Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

18 дать определение идеального источника тока. Идеальный источник тока

Источники электрической энергии являются необходимым элементом любой электрической цепи.

Их разделяют на идеальные и реальные источники. В свою очередь, идеальные источники делятся на источники ЭДС и источники тока.

Источники ЭДС - это двухполюсники, у которых разность потенциалов на выходе не зависит от величины и направления протекания тока, т.е. их вольтамперные характеристики (ВАХ) представляют собой прямые линии параллельные оси I (см. ).

Направление стрелки в условном обозначении указывает направление действия ЭДС, т.е. направление повышения потенциала, поэтому направление падения напряжения на выходных зажимах источника всегда противоположно ЭДС. Так как на ВАХ электрическое сопротивление соответствует котангенсу угла наклона характеристики, то сопротивление источника ЭДС равно нулю, а проводимость, соответственно, бесконечности.

Источники тока - это двухполюсники, у которых протекающий через них ток не зависит от знака и значения разности потенциалов на выходе, т.е. их ВАХ представляют собой прямые линии параллельные оси U (см. ). Отсюда, сопротивление источника тока равно бесконечности, а проводимость - нулю.

Направление двойной стрелки в условном обозначении источника тока указывает направление протекания тока.

Источники ЭДС и источники тока часто рассматриваются как некие абстракции, не имеющие реального физического воплощения. Однако, это справедливо только в том случае, если считать, что их ВАХ не имеют ограничения. В этом случае ток через источник ЭДС или падение напряжения на источнике тока могут достигать бесконечно больших значений. При этом мощность источника () должна быть бесконечно большой, что исключает возможность их технической реализации.

Если же ток и/или напряжение источника ограничено, то свойствами идеального источника обладают, например, стабилизированные источники питания, типичная ВАХ которых приведена на рис. 1.

Выходное напряжение такого устройства постоянно до тех пор, пока ток нагрузки не достигнет максимально допустимого значения , после чего источник питания из режима стабилизации напряжения переходит в режим стабилизации тока. Другим ограничением этого устройства является неизменная полярность тока и напряжения на выходе. Однако в пределах обоих режимов источник питания обладает свойствами соответственно идеального источника ЭДС и источника тока.

Идеальные источники ЭДС и тока используются также для моделирования начальных условий в переходных процессах и нелинейных элементов электрических цепей, таких, например, как диод.

Реальные источники электрической энергии (ИЭ) имеют ВАХ, показанную на рис. 2.

ВАХ реальных источников пересекает обе оси координат и эти точки пересечения соответствуют нулевому току через источник и нулевому падению напряжения. Режим с нулевым током и ненулевым падением напряжения называется холостым ходом, а режим с нулевым падением напряжения и ненулевым током на выходе - коротким замыканием .

Уравнение ВАХ ИЭ представляет собой уравнение прямой линии в координатах . Его можно получить из уравнения прямой линии, проходящей через начало координат , либо из обратной функции , где - коэффициент соответствующий котангенсу угла наклона к оси и имеющий размерность сопротивления, а - тангенс угла наклона с размерностью проводимости. Для получения ВАХ ИЭ можно сместить линию на величину тока короткого замыкания

или обратную функцию U = -Ir сместить на величину напряжения холостого хода

В выражениях (1) и (2) ток короткого замыкания и напряжение холостого хода являются константами, поэтому их можно заменить равным по значению током и ЭДС соответствующих идеальных источников, т.к. параметры идеальных источников также являются константами. Тогда выражениям (1) и (2) можно поставить в соответствие электрические схемы рис. 3 а) и б).

Выражения (1) и (2) и соответствующие им схемы рис. 3 описывают один и тот же элемент электрической цепи, имеющий ВАХ, представленную на . Поэтому оба варианта совершенно эквивалентны и могут применяться в зависимости от целей и удобства конкретного представления.

В ИЭ сопротивление и проводимость называются соответственно внутренним сопротивлением и внутренней проводимостью источника.

Из выражений (1) и (2) следует, что ток на выходе ИЭ отличается от значения тока внутреннего источника на величину тока , ответвляющегося внутри ИЭ через проводимость . Аналогично, напряжение на выходе источника отличается от значения ЭДС внутреннего источника на величину падения напряжения на внутреннем сопротивлении . Поэтому, чем меньше внутреннее сопротивление ИЭ , тем ближе его свойства к свойствам идеального источника .

При ИЭ становится источником ЭДС, однако, в эквивалентной схеме с источником тока , и . Отсюда следует, что при преобразовании источника ЭДС с конечными значениями параметров мы получим ИЭ с бесконечным значением тока. Идентичные рассуждения можно привести и для преобразования ИЭ с источником тока при .

