхности проводника.

Возникает вопрос: что произойдет с проводником, если мы поможем избыточным зарядам на верхушке мачты покинуть этот проводник?

Ответ простой: отрицательный заряд на верхушке мачты уменьшится, внешнее электрическое поле внутри мачты уже не будет скомпенсировано и начнет снова двигать электроны проводимости вверх к верхнему концу мачты. Значит, по мачте потечет ток. И если нам удастся постоянно удалять избыточные заряды с верхушки мачты, в ней постоянно будет течь ток. Теперь нам достаточно разрезать мачту в любом, удобном нам месте и включить туда нагрузку (потребитель энергии) — и электростанция готова.


На рис.3 показана принципиальная схема такой электростанции. Под действием электрического поля Земли электроны проводимости из земли движутся по мачте через нагрузку и далее вверх по мачте к эмиттеру, который освобождает их из поверхности металла верхушки мачты и отправляет их в виде ионов в свободное плавание по атмосфере. Электрическое поле Земли в полном соответствии с законом Кулона поднимает их вверх до тех пор, пока они на своем пути не будут нейтрализованы положительными ионами, которые всегда опускаются вниз из ионосферы под действием того же поля.

Таким образом, мы замкнули электрическую цепь между обкладками глобального электрического конденсатора, который в свою очередь подключен к генератору G, и включили в эту цепь потребитель энергии (нагрузку). Остается решить один важный вопрос: каким образом удалять избыточные заряды с верхушки мачты?

Конструкция эмиттера

Простейшим эмиттером может служить плоский диск из листового металла с множеством иголок, расположенных по его окружности. Он «насажен» на вертикальную ось и приведен во вращение.

При вращении диска набегающий влажный воздух срывает электроны с его иголок и таким образом освобождает их из металла.

Электростанция с подобным эмиттером уже существует. Правда, ее энергию никто не использует, с нею борются.
Это — вертолет, несущий на длинном металлическом стропе металлическую конструкцию при монтаже высоких строений. Здесь есть все элементы электростанции, изображенной на рис.3, за исключением потребителя энергии (нагрузки). Эмиттером являются лопасти винтов вертолета, которые обдуваются потоком влажного воздуха, мачтой служит длинный стальной строп с металлической конструкцией. И рабочие, которые устанавливают эту конструкцию на место, прекрасно знают, что прикасаться к ней голыми руками нельзя — «ударит током». И дейсвительно, они в этот момент становятся нагрузкой в цепи электростанции.

Безусловно, возможны и другие конструкции эмиттеров, более эффективные, сложные, основанные на разных принципах и физических эффектах см. рис. 4-5.

Эмиттера в виде готового изделия сейчас не существует. Каждый заинтересованный в этой идее вынужден самостоятельно сконструировать себе свой эмиттер.

В помощь таким творческим людям автор приводит ниже свои соображения по конструкции эмиттера.

Наиболее перспективными представляются следующие конструкции эмиттеров.

Первый вариант исполнения эмиттера


Молекула воды имеет хорошо выраженную полярность и может легко захватить свободный электрон. Если обдувать паром заряженную отрицательно металлическую пластину, то пар будет захватывать с поверхности пластины свободные электроны и уносить их с собой. Эмиттер представляет собой щелевое сопло, вдоль которого помещен изолированный электрод А и на который подается положительный потенциал от источника И. Электрод А и острые края сопла образуют небольшую заряженную емкость. Свободные электроны собираются на острых краях сопла под воздействием положительного изолированного электрода А. Проходящий через сопло пар срывает электроны с краев сопла и уносит их в атмосферу. На рис. 4 изображено продольное сечение этой конструкции. Поскольку электрод А изолирован от внешней среды, тока в цепи источника э.д.с. нет. И этот электрод нужен здесь только для того, чтобы вместе с острыми краями сопла создать в этом промежутке сильное электрическое поле и концентрировать электроны проводимости на краях сопла. Таким образом, электрод А с положительным потенциалом является своего рода активирующим электродом. Меняя на нем потенциал, можно добиться нужной величины силы тока эмиттера.

Возникает очень важный вопрос — сколько пара нужно подавать через сопло и не получится ли так, что всю энергию станции придется израсходовать на превращение воды в пар? Проведем небольшой подсчет.

В одной граммолекуле воды (18 мл) содержится 6,02 * 1023 молекул воды (число Авогадро). Заряд одного электрона равен 1,6 * 10 (- 19) Кулона. Перемножив эти величины, получим, что на 18 мл воды можно разместить 96 000 Кулонов электрического заряда, а на 1 литре воды — более 5 000 000 Кулонов. А это значит, что при токе 100 А одного литра воды хватит для работы установки в течение 14 часов. Для превращения в пар такого количества воды потребуется совсем небольшой процент вырабатываемой энергии.

Конечно, прицепить к каждой молекуле воды электрон — задача вряд ли выполнимая, но мы здесь определили предел, к которому можно постоянно приближаться, совершенствуя конструкцию устройства и технологии.

Кроме того, расчеты показывают, что энергетически выгоднее продувать через сопло не пар, а влажный воздух, регулируя его влажность в нужных пределах.

Второй вариант исполнения эмиттера

На вершине мачты установлен металлический сосуд с водой. Сосуд соединен с металлом мачты надежным контактом. В середине сосуда установлена стеклянная капиллярная трубка. Уровень воды в трубке выше, чем в сосуде. Это создает электростатический эффект острия — в верхней части капиллярной трубки создается максимальная концентрация зарядов и максимальная напряженность электрического поля.

Под действием электрического поля вода в капиллярной трубке поднимется и будет распыляться на мелкие капельки, унося с собой отрицательный заряд. При определенной небольшой силе тока вода в капиллярной трубке закипит, и уже пар будет уносить заряды. А это должно увеличить ток эмиттера.

В таком сосуде можно установить несколько капиллярных трубок. Сколько потребуется воды — расчеты см. выше.

Третий вариант исполнения эмиттера. Искровой эмиттер.

