Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Понятие симметрии. Виды симметрии

К понятию о симметрии мы привыкаем с детства. Мы знаем, что симметрична бабочка: у неё одинаковы правое и левое крылышки; симметрично колесо, секторы которого одинаковы; симметричны узоры орнаментов, звёздочки снежинок.

Проблеме симметрии посвящена поистине необозримая литература. От учебников и научных монографий до произведений, обращающих внимание не столько на чертежи и формулы, сколько на художественные образы.

Сам термин "симметрия" по-гречески означает "соразмерность", которую древние философы понимали как частный случай гармонии - согласования частей в рамках целого. Многие народы с древних времён владели представлением о симметрии в широком смысле - как эквиваленте уравновешенности и гармонии.

Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: неживой, живой природы и общества. С ней мы встречаемся всюду. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки. Действительно симметричные объекты окружают нас буквально со всех сторон, мы имеем дело с симметрией везде, где наблюдается какая-либо упорядоченность. Получается, что симметрия – это уравновешенность, упорядоченность, красота, совершенство. Она многообразна, вездесуща. Она создает красоту и гармонию. Симметрия буквально пронизывает весь окружающий нас мир, именно поэтому выбранная мной тема всегда будет актуальной.

Симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то, несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям – к поворотам, переносам, взаимной замене частей, отражениям и т. д. В связи с этим выделяют разные виды симметрии. Рассмотрим все виды более подробно.

ОСЕВАЯ СИММЕТРИЯ.

Симметрия относительно прямой называется осевой симметрией (зеркальным отражением относительно прямой).

Если точка А лежит на оси l, то она симметрична самой себе, т. е. А совпадает с А1.

В частности, если при преобразовании симметрии относительно оси l фигура F переходит сама в себя, то она называется симметричной относительно оси l, а ось l называется её осью симметрии.

ЦЕНТРАЛЬНАЯ СИММЕТРИЯ.

Фигура называется центрально-симметричной, если существует точка, относительно которой каждая точка фигуры симметрична некоторой точке той же фигуры. А именно: движение, изменяющее направления на противоположные, является центральной симметрией.

Точка О называется центром симметрии и является неподвижной. Других неподвижных точек это преобразование не имеет. Примерами фигур, обладающих центром симметрии, являются параллелограмм, окружность и т. д.

Знакомые понятия поворота и параллельного переноса используются при определении так называемой трансляционной симметрии. Рассмотрим трансляционную симметрию более подробно.

1. ПОВОРОТ

Преобразование, при котором каждая точка А фигуры (тела) поворачивается на один и тот же угол α вокруг заданного центра О, называется вращением или поворотом плоскости. Точка О называется центром вращения, а угол α - углом вращения. Точка О является неподвижной точкой этого преобразования.

Интересна поворотная симметрия кругового цилиндра. Он имеет бесконечное число поворотных осей 2-го порядка и одну поворотную ось бесконечно высокого порядка.

2. ПАРАЛЛЕЛЬНЫЙ ПЕРЕНОС

Преобразование, при котором каждая точка фигуры (тела) перемещается в одном и том же направлении на одно и то же расстояние, называется параллельным переносом.

Чтобы задать преобразование параллельного переноса достаточно задать вектор а.

3. СКОЛЬЗЯЩАЯ СИММЕТРИЯ

Скользящей симметрией называется такое преобразование, при котором последовательно выполняются осевая симметрия параллельный перенос. Скользящая симметрия - изометрия евклидовой плоскости. Скользящей симметрией называют композицию симметрии относительно некоторой прямой l и переноса на вектор, параллельный l (этот вектор может быть и нулевым).

Скользящую симметрию можно представить в виде композиции 3 осевых симметрий (теорема Шаля).

ЗЕРКАЛЬНАЯ СИММЕТРИЯ

Что может быть больше похоже на мою руку или мое ухо, чем их собственное отражение в зеркале? И все же руку, которую я вижу в зеркале, нельзя поставить на место настоящей руки.

Иммануил Кант.

Если преобразование симметрии относительно плоскости переводит фигуру (тело) в себя, то фигура называется симметричной относительно плоскости, а данная плоскость – плоскостью симметрии этой фигуры. Такую симметрию называют зеркальной. Как показывает само название, зеркальная симметрия связывает некоторый предмет и его отражение в плоском зеркале. Два симметричных тела не могут быть «вложены друг в друга», так как в сравнении с самим объектом его зазеркальный двойник оказывается, вывернутым вдоль направления, перпендикулярного плоскости зеркала.