Таким образом, любой реальный источник электрической энергии, представленный, например, схемой а) рис. 3 можно преобразовать и представить эквивалентной схемой рис. 3 б) и наоборот. В то же время, идеальные источники (источники ЭДС и тока) в принципе не могут быть преобразованы один в другой.

Параметры ИЭ в схемах а) и б) связаны между собой следующими соотношениями:

На практике параметры ИЭ определяют по координатам двух точек ВАХ, т.е. по значениям тока и падения напряжения на выходе источника в двух произвольных режимах (при любых двух значениях сопротивления нагрузки, подключенного к выходным зажимам ИЭ).

Пусть измерены значения токов и падений напряжения в нагрузке в режиме 1 и 2 . Тогда параметры схем можно определить из двух пар уравнений:

для схемы а) или(3)

для схемы б).(4)

Выражения (3) и (4) позволяют определить искомые параметры источников в общем случае, однако задачу можно существенно упростить, если источник допускает режимы холостого хода и/или короткого замыкания. Тогда достаточно измерить:

Для этих трех случаев выражения (3) и(4) преобразуются с учетом того, что , и , к виду представленному в таблице 1:

Таблица 1.

На практике параметры ИЭ можно определить также с помощью переменной нагрузки без одновременного измерения тока и напряжения. Для этого достаточно, например, измерить напряжение холостого хода , а затем подключить и изменять нагрузку до тех пор, пока падение напряжения на ней не станет равным . Можно также измерить ток короткого замыкания , а затем увеличивать сопротивление нагрузки до тех пор, пока ток в ней не станет равным . В обоих случаях внутреннее сопротивление источника будет равно сопротивлению нагрузки .

Рассмотрим подробнее этот способ для случая ИЭ с источником ЭДС показанного на рис. 4. При подключении нагрузки напряжение на выходе источника уменьшается в два раза, т.е. . В то же время, . Отсюда внутреннее сопротивление

Источник тока – элемент питания электрической цепи, обеспечивающий постоянное потребление, измеренное амперами, либо заданную форму закона изменения параметра. Так работают сварочные аппараты, каждой толщине металла соответствует номер (диаметр) электрода. Процесс обеспечен постоянным током. В противном случае начинается срыв дуги, происходят другие неприятные эффекты.

Отличие реального источника от идеального

Известно, мощность источника питания электрической цепи ограничена. В результате увеличение нагрузки вызывает изменение параметров. Общеизвестны скачки напряжения гаражных кооперативов, дач, прочих специфичных объектов. Подстанция выделяет ограниченный ресурс, потребление может быть значительным. В первую очередь, имеются в виду нагревательные приборы (воды), сварочные аппараты.

Таким образом, розетка выступает источником напряжения. Вольтаж сильно зависит от поведения потребителей. Замечено, утренние часы подстанции перегружают, соответствующим образом учитывается некоторыми областями при тарификации. Что касается идеальных источников, подразумевается, параметры постоянные. До некоторых пор в реальности встретить подобное оборудование представлялось невозможным, современные технологии рамки ограничений сильно расширили.

Сварочный инвертор IWM 220 сохраняет работоспособность в диапазоне питающих напряжений 180 - 250 вольт, выдавая постоянное действующее значение тока на зажимы. Электронные блоки питания достигают столь высоких показателей путем гибкого регулирования режимов работы. Брать инверторы, принцип действия основан на выпрямлении, фильтрации напряжения 220 вольт, последующей нарезкой пачками импульсов. Варьированием скважности посылок, длиной достигается изменение тока.

Измерительный датчик Холла влияет, напрямую или опосредованно, на напряжение смещения силового ключа. Возможны другие, процессорные, схемы управления выходными параметрами приборов. В последнем случае заботы забирает процессор, несущий соответствующую программу, заложенную в память цифровым кодом.

Для сварки используются переменный и постоянный токи, для черных и цветных металлов. Важно понимать: источник может поддерживать любой закон изменения параметров. Это является отличительной особенностью, предназначением. Обеспечивает надлежащее функционирование потребителей.

Работа источника тока

Требования к факторам питания

В учебниках физики приводится в качестве примеров источников тока следующее:

  1. Батарейки.
  2. Аккумуляторы.

Не сложно заметить, сплошь гальванические источники питания химического принципа действия. Каждый автоводитель знает: аккумулятор бессилен выдать постоянный ток, напряжение. Мощность ограничена скоростью протекания химических реакций на пластинах, обкладках. В результате параметры не остаются постоянными.