При пробое искрового промежутка вместе с искрой из металла выскакивает облако электронов проводимости.


На рис.5 показана принципиальная схема искрового эмиттера. От генератора высоковольтных импульсов отрицательные импульсы поступают на мачту, положительные — на на электрод, который образует искровой промежуток с верхушкой мачты. Получается нечто подобное автомобильной свече зажигания, но по устройству значительно проще.
Генератор высоковольтных импульсов принципиально мало чем отличается от обычной бытовой газовой зажигалки китайского производства с питанием от одной пальчиковой батарейки.

Главное достоинство такого устройства — возможность регулировать ток эмиттера с помощью частоты разрядов, величины искрового промежутка, можно сделать несколько искровых промежутков и пр.

Генератор импульсов можно установить в любом удобном месте, совсем не обязательно на верхушке мачты.

Но существует один недостаток — искровые разряды создают радиопомехи. Поэтому верхушку мачты с искровыми промежутками нужно экранировать цилиндрической сеткой, обязательно изолированной от мачты.

Четвертый вариант исполнения эмиттера

Еще одна возможность — создать эмиттер на принципе прямой эмиссии электронов из материала эмиттера. Для этого нужен материал с очень низкой работой выхода электрона. Такие материалы существуют давно, например, паста из оксида бария-0,99 эв. Возможно, сейчас есть что-либо получше.

В идеале это должен быть комнатнотемпературный сверхпроводник (КТСП), которых пока не существует в природе. Но по разным сообщениям он должен скоро появиться. Здесь вся надежда на нанотехнологии.

Достаточно поместить на верхушку мачты кусок КТСП — и эмиттер готов. Проходя по сверхпроводнику, электрон не встречает сопротивления и очень быстро приобретает энергию, необходимую для выхода из металла (около 5 эв.)

И еще одно важное замечание. По законам электростатики иапряженность электрического поля Земли наиболее высока на возвышенностях — на вершинах холмов, сопок, гор и т. п. В низинах, впадинах и углублениях она минимальна. Поэтому такие устройства лучше строить на самых высоких местах и подальше от высоких строений или же устанавливать их на крышах самых высоких строений.

Еще хорошая идея — поднять проводник с помощью аэростата. Эмиттер, конечно, нужно устанавливать на верху аэростата. В таком случае можно получить достаточно большой потенциал для самопроизвольной эмиссии электронов из металла, придав ему форму отрия, и, значит, никаких сложных эмиттеров в этом случае не потребуется.

Существует еще одна хорошая возможность получить эмиттер. В промышленности применяется электростатическая окраска металла. Распыленная краска, вылетая из распылителя, несет на себе электрический заряд, в силу чего и оседает на окрашиваемый металл, на который подается заряд противоположного знака. Технология отработана.

Такое устройство, которое заряжает распыленную краску, как раз и является настоящим эмиттером эл. зарядов. Остается только приспособить его к описанной выше установке и заменить краску водой, если возникнет необходимомть в воде.

Вполне возможно, что влаги, всегда содержащейся в воздухе, будет достаточно для работы эмиттера.

Не исключено, что в промышленности существуют и другие подобные устройства, которые легко можно превратить в эмиттер.

Выводы

В результате наших действий мы подключили потребитель энергии к глобальному генератору электрической энергии. К отрицательному полюсу — Земле — мы подключились с помощью обычного металлического проводника (заземления), а к положительному полюсу — ионосфере — с помощью весьма специфического проводника — конвективного тока. Конвективные токи — это электрические токи, обусловленные упорядоченным переносом заряженных частиц. В природе они встречаются часто. Это и обычные конвективные восходящие струи, которые несут отрицательные заряды в облака, это и смерчи (торнадо). которые тащат к земле сильно заряженную положительными зарядами облачную массу, это и восходящие потоки воздуха во внутритропической зоне конвергенции, которые уносят огромное количество отрицательных зарядов в верхние слои тропосферы. И такие токи достигают очень больших значений.

Если мы создадим достаточно эффективный эмиттер, который сможет освобождать из верхушки мачты (или нескольких мачт), положим, 100 кулонов зарядов в секунду (100 ампер.), то мощность построенной нами электростанции будет равна 1000 000 ватт или 1 мегаватт. Вполне достойная мощность!

Такая установка незаменима в отдаленных поселениях, на метеостанциях и других удаленных от цивилизации местах.

Из вышесказанного можно сделать следующие выводы:

Источник энергии является исключительно простым и удобным в использовании.

На выходе получаем самый удобный вид энергии — электроэнергию.

Источник экологически чист: никаких выбросов, никакого шума и т.п.

Установка исключительно проста в изготовлении и эксплуатации.

Исключительная дешевизна получаемой энергии и еще масса других достоинств.

Электрическое поле Земли подвержено колебаниям: зимой оно сильнее, чем летом, ежедневно оно достигает максимума в 19 часов по Гринвичу, также зависит от состояния погоды. Но эти колебания не превышают 20% от его среднего значения.

В некоторых редких случаях при определенных погодных условиях напряженность этого поля может увеличиться в несколько раз.

Во время грозы эл.поле изменяется в больших пределах и может изменить направление на противоположное, но это происходит на небольшой площади непосредственно под грозовой ячейкой.

Курилов Юрий Михайлович

Начнем с того, что индустрия сельского хозяйства разрушена до основания. Что дальше? Не пора ли собирать камни? Не пора ли объединить все творческие силы, чтобы дать селянам и дачникам те новинки, которые позволят резко поднять урожайность, сократить ручной труд, найти новые пути в генетике... Я бы предложил читателям журнала быть авторами рубрики "Для села и дачников". Начну с давней работы "Электрическое поле и урожайность."

В 1954 г., когда я был слушателем Военной академии связи в Ленинграде, страстно увлекся процессом фотосинтеза и провел интересное испытание с выращиванием лука на подоконнике. Окна комнаты, в которой я жил, выходили на север, и потому солнца луковицы получать не могли. Я высадил в два удлиненных ящика по пять луковиц. Землю брал в одном и том же месте для обоих ящиков. Удобрений у меня не было, т.е. были созданы как бы одинаковые условия для выращивания. Над одним ящиком сверху, на расстоянии полуметра (рис.1) расположил металлическую пластину, к которой прикрепил провод от высоковольтного выпрямителя +10 000 В, а в землю этого ящика воткнул гвоздь, к которому подсоединил "-" провод от выпрямителя.