Симметричные фигуры при всем их сходстве существенно отличаются друг от друга. Наблюдаемый в зеркале двойник не является точной копией самого объекта. Зеркало не просто копирует объект, а меняет местами (представляет) передние и задние по отношению к зеркалу части объекта. Например, если у вас родинка находится на правой щеке, то у зазеркального двойника на левой. Поднесите к зеркалу книгу, – и вы увидите, что буквы как бы вывернуты наизнанку. В зеркале всё переставлено справа налево.

Зеркально равными телами называются тела, если при надлежащем их смещении они могут образовать две половины зеркально симметричного тела.

2. 2 Симметрия в природе

Фигура обладает симметрией, если существует движение (преобразование не тождественное), переводящее ее в себя. Например, фигура обладает поворотной симметрией, если она переводится в себя некоторым поворотом. Но в природе с помощью математики красота не создается, как в технике и в искусстве, а лишь фиксируется, выражается. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В основе строения любой живой формы лежит принцип симметрии. Из прямого наблюдения мы можем вывести законы геометрии и почувствовать их несравненное совершенство. Этот порядок являющийся закономерной необходимостью, поскольку ничто в природе не служит чисто декоративным целям, помогает нам найти общую гармонию, на которой зиждется все мироздание.

Мы видим, что природа проектирует любой живой организм согласно определенной геометрической схеме, причем законы мироздания имеют четкое обоснование.

Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических.

Говоря о роли симметрии в процессе научного познания, следует особо выделить применение метода аналогий. По словам французского математика Д. Пойа, "не существует, возможно, открытий ни в элементарной, ни в высшей математике, ни, пожалуй, в любой другой области, которые могли быть сделаны без аналогий".В основе большинства этих аналогий лежат общие корни, общие закономерности, которые проявляются одинаковым образом на разных уровнях иерархии.

Итак, в современном понимании симметрия - это общенаучная философская категория, характеризующая структуру организации систем. Важнейшим свойством симметрии является сохранение (инвариантность) тех или иных признаков (геометрических, физических, биологических и т. д.) по отношению к вполне определенным преобразованиям. Математическим аппаратом изучения симметрии сегодня является теория групп и теория инвариантов.

Симметрия в мире растений

Специфика строения растений определяется особенностями среды обитания, к которой они приспосабливаются. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии. Дерево при помощи корневой системы поглощает влагу и питательные вещества из почвы, то есть снизу, а остальные жизненно важные функции выполняются кроной, т. е, наверху. В то же время направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы; по всем этим направлениям к дереву в равной мере поступает воздух, свет, влага.

Дерево имеет вертикальную поворотную ось (ось конуса) и вертикальные плоскости симметрии.

Когда мы хотим нарисовать лист растения или бабочку, то нам приходится учитывать их осевую симметрию. Средняя жилка для листа служит осью симметрии. Ярко выраженной симметрией обладают листья, ветви, цветы, плоды. Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины).

В многообразном мире цветов встречаются поворотные оси разных порядков. Однако наиболее распространена поворотная симметрия 5-го порядка. Эта симметрия встречается у многих полевых цветов (колокольчик, незабудка, герань, гвоздика, зверобой, лапчатка), у цветов плодовых деревьев (вишня, яблоня, груша, мандарин и др.), у цветов плодово-ягодных растений (земляника, малина, калина, черемуха, рябина, шиповник, боярышник) и др.

Этот факт академик Н. Белов объясняет тем, что ось 5-го порядка - своеобразный инструмент борьбы за существование, "страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решеткой". Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решеткой. Однако упорядоченные структуры в ней представлены очень широко.

В своей книге «Этот правый, левый мир» М. Гарднер пишет: «На Земле жизнь зародилась в сферически симметричных формах, а потом стала развиваться по двум главным линиям: образовался мир растений, обладающих симметрией конуса, и мир животных с билатеральной симметрией».

В природе существуют тела, обладающие винтовой симметрией, то есть совмещением со своим первоначальным положением после поворота на угол вокруг оси, дополнительным сдвигом вдоль той же оси.