Лучший пример источника питания тока, напряжения - инвертор. Электроника гибко изменяет параметры устройства, добиваясь достижения нужного эффекта. На выходе переменные, постоянные напряжения, токи. В зависимости от возникающих потребностей. В персональном компьютере уйма питающих напряжений: для жестких дисков, процессора, DVD-приводов. 5, 12, 3,3 В. У каждого предназначение, несколько предназначений.

Таким образом, потребитель определяет, нужен постоянный ток, либо требуется напряжение, сформированное по определенному закону. Если брать сварку, скорость протекания через плазму зарядов определяет рабочую температуру процесса, напрямую предопределяет условия существования дуги, глубину плавления металла. Технологи давно просчитали условия, определили экспериментально, руководство сварочного аппарата пишет следующее:

  • толщина листа - 3 мм;
  • диаметр электрода - 3,2 мм;
  • рабочий ток процесса 100 - 140 А.

Сварщик молниеносно выставляет указанные параметры на корпусе IWM 220, берет электрод нужного диаметра, обжимает ухватом, заводит второй выход на землю, одевает маску, начинает легонько постукивать детали, получая искру. Не слишком обеспокоен результатами труда, отраслевое пособие промышленности сообщает, с какой скоростью двигаться вдоль шва, под каким углом наблюдать результат процесса. Сварщик твердо знает, чего делать не нужно. Чтобы удостовериться, что это так, специальная комиссия по результатам тестов (выполнение определенных швов) присваивает рабочему разряд (существенно влияет на спектр полномочий, заработную плату).

Итак, род тока определяют потребности идущего процесса. В большинстве случаев требуется напряжение, многие приборы первоначально требовали постоянства тока. Прежде это обогреватели различного толка, основывающие принцип действия законом Джоуля-Ленца. Мощность, преобразующаяся в тепло, определяется размером сопротивления, протекающим током.

В бытовых целях удобнее поддерживать напряжение. Помимо обогревателей имеется множество других приборов. Прежде всего электроника. Напряжение на активном сопротивлении проводника линейно зависит от тока. Нет разницы, что поддерживать постоянным. Отчего тогда при сварочном процессе приходится стабилизировать.

Рука сварщика неспособна двигаться с достаточной твердостью, флуктуации воздуха постоянно меняют длину дуги. Имеются другие помехи. Напряжение на участке непостоянно. Следовательно, ток менялся бы (согласно закону Ома). Недопустимо по причинам описанным выше: изменится температура, технологический процесс пойдет неправильным путем. Приходится поддерживать постоянным ток, не напряжение.

Как практики получают ток заданной формы

Исторически первыми открыты гальванические источники тока. Произошло в 1800 году. Гением, подарившим человечеству первый источник питания, является Алессандро Вольта. Последовала плеяда открытий. Первым измерителем стал гальванометр – прибор, регистрирующий силу электрического тока. Принцип действия новинки, представленной миру Швейггером, основывался на взаимодействии магнитных полей проводника, стрелки компаса.

Вопрос важен по простой причине, для поддержания нужного закона тока нужно измерить физическую величину. Первые гальванометры оценивали параметр по силе магнитного поля, создаваемого проводником. В дальнейшем заложило основу действия первых тестеров. Как работает современное оборудование?

В зарядных устройствах поддерживается постоянным напряжение. Ток измеряется с целью оценки полноты наполненности батареи. Благодаря продуманному подходу, телефон может сигнализировать мнемонически о ходе процесса. Когда батарея полна, полоса зарядки полностью закрашивается (первые сотовые телефоны), либо исчезает (на многих смартфонах в выключенном состоянии). Ход процесса регистрируется : только исчезают импульсы, считается, устройство не нуждается в дальнейшей подзарядке.

На основе указанного эффекта первое время было возможным регистрировать наличие/отсутствие тока. С развитием науки, техники появились преобразователи на основе соединений индия, отличающиеся неплохими метрологическими качествами. По величине выходного напряжения способные оценивать параметры тока. Современные аналого-цифровые преобразователи измеряют позволят перевести разницу потенциалов в цифры, понятные процессору. Последний выполняет необходимые операции по управлению устройством, способствуя получению тока заданной формы.

Инвертор действует схожим образом. Последовательности импульсов, нарезаемые ключом, проходят малогабаритный параметр в неизменном виде (форма графика), с измененными характеристиками. Остается только измерить нужные величины, произвести интегрирование на некотором участке. В результате современный сварочный аппарат по определению защищен против залипания: при резком возрастании тока питания отключается. Имеются у инверторов некоторые другие полезные качества, обеспечиваемые электроникой. Вот почему сварщикам нравятся аппараты.