Сделал это для того, что по моей теории катализа создание в зоне растений высокого потенциала приведет к увеличению дипольного момента молекул, участвующих в реакции фотосинтеза, И потянулись дни испытаний. Уже через недели две я обнаружил, что в ящике с электрическим полем растения развиваются более эффективно, чем в ящике без "поля"! Спустя 15 лет этот эксперимент повторили в институте, когда потребовалось добиться выращивания растений в космическом корабле. Там, находясь в замкнутом от магнитного и электрического полей, растения развиваться не могли. Пришлось создавать искусственное электрическое поле, и теперь на космических кораблях растения выживают. А если вы живете в железобетонном доме, да еще на верхнем этаже, разве ваши растения в доме не страдают от отсутствия электрического (да и магнитного) поля? Суньте гвоздь в землю цветочного горшка, а проводок от него подсоедините к очищенной от краски или ржавчины отопительной батареи. В этом случае ваше растение приблизится к условиям жизни на открытом пространстве, что очень важно для растений да и для человека тоже!

Но на этом мои испытания не закончились. Проживая в г.Кировограде, я решил развести на подоконнике помидоры. Однако зима наступила столь быстро, что я не успел выкопать на огороде кусты помидор, чтобы пересадить их в цветочные горшки. Мне попался примерзший куст с небольшим живым отросточком. Я принес его домой, поставил в воду и... О, радость! Через 4 дня от нижней части отростка выросли белые корешки. Я пересадил его в горшок, и, когда он вырос с отростками, стал таким же методом получать новые саженцы. Всю зиму я лакомился свежими помидорами, выращенными на подоконнике. Но меня преследовал вопрос: неужели возможно в природе такое клонирование? Возможно, подтверждали мне старожилы в этом городе. Возможно, но...

Я переехал в Киев и попытался таким же образом получить саженцы помидор. У меня ничего не получилось. И я понял, что в Кировограде мне удавался этот метод потому, что там, в то время, когда я жил, в водопроводную сеть пускали воду из скважин, а не из Днепра, как в Киеве. Грунтовые воды в Кировограде имеют небольшую долю радиоактивности. Вот это и сыграло роль стимулятора роста корневой системы! Тогда я приложил к верхушке отростка помидора +1,5 В от батарейки, а "-" подвел к воде сосуда, где стоял отросток (рис.2), и через 4 дня на отростке, находящемся в воде, выросла густая "борода"! Так мне удалось клонировать отростки помидор.

Недавно мне надоело следить за поливом растений на подоконнике, я сунул в землю полоску фольгированного стеклотекстолита и большой гвоздь. К ним подсоединил провода от микроамперметра (рис.3). Сразу отклонилась стрелка, потому что земля в горшке была сырая, и сработала гальваническая пара "медь - железо". Через неделю увидел, как ток стал падать. Значит, наступала пора полива... Кроме того, растение выбросило новые листочки! Так растения реагируют на электричество.

Биологическое влияние электрических и магнитных полей на организм людей и животных достаточно много исследова­лось. Наблюдаемые при этом эффекты, если они и возника­ют, до сих пор не ясны и трудно поддаются определению, поэтому эта тема остается по-прежнему актуальной.

Магнитные поля на нашей планете имеют двоякое проис­хождение- естественное и антропогенное. Естественные маг­нитные поля, так называемые магнитные бури, зарождаются в магнитосфере Земли. Антропогенные магнитные возмуще­ния охватывают меньшую территорию, чем природные, зато их проявление значительно интенсивнее, а следовательно, приносит и более ощутимый ущерб. В результате технической деятельности человек создает искусственные электромагнит­ные поля, которые в сотни раз сильнее естественного магнит­ного поля Земли. Источниками антропогенных излучений являются: мощные радиопередающие устройства, электрифици­рованные транспортные средства, линии электропередачи (рис. 2.1).

Один из наиболее сильных возбудителей электромагнит­ных волн-токи промышленной частоты (50 Гц). Так, на­пряженность электрического поля непосредственно под лини­ей электропередачи может достигать нескольких тысяч вольт на метр почвы, хотя из-за свойства снижения напряженности почвой уже при удалении от линии на 100 м напряженность резко падает до нескольких десятков вольт на метр.

Исследования биологического воздействия электрического поля обнаружили, что уже при напряженности 1 кВ/м оно оказывает неблагоприятное влияние на нервную систему чело­века, что в свою очередь ведет к нарушениям эндокринного аппарата и обмена веществ в организме (меди, цинка, желе­за и кобальта), нарушает физиологические функции: ритм сердечных сокращений, уровень кровяного давления, актив­ность мозга, ход обменных процессов и иммунную актив­ность.

Начиная с 1972 г. появились публикации, в которых рас­сматривалось влияние на людей и животных электрических полей с величинами напряженности более 10 кВ/м.

Напряженность магнитного поля пропорциональна току и обратно пропорциональна расстоянию; напряженность электрического поля пропорциональна напряжению (заряду) и обратно пропорциональна расстоянию. Парамегры этих по­лей зависят от класса напряжения, конструктивных особен­ностей и геометрических размеров высоковольтной ЛЭП. По­явление мощного и протяженного источника электромагнит­ного поля приводит к изменению тех естественных факторов, при которых сформировалась экосистема. Электрические и магнитные поля могут индуцировать поверхностные заряды и токи в теле человека (рис. 2.2). Исследования показали,

что максимальный ток в теле человека, индуцированный этектрическим полем, намного выше, чем ток, вызванный магнитным полем. Так, вредное воздействие магнитного поля проявляется лишь при его напряженности около 200 А/м.чго бывает на расстоянии 1-1,5 м от проводов фазы линии и опасно только для обслуживающего персонала при работах под напряжением. Это обстоятельство позволило сделать вы^-вод об отсутствии биологического влияния магнитных полей промышленной частоты на людей и животных, находящихся под ЛЭП Таким образом, электрическое поле ЛЭП является главным биологически действенным фактором протяженной электропередачи, который может оказаться барьером на пу­ти миграции движения разных видов водной и сухопутной фауны.