Если - рациональное число, то поворотная ось оказывается также осью переноса.

Листья на стебле расположены не по прямой, а окружают ветку по спирали. Сумма всех предыдущих шагов спирали, начиная с вершины, равна величине последующего шага А+В=С, В+С=Д и т. д.

Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное, ботаническое явление носит название филлотаксиса (буквально «устроение листа»).

Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно четко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.

Симметрия в мире животных

Значение формы симметрии для животного легко понять, если поставить её в связь с образом жизни, экологическими условиями. Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии.

Поворотная симметрия 5-го порядка встречается и в животном мире. Это симметрия, при которой объект совмещается сам с собой при повороте вокруг поворотной оси 5 раз. Примерами могут служить морская звезда и панцирь морского ежа. Вся кожа морских звёзд как бы инкрустирована мелкими пластинками из углекислого кальция, от некоторых пластинок отходят иглы, часть которых подвижна. Обычная морская звезда обладает 5 плоскостями симметрии и 1 осью вращения 5-ого порядка (это самая высокая симметрия среди животных). Ее предки, по-видимому, имели более низкую симметрию. Об этом свидетельствует, в частности, строение личинок звезды: они, как и большинство живых существ, в том числе человек, обладают лишь одной плоскостью симметрии. Морские звезды не имеют горизонтальной плоскости симметрии: у них есть «верх» и «низ». Морские ежи похожи на живые подушечки для булавок; шаровидное тело их несёт длинные и подвижные иголки. У этих животных известковые пластинки кожи слились и образовали сферическую раковину панцирь. В центре нижней поверхности имеется рот. Амбулакральные ножки (воднососудистая система) собраны в 5 полос на поверхности раковины.

Однако в отличие от мира растений поворотная симметрия в животном мире наблюдается редко.

Для насекомых, рыб, яиц, животных характерно несовместимое с поворотной симметрией различие между направлениями «вперед» и «назад».

Направление движения является принципиально выделенным направлением, относительно которого нет симметрии у любого насекомого, любой птицы или рыбы, любого животного. В этом направлении животное устремляется за пищей, в этом же направлении оно спасается от преследователей.

Кроме направления движения симметрию живых существ определяет еще одно направление - направление силы тяжести. Оба направления существенны; они задают плоскость симметрии животного существа.

Билатеральная (зеркальная) симметрия - характерная симметрия всех представителей животного мира. Эта симметрия хорошо видна у бабочки. Симметрия левого и правого крыла проявляются здесь с почти математической строгостью.

Можно сказать, что каждое животное (а также насекомое, рыба, птица) состоит из двух энантиоморфов - правой и левой половин. Энантиоморфами являются также парные детали, одна из которых попадает в правую, а другая в левую половину тела животного. Так, энантиоморфами являются правое и левое ухо, правый и левый глаз, правый и левый рог и т. д.

Упрощение условий жизни может привести к нарушению двусторонней симметрии, и животные из двусторонне-симметричных становятся радиально-симметричными. Это относится к иглокожим (морские звёзды, морские ежи, морские лилии). Все морские животные имеют радиальную симметрию, при которой части тела отходят по радиусам от центральной оси, подобно спицам колеса. Степень активности животных коррелирует с их типом симметрии. Радиально симметричные иглокожие обычно мало подвижны, перемещаются медленно или же прикреплены к морскому дну. Тело морской звезды состоит из центрального диска и 5-20 или большего числа радиально отходящих от него лучей. На математическом языке эту симметрию называют поворотной симметрией.

Отметим, наконец, зеркальную симметрию человеческого тела (речь идет о внешнем облике и строении скелета). Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом. Не станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей. И все же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы.

Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Именно вопросам симметрии и зеркального отражения здесь и уделяется внимание.

Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе.

В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы, в общем, похожи друг на друга. Однако наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчеркивают эту симметрию.

Наша собственная зеркальная симметрия очень удобна для нас, она позволяет нам двигаться прямолинейно и с одинаковой лёгкостью поворачиваться вправо и влево. Столь же удобна зеркальная симметрия для птиц, рыб и других активно движущихся существ.