В мощных цепях ток контролируется трансформаторами. Датчики Холла с десятками, сотнями амперов не работают напрямую. Типичный лимит составляет десятки мА. Используется принцип, схожий с имеющим место быть в : из потока движущихся по электрической цепи зарядов вычленяется некоторая малая часть. Далее пропорцией оценивается полная величина. действуют аналогичным образом. Не имея первичной обмотки, путем электромагнитной индукции передают малую часть энергии поля измерительному средству (например, счетчику, аппаратуре контроля).

Отличительные особенности

Из сказанного понимаем следующее:

  1. Физика под источником тока понимает агрегат, формирующий на выходе постоянный параметр. Практика часто предъявляет иные требования. Хотя чаще ток требуется постоянный.
  2. На схемах источник тока обозначают по-другому, нежели источник ЭДС. Круг с двумя галками. Иногда рядом стоит латинская литера I. Сие помогает решать согласно уравнениям Кирхгофа задачи нахождения условий элементов .
  3. Форма закона генерируемого тока определяется нуждами потребителя. Большинство бытовых приборов питается напряжением. Постоянство тока, особая форма не нужны, даже приносят вред. Мясорубка при заклинивании вала костью требует больше энергии. На это настроена регулирующая и защитная электроника.
  4. Мощность, отдаваемая идеальным источником, растет пропорционально активному сопротивлению нагрузки. В реальности видим некий лимит, выше которого параметры начнут отличаться от заданных.

Проще говоря, исторически с точки зрения практики удобнее постоянным поддерживать напряжение, не ток. Термин, рассматриваемый разделом, вызывает много затруднений у людей посторонних, далеких электронике, вполне сведущих в технике. Итак, источник тока – отвечает за поддержание нужной формы тока. Чаще требуется постоянный.

Величина тока послужит целям регулирования. Искрение коллекторного двигателя сопровождается возрастанием нагрузки. Растет потребляемый ток, цепи контроля повышают напряжение на обмотках с целью преодолеть возникший «кризис». Приводит к необходимости контроля величины тока. В мясорубках задачу решает цепь обратной связи, формирующая угол отсечки ключом входного напряжения.

Пытаясь сохранить постоянной разность потенциалов, приборы варьируют потребление тока. В результате запрашиваемая от подстанции мощность меняется, эффект приводит к проседанию вольтажа. Визуально наблюдаем медленным миганием лампочек накала (энергосберегающие несут в цоколе драйвер для поддержания постоянства напряжения). Аналогичным образом устройства показали бы проседание тока при неизменном напряжении.

В теории электрических цепей используют понятия идеальные источники электрической энергии: источник напряжения и источник тока.

Им приписывают следующие свойства:

Источник напряжения представляет собой активный элемент с двумя зажимами, напряжение на котором не зависит от тока, проходящего через источник

Рис.2. Идеальный источник напряжения и

его вольтамперная характеристика(BAX).

Предполагается, что внутри идеального источника напряжения пассивные сопротивление, индуктивность и емкость отсутствуют и, следовательно, прохождение тока не вызывает падения напряжения.

Упорядоченное перемещение положительных зарядов в источнике напряжения от меньшего потенциала к большему возможно за счет работа сторонних сил, которые присущи источнику.

Величина работы, производимой данными сторонними силами по перемещению единицы положительного заряда от отрицательного полюса источника напряжения к положительному по полюсу, называется электродвижущей силой (э.д.с.) источника и обозначается e(t).

На рис.2(а) указано направление напряжения на зажимах идеального источника, которое всегда равно э.д.с. источника по величине и противоположно ей по направлению.

Идеальный источник напряжения называют еще источником бесконечноймощности . Это - теоретическое понятие. Величина тока в пассивной цепи зависит от параметров этой цепи и e(t). Если зажимы идеального источника напряжения замкнуть накоротко, то ток цепи должен быть теоретически равен бесконечности. В действительности при замыкании зажимов источника ток имеет конечное значение, так как реальный источник обладает внутренним сопротивлением.

Обычно внутренние параметры источника конечной мощности незначительны по сравнению с параметрами внешней цепи и в не которых случаях (по условию задачи) могут вообще не учитываться. Внутреннее сопротивление источника э.д.с.(r 0) на схемах замещения изображается последовательно соединенным с самим источником.

Рис.3. Источник напряжения конечной мощности.

Источник тока представляет собой активный элемент, ток которого не зависит от напряжения на его зажимах.

Рис.4. Идеальный источник тока и его вольтамперная характеристика.

Предполагается, что внутренне сопротивление идеального источника тока равно бесконечности, и поэтому параметры внешней цепи, от которых зависит напряжение на зажимах источника тока, не влияют на ток источника.