Исходя из конструктивных особенностей электропередачи (провисания провода) наибольшее влияние поля проявляет­ся в середине пролета, где напряженность для линий сверх- и ультравысокого напряжения на уровне роста человека со­ставляет 5-20 кВ/м и выше в зависимости от класса напря­жения и конструкции линии (рис. 1.2). У опор, где высота подвеса проводов наибольшая и сказывается экранирующее влияние опор, напряженность поля наименьшая. Так как под проводами ЛЭП могут находиться люди, животные, тран­спорт, то возникает необходимость оценки возможных пос­ледствий длительного и кратковременного пребывания живых существ в электрическом поле различной напряженности. Наиболее чувствительны к электрическим полям копытные животные и человек в обуви, изолирующей его от земли. Копыто животных также является хорошим изолятором. На­веденный потенциал в этом случае может достигать 10 кВ, а импульс тока через организм при касании к заземленно­му предмету (ветке куста, травинке) 100-200 мкА. Такие импульсы тока безопасны для организма, но неприятные ощущения заставляют копытных животных избегать трассы высоковольтных ЛЭП в летнее время .

В действии электрического поля на человека доминирую­щую роль играют протекающие через его тело токи. Это оп­ределяется высокой проводимостью тела человека, где преоб­ладают органы с циркулирующей в них кровью и лимфой. В настоящее время экспериментами на животных и людях-добровольцах установлено, что плотность тока проводимо­стью 0,1 мкА/см 2 и ниже не влияет на работу мозга, так как импульсные биотоки, обычно протекающие в мозгу, сущест­венно превышают плотность такого тока проводимости. При />1 мкА/см 2 в глазах человека наблюдается мелькание све­товых кругов, более высокие плотности токов уже захватыва­ют пороговые значения стимуляции сенсорных рецепторов, а также нервных и мышечных клеток, что ведет к появлению испуга, непроизвольным двигательным реакциям. В случае касания человека к изолированным от земли объектам в зо­не электрического поля значительной интенсивности, плот­ность тока в зоне сердца сильно зависит от состояния «под­стилающих» условий (вида обуви, состояния почвы и т. д.), но уже может достигать этих величин. При максимальном токе, соответствующемЕтах ==l5 кВ/м (6,225 мА); известной доле этого тока, втекающе­го через область головы (около 1/3), и площади головы (около 100 см 2) плотность токаj <0,1 мкА/см 2 , что и под­тверждает допустимость принятой в СССР напряженности 15 кВ/м под проводами воздушной линии.

Для здоровья человека проблема состоит в определении связи между плотностью тока, наведенного в тканях, и маг­нитной индукцией внешнего поля, В. Вычисление плотности тока

осложняется тем, что его точный путь зависит от распределе­ния проводимости у в тканях тела.

Так, удельную проводимость мозга определяют =0,2 см/м, а сердечной мышцы==0,25 см/м. Если принять радиус головы 7,5 см, а сердца 6 см, то произведениеR по­лучается одинаковым в обоих случаях. Поэтому можно да­вать одно представление для плотности тока на периферии сердца и мозга.

Определено, что безопасная для здоровья магнитная ин­дукция составляет около 0,4 мТл при частоте 50 или 60 Гц. В магнитных полях (от 3 до 10 мТл; f =10-60 Гц) наблю­далось возникновение световых мерцаний, аналогичных тем, которые возникают при надавливании на глазное яблоко.

Плотность тока, индуцированного в теле человека элект­рическим полем с величиной напряженности Е, вычисляется таким образом:

с различными коэффициентами k для области мозга и серд­ца. Значениеk =3 10 -3 см/Гцм. По данным ученых ФРГ напряженость поля, при которой вибрацию волос ощущают 5% испытуемых мужчин, составляет 3 кВ/м и для 50% муж­чин, подвергшихся испытаниям, она равна 20 кВ/м. В насто­ящее время отсутствуют данные о том, что ощущения, выз­ванные действием поля, создают какое-либо неблагоприятное влияние. Что касается связи плотности тока с биологическим влиянием, то можно выделить четыре области, представлен­ные в табл. 2.1

Последняя область значения плотности тока относится к временам воздействия порядка одного сердечного цикла, т. е. приблизительно 1 с для человека Для более коротких экс­позиций пороговые значения выше. Для определения порогового значения напряженности по­ля были выполнены физиологические исследования на людях в лабораторных условиях при напряженности от 10 до 32 кВ/м. Установлено, что при напряженности 5 кВ/м 80%

Таблица 2.1

людей не испытывают болевых ощущений при разрядах в случае касания заземленных предметов. Именно эта величи­на была принята в качестве нормативной при работах в электроустановках без применения средств защиты. Зависи­мость допустимого времени пребывания человека в электри­ческом поле с напряженностью Е более порогового аппрокси­мируется уравнением

Выполнение этого условия обеспечивает самовосстановле­ние физиологического состояния организма в течение суток без остаточных реакций и функциональных или патологичес­ких изменений.

Ознакомимся с основными результатами исследований биологических влияний электрических и магнитных полей, проведенных советскими и зарубежными учеными .

Маркевич В.В.

В данной работе мы обращаемся к одному из самых интересных и перспективных направлений исследований – влиянию физических условий на растения.

Изучая литературу по данному вопросу, я узнал, профессору П. П. Гуляеву с помощью высокочувствительной аппаратуры удалось установить, что слабое биоэлектрическое поле окружает любое живое и еще точно известно: каждая живая клетка имеет свою собственную электростанцию. И клеточные потенциалы не так уж малы.

Скачать:

Предварительный просмотр:

ФИЗИКА

БИОЛОГИЯ

Растения и их электрический потенциал.