Двусторонняя симметрия означает, что одна сторона тела животного представляет собой зеркальное отражение другой стороны. Такой тип организации характерен для большинства беспозвоночных, в особенности для кольчатых червей и для членистоногих – ракообразных, паукообразных, насекомых, бабочек; для позвоночных – рыб, птиц, млекопитающих. Впервые двусторонняя симметрия появляется у плоских червей, у которых передний и задний концы тела различаются между собой.

Рассмотрим ещё один тип симметрии, который встречается в животном мире. Это винтовая или спиральная симметрия. Винтовая симметрия есть симметрия относительно комбинации двух преобразований - поворота и переноса вдоль оси поворота, т. е. идёт перемещение вдоль оси винта и вокруг оси винта.

Примерами природных винтов являются: бивень нарвала (небольшого китообразного, обитающего в северных морях) – левый винт; раковина улитки – правый винт; рога памирского барана – энантиоморфы (один рог закручен по левой, а другой по правой спирали). Спиральная симметрия не бывает идеальной, например, раковина у моллюсков сужается или расширяется на конце. Хотя внешняя спиральная симметрия у многоклеточных животных встречается редко, зато спиральную структуру имеют многие важные молекулы, из которых построены живые организмы – белки, дезоксирибонуклеиновые кислоты - ДНК.

Симметрия в неживой природе

Симметрия кристаллов - свойство кристаллов совмещаться с собой в различных положениях путём поворотов, отражений, параллельных переносов либо части или комбинации этих операций. Симметрия внешней формы (огранки) кристалла определяется симметрией его атомного строения, которая обусловливает также и симметрию физических свойств кристалла.

Рассмотрим внимательно многогранные формы кристаллов. Прежде всего, видно, что кристаллы разных веществ отличаются друг от друга по своим формам. Каменная соль - это всегда кубики; горный хрусталь - всегда шестигранные призмы, иногда с головками в виде трехгранных или шестигранных пирамид; алмаз - чаще всего правильные восьмигранники (октаэдры); лед - шестигранные призмочки, очень похожие на горный хрусталь, а снежинки - всегда шестилучевые звездочки. Что бросается в глаза, когда смотришь на кристаллы? Прежде всего, их симметрия.

Многие думают, что кристаллы - это красивые, редко встречающиеся камни. Они бывают разных цветов, обычно прозрачные и, что самое замечательное, обладают красивой правильной формой. Чаще всего кристаллы представляют собой многогранники, стороны (грани) их идеально плоские, рёбра строго прямые. Они радуют глаз чудесной игрой света в гранях, удивительной правильностью строения.

Однако кристаллы - совсем не музейная редкость. Кристаллы окружают нас повсюду. Твёрдые тела, из которых мы строем дома и станки, вещества, которые мы употребляем в быту, - почти все они относятся к кристаллам. Почему же мы этого не видим? Дело в том, что в природе редко попадаются тела в виде отдельных одиночных кристаллов (или как говорят монокристаллов). Чаще всего вещество встречается в виде прочно сцепившихся кристаллических зёрнышек уже совсем малого размера - меньше тысячной доли миллиметра. Такую структуру можно увидеть лишь в микроскоп.

Тела, состоящие из кристаллических зёрнышек, называются мелкокристаллическими, или поликристаллическими ("поли" - по-гречески "много").

Конечно, к кристаллам надо отнести и мелкокристаллические тела. Тогда окажется, что почти все окружающие нас твёрдые тела - кристаллы. Песок и гранит, медь и железо, краски - всё это кристаллы.

Есть и исключения; стекло и пластмассы не состоят из кристалликов. Такие твёрдые тела называются аморфными.

Изучать кристаллы - это значит изучать почти все окружающие нас тела. Понятно, как это важно.

Одиночные кристаллы сразу же узнают по правильности форм. Плоские грани и прямые рёбра являются характерным свойством кристалла; правильность формы несомненно связана с правильностью внутреннего строения кристалла. Если кристалл в каком-то направлении особо вытянулся, значит, и строение кристалла в этом направлении какое-то особенное.

Есть центр симметрии и в кубике каменной соли, и в восьмиграннике алмаза, и в звёздочке снежинки. А вот в кристаллике кварца центра симметрии нет.

Наиболее точная симметрия осуществляется в мире кристаллов, но и здесь она неидеальная: невидимые глазом трещинки, царапины всегда делают равные грани слегка отличными друг от друга.