При увеличении напряжения внешней цепи, присоединенной к источнику тока, напряжение на его зажимах, и следовательно, мощность возрастают. Поэтому идеальный источник тока теоретически так же рассматривается как источник бесконечной мощности .

Источник тока конечной мощности изображен на рис.5. g 0 – внутренняя проводимость источника. Она характеризует внутренние параметры источника и ограничивает мощность, отдаваемую в цепь.

Рис.5. Источник тока конечной мощности.

Часто при решении задач методом эквивалентных преобразований возникает необходимость заменить реальный источник напряжения эквивалентным источником тока или наоборот. Преобразование осуществляется по схеме и формулам рис.6.


(1)

Рис.6. Преобразования источников конечной мощности.

Сопротивление.

Сопротивлением называется идеализированный элемент цепи в котором происходит необратимый процесс преобразования электрической энергии в тепловую.

Кроме того, данный термин применяется для количественной оценки величины, равной отношению напряжения на данном элементе к току, проходящему через него:

Формула 2 выражает закон Ома.

Сопротивление всегда положительно.

Величина обратная сопротивлению носит название проводимости :

Рис.7. Графическое изображение сопротивления

с выбранными положительными направлениями тока и напряжения.

Мгновенная мощность, поступающая в сопротивление равна:

Pr = Ui = i 2 r = U 2 q (4)

Параметр r в общем случае зависит от тока i (например, вследствие нагревания проводника током).

Вольтамперная характеристика (зависимость напряжения на сопротивлении от тока) носит нелинейный характер.

Рис.8. BAX сопротивления: а – нелинейная; б – линейная.

Если сопротивление не зависит от тока, то имеет место прямая пропорциональность, выражающая закон Ома. В этом случае сопротивление называется линейным.

Индуктивность.

Индуктивностью называется идеализированный элемент электрической цепи, приближающейся по свойствам к индуктивной катушке, в котором накапливается энергия магнитного поля.

При этом термин «индуктивность» и его обозначение L применяется как для обозначения самого элемента цепи, так и для количественной оценки отношения потокосцепления самоиндукции к току в данном элементе:

Индуктивность всегда положительна, так как потокосцепления и ток имеют одинаковые знаки.

В общем случае индуктивность зависит от тока и является нелинейной.

Если зависимостьy(i) линейная, то индуктивность – величина постоянная.

Рис.9. Зависимость потокосцепления от тока:

а - нелинейная, б – линейная.

Рис.10. Графическое изображение индуктивности.

e L - электродвижущая сила самоиндукции, которая по закону Ленца противодействует изменению потокосцепления, что учитывается знаком « - ».

Если индуктивность L величина постоянная (не зависит от тока), то

Напряжение на индуктивности определяется:

(8)

Ток на индуктивности:

Формулы (8) и (9) выражают закон Ома дифференциальной и интегральной форме для индуктивности.

Мгновенная мощность, поступающая в индуктивность равна:

(10)

Мощность индуктивности связана с процессом нарастания или убывания энергии магнитного поля.


Емкость.

Емкостью называется идеализированный элемент электрической цепи приближенно заменяющий конденсатор, в котором накапливается энергия электрического поля.

При этом данный термин применяется как для обозначения самого элемента, так и для количественной оценки отношения заряда к напряжению на этом элементе:

Емкость всегда положительна, так как заряд и напряжение имеют одинаковый знак.

В общем случае зависимость заряда от напряжения носит нелинейный характер и, следовательно, параметр С зависит от напряжения.

Если зависимость заряда от напряжения линейная, емкость C – величина постоянная.

Рис.11. Зависимость электрического заряда от напряжения,

а – нелинейная, б – линейная.

Ток емкости равен производной электрического заряда по времени:

(12)

Формула (12) выражает закон Ома для емкости.

Напряжение на емкости:

Условное графическое изображение емкости указано на рис.11. Там же даны положительные направления тока и напряжения.

Рис.12. Условное обозначение емкости.

Мгновенная мощность, поступающая в емкость, равна:

(14)

Мощность емкости связана с процессом накопления или убыли электрического заряда в емкости. Когда заряд положительный и возрастает ток положительный и в емкость поступает электрическая энергия из внешней цепи. Когда заряд положителен, но убывает, т.е. ток отрицателен, энергия, ранее накопленная в электрическом поле емкости, возвращается во внешнюю цепь.

Контрольные вопросы :

1. Изложите основные задачи электротехники.

2. Элементы электрической цепи, их классификация.

3. Определение электрического тока, падения напряжения.

4. Что понимают под положительными направлениями тока и напряжения.