Выполнил: Маркевич В.В.

ГБОУ ООШ № 740 г. Москва

9 класс

Руководитель: Козлова Виолетта Владимировна

учитель физики и математики

г. Москва 2013

  1. Введение
  1. Актуальность
  2. Цели и задачи работы
  3. Методы исследования
  4. Значимость работы
  1. Анализ изученной литературы по теме «Электричество в жизни

растений»

  1. Ионизация воздуха в помещении
  1. Методика и техника исследования
  1. Исследование токов повреждения у различных растений
  1. Эксперимент №1 (с лимонами)
  2. Эксперимент №2 (с яблоком)
  3. Эксперимент №3 (с листом растения)
  1. Исследование влияния электрического поля на прорастание семян
  1. Эксперименты по наблюдению влияния ионизованного воздуха на прорастание семян гороха
  2. Эксперименты по наблюдению влияния ионизованного воздуха на прорастание семян бобов
  1. Выводы
  1. Заключение
  2. Литература
  1. Введение

«Как ни удивительны электрические явления,

присущие неорганической материи, они не идут

ни в какое сравнение с теми, которые связаны с

жизненными процессами».

Майкл Фарадей

В данной работе мы обращаемся к одному из самых интересных и перспективных направлений исследований – влиянию физических условий на растения.

Изучая литературу по данному вопросу, я узнал, профессору П. П. Гуляеву с помощью высокочувствительной аппаратуры удалось установить, что слабое биоэлектрическое поле окружает любое живое и еще точно известно: каждая живая клетка имеет свою собственную электростанцию. И клеточные потенциалы не так уж малы. Например, у некоторых водорослей они достигают 0,15 В.

«Если 500 пар половинок горошин собрать в определенном порядке в серии, то конечное электрическое напряжение составит 500 вольт… Хорошо, что повар не знает об опасности, которая ему угрожает, когда он готовит это особенное блюдо, и к счастью для него, горошины не соединяются в упорядоченные серии». Это высказывание индийского исследователя Дж. Босса базируется на строгом научном эксперименте. Он соединял внутренние и внешние части горошины с гальванометром и нагревал до 60°С. Прибор при этом показывал разность потенциалов 0,5 В.

Каким образом это происходит? На каком принципе работают живые генераторы и батареи? Заместитель заведующего кафедрой живых систем Московского физико-технического института кандидат физико-математических наук Эдуард Трухан считает, что один из самых главных процессов, протекающих в клетке растения, - процесс усвоения солнечной энергии, процесс фотосинтеза.

Так что, если в тот момент ученым удастся «растащить» положительно и отрицательно заряженные частицы в разные стороны, то, по идее, мы получим в свое распоряжение замечательный живой генератор, топливом для которого служили бы вода и солнечный свет, а кроме энергии, он бы еще производил и чистый кислород.

Возможно, в будущем такой генератор и будет создан. Но для осуществления этой мечты ученым придется немало потрудиться: нужно отобрать наиболее подходящие растения, а может быть, даже научиться изготавливать хлорофилловые зерна искусственно, создать какие-то мембраны, которые бы позволили разделять заряды. Оказывается, живая клетка, запасая электрическую энергию в природных конденсаторах – внутриклеточных мембранах особых клеточных образований, митохондрий, потом использует ее для произведения очень многих работ: строительства новых молекул, затягивания внутрь клетки питательных веществ, регулирования собственной температуры… И это еще не все. С помощью электричества производит многие операции и само растение: дышит, движется, растет.

Актуальность

Уже сегодня можно утверждать: изучение электрической жизни растений несет пользу сельскому хозяйству. Еще И. В. Мичурин проводил опыты по влиянию электрического тока на прорастание гибридных сеянцев.

Предпосевная обработка семян – важнейший элемент агротехники, позволяющий повышать их всхожесть, а в конечном итоге – урожайность растений.А это особенно важно в условиях нашего не очень длинного и теплого лета.

  1. Цели и задачи работы

Целью работы является исследование наличия биоэлектрических потенциалов у растений и исследование влияния электрического поля на прорастание семян.

Для достижения цели исследования необходимо решить следующие задачи :

  1. Изучение основных положений, касающихся учения о биоэлектрических потенциалах и влияния электрического поля на жизнедеятельность растений.
  2. Проведение экспериментов по обнаружению и наблюдению токов повреждения у различных растений.
  3. Проведение экспериментов по наблюдению влияния электрического поля на прорастание семян.
  1. Методы исследования

Для выполнения задач исследования используется теоретический и практический методы. Теоретический метод: поиск, изучение и анализ научной и научно-популярной литературы по данному вопросу. Из практических методов исследования используется: наблюдение, измерение, проведение экспериментов.

  1. Значимость работы

Материал данной работы может быть использован на уроках физики и биологии, так как в учебниках этот важный вопрос не освещается. А методика проведения экспериментов – как материал для практических занятий элективного курса.

  1. Анализ изученной литературы

История исследования электрических свойств растений

Один из характерных признаков живых организмов – способность к раздражению.

Чарльз Дарвин придавал важное значение раздражимости растений. Он детально изучил биологические особенности насекомоядных представителей растительного мира, отличающихся высокой чувствительностью, и результаты исследований изложил в замечательной книге «О насекомоядных растениях», вышедшей в свет в 1875 году. Кроме того, внимание великого натуралиста привлекли различные движения растений. В совокупности все исследования наводили на мысль, что растительный организм удивительно схож с животным.

Широкое использование электрофизиологических методов позволило физиологам животных достичь значительного прогресса в этой области знаний. Было установлено, что в организмах животных постоянно возникают электрические токи (биотоки), распространение которых и приводит к двигательным реакциям. Ч. Дарвин предположил, что сходные электрические явления имеют место и в листьях насекомоядных растений, обладающих довольно сильно выраженной способностью к движению. Однако сам он не проверял эту гипотезу. По его просьбе эксперименты с растением Венерина мухоловка были проведены в 1874 году физиологом Оксфордского университета Бурданом Сандерсоном . Подсоединив лист этого растения к гальванометру, ученый отметил, что стрелка тотчас же отклонилась. Значит, в живом листе этого насекомоядного растения возникают электрические импульсы. Когда исследователь вызвал раздражение листьев, прикоснувшись к расположенным на их поверхности щетинкам, стрелка гальванометра отклонилась в противоположную сторону, как в опыте с мышцей животного.