5. Изложите основные сведения об источниках тока и источниках напряжения, их взаимном преобразовании.

6. Чем отличается идеальный источник энергии от источника энергии конечной мощности.

7. Дать краткую характеристику следующим элементам и терминам, их определяющим: сопротивление, емкость, индуктивность.

Источник тока (ИТ) можно рассматривать как электронное устройство, которое подает во внешнюю схему не зависящий от напряжения на элементах схемы и на нем самом.

Отличительным свойством ИТ является его большое (бесконечно большое в идеале) внутреннее сопротивление R вн. Почему так?

Представим себе, что мы хотим передать 100% мощности от к нагрузке. Это есть передача энергии.

Чтобы доставить 100% мощности от источника к нагрузке, необходимо распределить сопротивление в цепи таким образом, чтобы нагрузка получила эту мощность. Этот процесс называется расщеплением токов.

Ток всегда идет по кратчайшему пути, выбирая себе маршрут с наименьшим сопротивлением. Поэтому в нашем случае мы должны организовать источник и нагрузку таким образом, чтобы первый имел гораздо более высокое сопротивлением, чем вторая.

Это является гарантией того, что ток поступит от источника к нагрузке. Вот почему мы используем в этом примере идеальный источник тока, имеющий бесконечное Это обеспечивает протекание тока от ИТ по кратчайшему пути, то есть через нагрузку.

Поскольку R вн источника бесконечно велико, выходной ток от него не изменится (несмотря на изменение значения сопротивления нагрузки). Ток будет всегда стремиться протекать через бесконечное сопротивление ИТ в сторону нагрузки, имеющей относительно низкое сопротивление. Это демонстрирует график выходного тока идеального источника.

При бесконечно большом внутреннем сопротивлении ИТ любые изменения значения сопротивления нагрузки не оказывают никакого влияния на величину тока, протекающего во внешней цепи идеального источника.

Бесконечное сопротивление является доминирующим в цепи и не позволяет изменяться току (несмотря на колебания сопротивления нагрузки).

Давайте рассмотрим схему с идеальным источником тока, показанную ниже.


Поскольку ИТ обладает бесконечным сопротивлением, вытекающий от источника ток стремится найти себе путь наименьшего сопротивления, которым является 8Ω-ная нагрузка. Весь ток от источника тока (100 мА) протекает через нагрузочный резистор 8Ω . Этот идеальный случай является примером 100% энергетической эффективности.

Теперь давайте рассмотрим схему с реальным ИТ (как показано ниже).


Этот источник имеет сопротивление 10 МОм, которое является достаточно высоким, чтобы обеспечить ток, очень близкий к полному значению источника 100 мА, однако в данном случае ИТ не отдаст 100% своей мощности.

Это происходит потому, что внутреннее сопротивление источника будет отбирать некоторую часть тока, вследствие чего появляется определенная его утечка.

Она может быть рассчитана с использованием конкретного расщепления.

Источник выдает 100 мА. Этот ток затем разделяется между сопротивлениями 10 МОм источника и 8Ω нагрузки.

Несложным расчетом можно определить, какая часть тока протекает через нагрузочное сопротивление 8Ω

I = 100 мА -100 мА (8х10 -6 MΩ /10MΩ) = 99.99mA.

Хотя физически идеальных источников тока не существует, они служат в качестве модели для построения реальных ИТ, близких к ним по своим характеристикам.

На практике используются различные виды источников тока, отличающиеся схемотехническими решениями. Простейшим ИТ может служить схема источника напряжения с подключенным к нему резистором. Такой вариант называется резистивным.

Источник тока очень хорошего качества можно построить на транзисторе. Существует также дешевый серийный источник тока на представляющий собой всего лишь ПТ с p-n переходом и затвором, соединенным с истоком.