Немецкий физиолог Герман Мунк , продолживший опыты, в 1876 году пришел к заключению, что листья венериной мухоловки в электромоторном отношении подобны нервам, мускулам и электрическим органам некоторых животных.

В России электрофизиологические методы были использованы Н. К. Леваковским для изучения явлений раздражимости у стыдливой мимозы. В 1867 году он опубликовал книгу под названием «О движении раздражимых органов растений». В экспериментах Н. К. Леваковского самые сильные электрические сигналы наблюдались в тех экземплярах мимозы , которые наиболее энергично отвечали на внешние раздражители. Если мимозу быстро убить нагреванием, то мертвые части растения не вырабатывают электрических сигналов. Возникновение электрических импульсов автор наблюдал также в тычинках бодяка и чертополоха, в черешках листьев росянки. Впоследствии было установлено, что

Биоэлектрические потенциалы в клетках растений

Жизнь растений связана с влагой. Поэтому электрические процессы в них наиболее полно проявляются при нормальном режиме увлажнения и затухают при увядании. Это связано с обменом зарядами между жидкостью и стенками капиллярных сосудов при протекании питательных растворов по капиллярам растений, а также с процессами обмена ионами между клетками и окружающей средой. Важнейшие для жизнедеятельности электрические поля возбуждаются в клетках.

Итак‚ нам известно‚ что…

  1. Несомая ветром цветочная пыльца имеет отрицательный заряд ‚ приближающийся по величине к заряду пылинок при пылевых бурях. Вблизи теряющих пыльцу растений резко изменяется соотношение между положительными и отрицательными легкими ионами‚ что благоприятно сказывается на дальнейшем развитии растений.
  2. В практике распыления ядохимикатов в сельском хозяйстве выяснено‚ что на свеклу и яблоню в большей мере осаждаются химикаты с положительным зарядом‚ на сирень - с отрицательным.
  3. Одностороннее освещение листа возбуждает электрическую разность потенциалов между освещенными и неосвещенными его участками и черешком‚ стеблем и корнем. Эта разность потенциалов выражает реакцию растения на изменения в его организме‚ связанные с началом или прекращением процесса фотосинтеза.
  4. Прорастание семян в сильном электрическом поле (например‚ вблизи коронирующего электрода) приводит к изменениям высоты и толщины стебля и густоты кроны развивающихся растений. происходит это в основном благодаря перераспределению в организме растения под влиянием внешнего электрического поля объемного заряда.
  5. Поврежденное место в тканях растений всегда заряжается отрицательно относительно неповрежденных участков‚ а отмирающие участки растений приобретают отрицательный заряд по отношению к участкам‚ растущим в нормальных условиях.
  6. Заряженные семена культурных растений имеют сравнительно высокую электропроводность и поэтому быстро теряют заряд. Семена сорняков ближе по своим свойствам к диэлектрикам и могут сохранять заряд длительное время. Это используется для отделения на конвейере семян культурных растений от сорняков.
  7. Значительные разности потенциалов в организме растений возбуждаться не могут ‚ поскольку растения не имеют специализированного электрического органа. Поэтому среди растений не существует «древа смерти»‚ которое могло бы убивать живые существа своей электрической мощностью.

Влияние атмосферного электричества на растения

Одна из характерных особенностей нашей планеты – наличие постоянного электрического поля в атмосфере. Человек не замечает его. Но электрическое состояние атмосферы не безразлично для него и других живых существ, населяющих нашу планету, включая растения. Над Землей на высоте 100-200 км, существует прослойка из положительно заряженных частиц – ионосфера.
Значит, когда идешь по полю, улице, скверу, то движешься в электрическом поле, вдыхаешь электрические заряды .

Влияние атмосферного электричества на растения исследовалось с 1748 года многими авторами. В этом году аббат Нолет сообщал об экспериментах, в которых он электризовал растения, поместив их под заряженные электроды. Он наблюдал ускорение прорастания и роста. Грандиеу (1879) наблюдал, что растения, которые не подвергались влиянию атмосферного электричества, так как были помещены в проволочный сеточный заземленный ящик, показали уменьшение веса на 30 – 50% по сравнению с контрольными растениями.

Лемстрем (1902) подвергал растения действию ионов воздуха, располагая их под проволокой, снабженной остриями и подключенной к источнику высокого напряжения (1 м над уровнем земли, ток ионов 10 -11 – 10 -12 А/см 2 ), и он нашел увеличение в весе и длине больше, чем на 45% (например, морковь, горох, капуста).

Тот факт, что рост растений ускорялся в атмосфере с искусственно увеличенной концентрацией положительных и отрицательных малых ионов недавно подтвердился Круегером и его сотрудниками. Они нашли, что семена овса реагировали на положительные, а также отрицательные ионы (концентрация около 10 4 ионов/см 3 ) увеличением на 60% общей длины и увеличением свежего и сухого веса на 25-73%. Химический анализ надземных частей растений обнаружил увеличение содержание протеина, азота и сахара. В случае ячменя имело еще большее увеличение (приблизительно на 100%) в общем удлинении; увеличение в свежем весе не было большим, но существовало заметное увеличение в сухом весе, которое сопровождалось соответствующим увеличением содержания протеина, азота и сахара.

Эксперименты с семенами растений также проводил Ворден. Он нашел, что прорастание зеленых бобов и зеленого горошка становилось более ранним при увеличении уровня ионов любой полярности. Конечное процентное отношение проросших семян было более низким при отрицательной ионизации по сравнению с контрольной группой; прорастание в положительно ионизированной группе и контрольной было одинаковым. По мере роста сеянцев контрольные и положительно ионизированные растения продолжали свой рост, в то время как растения, подвергавшиеся отрицательной ионизации, в большинстве чахли и погибали.

Влияние в последние годы произошло сильное изменение электрического состояния атмосферы; различные районы Земли стали отличаться друг от друга по ионизированному состоянию воздуха, которое обусловлено его запыленностью, загазованностью и т.д. Электрическая проводимость воздуха – чуткий индикатор его чистоты: чем больше в воздухе посторонних частиц, тем больше число ионов оседает на них и, следовательно, меньше становится электропроводимость воздуха.
Так, в Москве в 1 см 3 воздуха содержится 4 отрицательных заряда, в Санкт-Петербурге – 9 таких зарядов, в Кисловодске, где эталон чистоты воздуха – 1,5 тыс. частиц, а на юге Кузбасса в смешанных лесах предгорья количество этих частиц доходит до 6 тысяч. Значит, где больше отрицательных частиц, там легче дышится, а где пыль – человеку достается их меньше, так как пылинки оседают на них.
Хорошо известно, что возле быстро текущей воды воздух освежает и бодрит. В нем много отрицательных ионов. Еще в XIX веке было определено, что более крупные капли в брызгах воды заряжены положительно, а капли поменьше – отрицательно. Поскольку большие капли оседают быстрее, в воздухе остаются отрицательно заряженные маленькие капельки.
Наоборот, воздух в тесных помещениях с обилием разного рода электромагнитных приборов насыщен положительными ионами. Даже сравнительно непродолжительное нахождение в таком помещении приводит к заторможенности, сонливости, головокружениям и головным болям.

  1. Методика проведения исследования

Исследование токов повреждения у различных растений.

Инструменты и материалы

  • 3 лимона, яблоко, помидор, лист растения;
  • 3 блестящих медных монеты;
  • 3 оцинкованных винта;
  • провода, желательно с зажимами на концах;
  • небольшой нож;
  • несколько клеящихся листочков;
  • низковольтный светодиод 300мВ;
  • гвоздь или шило;
  • мультиметр.

Эксперименты по обнаружению и наблюдению токов повреждения у растений

  1. Техника выполнения эксперимента № 1. Ток в лимонах.

  1. Прежде всего, помяли все лимоны. Это делается для того, чтобы внутри лимона появился сок.
  2. Вкрутили в лимоны оцинкованный винт приблизительно на треть его длины. При помощи ножа осторожно вырезали в лимоне небольшую полосу - на 1/3 его длины. Вставили в щель в лимоне медную монету таким образом, чтобы половина ее осталась снаружи.
  3. Вставили таким же образом винты и монеты в другие два лимона. Затем подключили провода и зажимы, соединили лимоны таким образом, чтобы винт первого лимона подключался к монете второго и т.д. Подключили провода к монете из первого лимона и винту из последнего. Лимон работает как батарейка: монета - положительный (+) полюс, а винт - отрицательный (-). К сожалению, это очень слабый источник энергии. Но его можно усилить, соединив несколько лимонов.
  4. Подключили положительный полюс диода к положительному полюсу батареи, подключили отрицательный полюс. Диод горит!!!
  1. Со временем напряжение на полюсах лимонной батареи уменьшится. Заметили, насколько хватит лимонной батареи. Через некоторое время лимон потемнел возле винта. Если удалить винт и вставить его же (или новый) в другое место лимона, то можно частично продлить срок работы батареи. Можно еще попробовать помять батарею, время от времени передвигая монеты.
  1. Провели эксперимент с большим количеством лимонов. Диод стал светиться ярче. Батарея теперь работает дольше.
  2. Использовали кусочки цинка и меди большего размера.
  3. Взяли мультиметр, измерили напряжение батареи.

№ п/п

Количество лимонов

Разность потенциалов

1(без меди и цинка)

0,14 В

0,92 В

0,3 В

Техника выполнения эксперимента № 2. Ток в яблоках.

  1. Яблоко разрезали пополам, удалили сердцевину.
  2. Если оба электрода, отведенных к мультиметру, приложить к наружной стороне яблока (кожуре), мультиметр не зафиксирует разности потенциалов.
  3. Один электрод перенесли во внутреннюю часть мякоти, и мультиметр отметит появление тока повреждения.
  4. Проведем эксперимент с овощами - томатами.
  5. Результаты измерений поместили в таблицу.

№ п/п

Условия проведения

Разность потенциалов

Оба электрода на кожуре яблока

0 В

Один электрод на кожуре,

другой – в мякоти яблока

0,21 В

Электроды в мякоти разрезанного яблока

0‚05 В

Электроды в мякоти помидора

0‚02 В

Техника выполнения эксперимента № 3. Ток в срезанном стебле.

  1. Отрезали лист растения со стеблем.
  2. Измерили токи повреждения у срезанного стебля на различном расстоянии между электродами.
  3. Результаты измерений поместили в таблицу.

№ п/п

Расстояние между электродами

Разность потенциалов

9 см

0,02 В

12 см

0,03 В

15 см

0,04 В

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

  • В любом растении можно обнаружить возникновение электрических потенциалов.

Исследование влияния электрического поля на прорастание семян.

Инструменты и материалы

  • семена гороха, бобов;
  • чашки Петри;
  • аэроионизатор;
  • часы;
  • вода.
  1. Техника выполнения эксперимента №1

  1. Ежедневно включали ионизатор на 10 минут.

Сроки

Наблюдения

горох

06.03.09

Замачивание семян

Замачивание семян

07.03.09

Набухание семян

Набухание семян

08.03.09

Прорастание 6 семян

Без изменений

09.03.09

Прорастание еще 4 сем

Прорастание 8 семян

(5 не проросли)

10.03.09

Увеличение ростков

у 10 семян (3 не проросли)

Увеличение ростков

11.03.09

Увеличение ростков

у 10 семян (3 не проросли)

Увеличение ростков

12.03.09

Увеличение ростков

Увеличение ростков

Сроки

Наблюдения

Бобы (7 сем)

Опытная чашка

Контрольная чашка

06.03.09

Замачивание семян

Замачивание семян

07.03.09

Набухание семян

Набухание семян

08.03.09

Набухание семян

Без изменений

09.03.09

Прорастание 7 семян

Без изменений

10.03.09

Увеличение ростков семян

Прорастание 3 семян

(4 не проросли)

11.03.09

Увеличение ростков семян

Прорастание 2 семян

(2 не проросли)

12.03.09

Увеличение ростков семян

Увеличение ростков семян

Результаты исследования

Результаты эксперимента свидетельствуют, что прорастание семян более быстрое и успешное под действием электрического поля ионизатора.