Идеальный источник тока обладает бесконечно большим внутренним сопротивлением, поэтому ток j (t) не зависит от параметров внешней цепи, присоединенной к источнику. В режиме холостого хода, когда к внешним зажимам присоединено бесконечно большое сопротивление, ток идеального источника должен сохранить свое значение, а напряжение на нем и отдаваемая им мощность стремятся к бесконечности.
Источник тока на основе операционного усилителя. Идеальный источник тока должен обеспечивать постоянный ток, не зависящий от величины сопротивления нагрузки. Соберите схему в соответствии с рис. 7.8. Изменяющееся сопротивление нагрузки обеспечивает потенциометр. Ток на нагрузке измеряется универсальным цифровым измерительным прибором, а напряжение на нагрузке осциллографом.
Схема активного приемника.| Пассивный двухполюсник.| Схема источника э. д. с.| Схема источника тока. Идеальный источник тока обеспечивает протекание неизменного тока в приемниках при всех изменениях их сопротивления. У реального источника ток во внешней цепи изменяется при изменениях сопротивления.
Идеальный источник тока представляет собой активный элемент, ток которого не зависит от напряжения на его выводах. Предполагается, что внутреннее сопротивление такого идеального источника бесконечно велико и поэтому параметры внешней электрической цепи, от которых зависит напряжение на выводах источника, не влияют на ток источника.
Идеальный источник тока обеспечивает протекание неизменного тока в приемниках при всех изменениях их сопротивления. У реального источника ток so внешней цепи изменяется при изменениях сопротивления. Поэтому реальный источник тока изображается на схемах замещения как идеальный источник тока с параллельным включением резистивного элемента (рис. 1 - 3, г), сопротивление которого определяется из характеристики элемента. Примером реального источника тока может служить электронный усилитель, внутреннее сопротивление которого обычно велико по сравнению с сопротивлением нагрузки.
Идеальный источник тока обозначается на схемах кружочком с двойной стрелкой внутри (рис. 1.7), показывающей направление тока.
Источники напряжения постоянного и переменного тока. Идеальный источник тока - это черный шщк, имеющий два вывода и поддержи-шющий постоянный ток во внешней цепи гезависимо от величины сопротивления гагрузки и приложенного напряжения.
Идеальный источник тока - это черный ящик, имеющий два вывода и поддерживающий постоянный ток во внешней цепи независимо от величины сопротивления нагрузки и приложенного напряжения. Для того чтобы выполнять свои функции, он должен уметь поддерживать любое нужное напряжение между своими выводами. Реальные источники тока (самая нелюбимая тема для большинства учебников) [ 1; мд имеют ограниченный диапазон, в котором может изменяться создаваемое ими напряжение (он называ - ется рабочим диапазоном выходного напряжения или просто диапазоном), и, кроме того, выходной ток источника нельзя считать абсолютно постоянным. Источник тока предпочитает нагрузку в виде замкнутой цепи, а нагрузку в виде разомкнутой цепи недолюбливает.
Идеальные источники тока Is и мощности Ag задаются формулами (гл.
К принципу получения точного а нте - НОГО ИСТОЧНИКЗ ТОКЗ - грирования и б дифференцирования. ЛГУ - маг - Приближение К УСЛОВИЯМ ПО. Идеальным источником тока называется такой источник электрической энергии, который создает в цепи заданное значение тока независимо от величины сопротивления нагрузки.
Подключение нагрузки к идеальным источникам напряжения и тока.
Идеальным источником тока называют активный элемент, ток которого не зависит от параметров цепи, подключенной к его зажимам. Этот ток называют задающим током источника.
Обозначения идеальных элементов схем замещения цепей постоянного тока. Идеальным источником тока называют источник, величина тока которого не зависит от напряжения и равна току короткого замыкания / к источника питания.
Источники тока. идеальные (а, б и конечной мощности (в. Поэтому идеальный источник тока, так же как и идеальный источник напряжения, рассматривается как источник бесконечной мощности.
Обозначение идеального источника тока (а и его внешняя характеристика (б. Ток идеального источника тока не зависит от сопротивления нагрузки и остается равным / к.
Эквивалентна л схема анодной цепи усилителя.| Схемы усилителей. a - с общей сеткой. б - с общим анодом. У идеального источника тока величина потребляемого тока не должна зависеть от сопротивления нагрузки, подключенного к его зажимам. К реальным генераторам тока относятся такие, у которых внутреннее сопротивление намного превышает сопротивление нагрузки.
Электрическая схема (а, ее ориентированный граф (о и. При этом идеальный источник тока заменяют разомкнутой ветвью, а источник напряжения - замкнутой. Полученная структура называется л и н е и ны м графом.
Ветви же с идеальными источниками тока вообще не входят в топологическую схему, так как внутренняя проводимость таких источников равна нулю и, соответственно, сопротивление таких ветвей равно бесконечности.
Двухполюсник состоит из двух идеальных источников тока, соединенных параллельно относительно зажимов А и В.
Чему равна внутренняя проводимость идеального источника тока.
Транзистор Т [ полагается идеальным источником тока с крутизной S, зависящей от первой гармоники тока коллектора.

Усилитель может работать в режиме идеального источника тока. Ниже описаны преимущества, которые дает применение отрицательной обратной связи в операторных усилителях.
Аналогично, наличие в схеме идеальных источников тока, включенных в контур, приводит к пониженшо порядка системы уравнении Кирхгофа за счет исключения контуров с известным током. При такой замене режим цепи не изменяется, так как токи в промежуточных узлах взаимно компенсируются.
Через конденсатор пропускается ток от идеального источника тока, создающий на нем напряжение, пропорциональное интегралу тока.
По литературным данным1 они являются идеальными источниками тока для окраски в электрическом поле.
В одной из ветвей цепи действует идеальный источник тока. Как следует учесть ток источника при записи уравнения первого закона Кирхгофа для узла, к которому подходит эта ветвь.
Схема катодного повторителя (а, истокового повторителя (б и схема замещения (в. Схема замещения для малого сигнала содержит идеальный источник тока, управляемый напряжением иЗИ, и нагрузочное сопротивление RH. Поскольку ток во входной цепи ничтожно мал, источник входного напряжения изображен ненагруженным.
В этом случае схема замещения содержит только идеальный источник тока, внутренняя проводимость gt С gH и исключается из схемы замещения.
Выходное сопротивление ИТУН, как и идеального источника тока, равно бесконечности.
ДУ соединены) и в случае идеального источника тока (R3 - со) реакция ДУ на выходе отсутствует.
Если в схеме имеются ветви с идеальными источниками тока, то сопротивления таких ветвей rk оо.
В цепи (рис. 1.12) действует идеальный источник тока.
Полное отсутствие тока затвора делает из ПТ идеальный источник тока при включении его совместно с ОУ. Пример такой схемы показан на рис. 6.31. n - Канальный МОП-транзистор отбирает ток от нагрузки; ток протекает и через резистор Ri, и падение напряжения на Ri сравнивается с напряжением на неин - вертирующем входе ОУ. Так как ток затвора отсутствует, то сигнал на Ri, пропорциональный выходному току и снимаемый с резистора, не содержит ошибки - исключается ошибка, которую вносил бы ток базы в подобной схеме на биполярном транзисторе. Любое отклонение от идеальной характеристики источника тока может быть обязано своим появлением только нелинейности токоотбирающего резистора и погрешностям ОУ, таким, как смещение, сдвиг и дрейф.
Так как якорная цепь двигателя питается от идеального источника тока, то график тока якоря / я не зависит ни от величины (Узи, ни от момента статической нагрузки.
Эквивалентная схема реального источника тока.| Пример использования правила узлов.| Пример использования второго закона Кирхгофа.
Предельный переход Rt - оо приводит к идеальному источнику тока.
О) В одной из ветвей цепи действует идеальный источник тока.
Схема имеет особенность в виде ветви, содержащей только идеальный источник тока J. Для устранения особенности заменим источник тока двумя источниками тока J (рис. 1.54 Р), при этом уравнения Кирхгофа для токов в узлах 1, 2, 3 не изменятся.
Для динамической цепи параметры идеального источника напряжения или идеального источника тока могут произвольным образом зависеть от времени.
Метод наложения может быть применен и при действии идеальных источников тока. В этом случае ток в любой ветви равен алгебраической сумме частичных токов при действии каждого источника тока в отдельности.
В цепи (рис. 1.11, а) действует идеальный источник тока. На рис. 1.11, б изображена временная диаграмма тока источника; R 2 ом, L 1 гн.
Электрометрический усилитель как. источник тока, управляемый напряжением. При г - оо и г - оо получим идеальный источник тока. Параметр S называют крутизной или проводимостью схемы.
Определить эквивалентное сопротивление цепи в установившемся режиме относительно зажимов идеального источника тока, считая задающее напряжение идеального источника напряжения равным нулю.
ЭДС без последовательно соединенного с ним Re нельзя заменить идеальным источником тока.
ZB двухполюсника, изображенного на рис. 137, когда внутреннее сопротивление идеального источника тока равно бесконечности.
Источники тока. идеальные (а, б и конечной мощности (б.| Вольт-амперные характеристики источников напряжения тока. По мере неограниченного увели-нения сопротивления внешней электрической цепи, присоединенной к идеальному источнику тока, напряжение на его зажимах и соответственно мощность, развиваемая им, неограниченно возрастают. Поэтому идеальный источник тока, так же как и идеальный источник напряжения, рассматривается как источник бесконечной мощности.
Вольт-амперные характеристики источников э. д. с. и тока. По мере неограниченного увеличения сопротивления внешней электрической цепи, присоединенной к идеальному источнику тока, напряжение па его выводах и соответственно мощность, развиваемая им, неограниченно возрастают. Поэтому идеальный источник тока, так же как и идеальный источник напряжения, рассматривается как источник бесконечной мощности.

На рис. 3.9 изображена схема, которая является хорошим приближением к идеальному источнику тока, без сдвига напряжения (УБэ, характерного для транзисторного источника тока.

Похожие публикации