Порядок выполнения эксперимента №2

  1. Для опыта взяли семена гороха и бобов, замочили в чашках Петри и поместили в разных помещениях с одинаковой освещенностью и комнатной температурой. В одном из помещений установили аэроионизатор – прибор для искусственной ионизации воздуха.
  2. Ежедневно включали ионизатор на 20 минут.
  3. Каждый день увлажняли семена гороха, бобов и наблюдали, когда семена проклюнутся.

Сроки

Наблюдения

горох

Опытная чашка (помещение с ионизатором)

Контрольная чашка (помещение без ионизатора)

15.03.09

Замачивание семян

Замачивание семян

16.03.09

Набухание семян

Набухание семян

17.03.09

Без изменений

Без изменений

18.03.09

Прорастание 6 семян

Прорастание 9 семян

(3 не проросли)

19.03.09

Прорастание 2 семян

(4 не проросли)

Увеличение ростков семян

20.03.09

Увеличение ростков семян

Увеличение ростков семян

21.03.09

Увеличение ростков семян

Увеличение ростков семян

Сроки

Наблюдения

бобы

Опытная чашка

(с обработанными семенами)

Контрольная чашка

15.03.09

Замачивание семян

Замачивание семян

16.03.09

Набухание семян

Набухание семян

17.03.09

Без изменений

Без изменений

18.03.09

Прорастание 3 семян

(5 не проросли)

Прорастание 4 семян

(4 не проросли)

19.03.09

Прорастание 3 семян

(2 не проросли)

Прорастание 2 семян

(2 не проросли)

20.03.09

Увеличение ростков

Прорастание 1 семени

(1 не проросло)

21.03.09

Увеличение ростков

Увеличение ростков

Результаты исследования

Результаты эксперимента свидетельствуют, что более длительное воздействие электрического поля отрицательно подействовало на прорастание семян. Они проросли позже и не столь успешно.

Порядок выполнения эксперимента №3

  1. Для опыта взяли семена гороха и бобов, замочили в чашках Петри и поместили в разных помещениях с одинаковой освещенностью и комнатной температурой. В одном из помещений установили аэроионизатор – прибор для искусственной ионизации воздуха.
  2. Ежедневно включали ионизатор на 40 минут.
  3. Каждый день увлажняли семена гороха, бобов и наблюдали, когда семена проклюнутся.

Замачивание семян

02.04.09

Набухание семян

Набухание семян

03.04.09

Без изменений

Без изменений

04.04.09

Без изменений

Прорастание 8 семян

(4 не проросли)

05.04.09

Без изменений

Увеличение ростков

06.04.09

Прорастание 2 семян 02.04.09

Набухание семян

Набухание семян

03.04.09

Без изменений

Без изменений

04.04.09

Без изменений

Без изменений

05.04.09

Без изменений

Прорастание 3 семян

(4 не проросли)

06.04.09

Прорастание 2 семян

(5 не проросли)

Прорастание 2 семян

(2 не проросли)

07.04.09

Увеличение ростков

Увеличение ростков

Результаты исследования

Результаты эксперимента свидетельствуют, что более длительное воздействие электрического поля отрицательно подействовало на прорастание семян. Прорастание их заметно понизилось.

  1. ВЫВОДЫ

  • В любом растении можно обнаружить возникновение электрических потенциалов.
  • Электрический потенциал зависит от вида и размеров растений, от расстояния между электродами.
  • Обработка семян электрическим полем в разумных пределах приводит к ускорению процесса прорастания семян и более успешному их прорастанию.
  • После обработки и анализа экспериментальных и контрольных образцов можно сделать предварительный вывод – увеличение времени облучения электростатическим полем действуют угнетающе, так как качество прорастания семян ниже при увеличении времени ионизации.
  1. Заключение

В настоящее время вопросам влияния электрических токов на растения посвящены многочисленные исследования ученых. Влияние электрических полей на растения до сих пор еще тщательно изучается.

Исследования, выполненные в Институте физиологии растений, позволили установить зависимость между интенсивностью фотосинтеза и значением разности электрических потенциалов между землей и атмосферой. Однако еще не исследован механизм, лежащий в основе этих явлений.

Приступая к исследованию, мы ставили перед собой цель: определить влияние электрического поля на семена растений.

После обработки и анализа экспериментальных и контрольных образцов можно сделать предварительный вывод – увеличение времени облучения электростатическим полем действуют угнетающе. Мы считаем, что данная работа не закончена, так как получены только первые результаты.

Дальнейшие исследования по данному вопросу можно продолжить по следующим направлениям:

  1. Повлияла ли обработка семян электрическим полем на дальнейший рост растений?
  1. ЛИТЕРАТУРА

  1. Богданов К. Ю. Физик в гостях у биолога. - М.: Наука, 1986. 144 с.
  2. Воротников А.А. Физика – юным. – М: Харвест, 1995-121с.
  3. Кац Ц.Б. Биофизика на уроках физики. – М: Просвещение, 1971-158с.
  4. Перельман Я.И. Занимательная физика. – М: Наука, 1976-432с.
  5. Артамонов В.И. Занимательная физиология растений. – М.: Агропромиздат, 1991.
  6. Арабаджи В. И. Загадки простой воды.- М.: «Знание», 1973.
  7. http://www.pereplet.ru/obrazovanie/stsoros/163.html
  8. http://www.npl-rez.ru/litra/bios.htm
  9. http://www.ionization.ru

Похожие публикации