Все кристаллы симметричны. Это значит, что в каждом кристаллическом многограннике можно найти плоскости симметрии, оси симметрии, центр симметрии или другие элементы симметрии так, чтобы совместились, друг с другом одинаковые части многогранника.

Все элементы симметрии повторяют одинаковые части фигуры, все придают ей симметричную красоту и завершенность, но центр симметрии, - самый интересный. От того, есть ли в кристалле центр симметрии или нет его, могут зависеть не только форма, но и очень многие физические свойства кристалла.

Соты - настоящий конструкторский шедевр. Они состоят из ряда шестигранных ячеек. Это самая плотная упаковка, позволяющая наивыгоднейшим образом разместить в ячейке личинку и при максимально возможном объеме наиболее экономно использовать строительный материал-воск.

III Заключение

Симметрия пронизывает буквально все вокруг, захватывая, казалось бы, совершенно неожиданные области и объекты Она, проявляясь в самых различных объектах материального мира, несомненно, отражает наиболее общие, наиболее фундаментальные его свойства. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке.

Мы видим, что природа проектирует любой живой организм согласно определенной геометрической схеме, причем законы мироздания имеют четкое обоснование. Поэтому исследование симметрии разнообразных природных объектов и сопоставление его результатов является удобным и надежным инструментом познания основных закономерностей существования материи.

Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии. Существует множество видов симметрии, как в растительном, так и в животном мире, но при всем многообразии живых организмов, принцип симметрии действует всегда, и этот факт еще раз подчеркивает гармоничность нашего мира. Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте.

Итак, на плоскости мы имеем четыре вида движений, переводящих фигуру F в равную фигуру F1:

1) параллельный перенос;

2) осевая симметрия (отражение от прямой);

3) поворот вокруг точки (Частичный случай – центральная симметрия);

4) «скользящее» отражение.

В пространстве к вышеперечисленным видам симметрии добавляется зеркальная.

Считаю, что цель, поставленная в реферате, достигнута. При написании реферата наибольшей сложностью для меня стали собственные выводы. Думаю, что моя работа поможет школьникам расширить представление о симметрии. Надеюсь, что мой реферат войдет в методический фонд кабинета математики.

разнообразие красит и тешит вкус .

Определение слова «Симметрия» по БСЭ:

Симметрия — Симметрия (от греч. symmetria — соразмерность)
в математике,
1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости &alpha. в пространстве (относительно прямой а на плоскости), — преобразование пространства (плоскости), при котором каждая точка М переходит в точку M такую, что отрезок MM перпендикулярен плоскости &alpha. (прямой а) и делится ею пополам.
Плоскость &alpha. (прямая а) называется плоскостью (осью) С.
Отражение — пример ортогонального преобразования, изменяющего ориентацию (в отличие от собственного движения) . Любое ортогональное преобразование можно осуществить последовательным выполнением конечного числа отражений — этот факт играет существенную роль в исследовании С. геометрических фигур.
2) Симметрия (в широком смысле) — свойство геометрической фигуры Ф, характеризующее некоторую правильность формы Ф, неизменность её при действии движений и отражений. Точнее, фигура Ф обладает С. (симметрична), если существует нетождественное ортогональное преобразование, переводящее эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой, называемой группой симметрии этой фигуры (иногда сами эти преобразования называются симметриями).
Так, плоская фигура, преобразующаяся в себя при отражении, симметрична относительно прямой — оси С. (рис. 1). группа симметрии состоит из двух элементов. Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360°/n, n — целое число &ge. 2, переводят её в себя, то Ф обладает С. n-го порядка относительно точки O — центра С.
Примером таких фигур являются правильные многоугольники (рис. 2). группа С. здесь — т. н. циклическая группа n-го порядка. Окружность обладает С. бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).
Простейшими видами пространственной С., помимо С., порожденной отражениями, являются центральная С., осевая С. и С. переноса.
а) В случае центральной симметрии (инверсии) относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трёх взаимно перпендикулярных плоскостей, другими словами, точка О — середина отрезка, соединяющего симметричные точки Ф (рис. 3). б) В случае осевой симметрии, или С. относительно прямой n-го порядка, фигура накладывается на себя вращением вокруг некоторой прямой (оси С.) на угол 360°/n. Например, куб имеет прямую AB осью С. третьего порядка, а прямую CD — осью С. четвёртого порядка (рис. 3). вообще, правильные и полуправильные многогранники симметричны относительно ряда прямых.
Расположение, количество и порядок осей С. играют важную роль в кристаллографии (см. Симметрия кристаллов), в) Фигура, накладывающаяся на себя последовательным вращением на угол 360°/2k вокруг прямой AB и отражением в плоскости, перпендикулярной к ней, имеет зеркально-осевую С. Прямая AB, называется зеркально-поворотной осью С. порядка 2k, является осью С. порядка k (рис. 4). Зеркально-осевая С. порядка 2 равносильна центральной С. г) В случае симметрии переноса фигура накладывается на себя переносом вдоль некоторой прямой (оси переноса) на какой-либо отрезок. Например, фигура с единственной осью переноса обладает бесконечным множеством плоскостей С. (поскольку любой перенос можно осуществить двумя последовательными отражениями от плоскостей, перпендикулярных оси переноса) (рис. 5). Фигуры, имеющие несколько осей переноса, играют важную роль при исследовании кристаллических решёток.
В искусстве С. получила распространение как один из видов гармоничной композиции . Она свойственна произведениям архитектуры (являясь непременным качеством если не всего сооружения в целом, то его частей и деталей — плана, фасада, колонн, капителей и т. д.) и декоративно-прикладного искусства. С. используется в качестве основного приёма построения бордюров и Орнаментов (плоских фигур, обладающих соответственно одной или несколькими С. переноса в сочетании с отражениями) (рис. 6, 7).
Комбинации С., порожденные отражениями и вращениями (исчерпывающие все виды С. геометрических фигур), а также переносами, представляют интерес и являются предметом исследования в различных областях естествознания . Например, винтовая С., осуществляемая поворотом на некоторый угол вокруг оси, дополненным переносом вдоль той же оси, наблюдается в расположении листьев у растений (рис. 8) (подробнее см. в ст. Симметрия в биологии). С. конфигурации молекул, сказывающаяся на их физических и химических характеристиках, имеет значение при теоретическом анализе строения соединений, их свойств и поведения в различных реакциях (см. Симметрия в химии). Наконец, в физических науках вообще, помимо уже указанной геометрической С. кристаллов и решёток, приобретают важное значение представления о С. в общем смысле (см. ниже) . Так, симметричность физического пространства-времени, выражающаяся в его однородности и изотропности (см. Относительности теория), позволяет установить т. н. Сохранения законы. обобщённая С. играет существенную роль в образовании атомных спектров и в классификации элементарных частиц (см. Симметрия в физике).
3) Симметрия (в общем смысле) означает инвариантность структуры математического (или физического) объекта относительно его преобразований. Например, С. законов теории относительности определяется инвариантностью их относительно Лоренца преобразований. Определение совокупности преобразований, оставляющих без изменения все структурные соотношения объекта, т. е. определение группы G его автоморфизмов, стало руководящим принципом современной математики и физики, позволяющим глубоко проникнуть во внутреннее строение объекта в целом и его частей.
Поскольку такой объект можно представить элементами некоторого пространства P, наделённого соответствующей характерной для него структурой, постольку преобразования объекта являются преобразованиями P. Т. о. получается представление группы G в группе преобразований P (или просто в P), а исследование С. объекта сводится к исследованию действия G на P и отысканию инвариантов этого действия. Точно так же С. физических законов, управляющих исследуемым объектом и обычно описывающихся уравнениями, которым удовлетворяют элементы пространства P, определяется действием G на такие уравнения.
Так, например, если некоторое уравнение линейно на линейном же пространстве P и остаётся инвариантным при преобразованиях некоторой группы G, то каждому элементу g из G соответствует линейное преобразование T g в линейном пространстве R решений этого уравнения. Соответствие g
&rarr. T g является линейным представлением G и знание всех таких её представлений позволяет устанавливать различные свойства решений, а также помогает находить во многих случаях (из «соображений симметрии») и сами решения . Этим, в частности, объясняется необходимость для математики и физики развитой теории линейных представлений групп. Конкретные примеры см. в ст. Симметрия в физике.
Лит.: Шубников А. В., Симметрия. (Законы симметрии и их применение в науке, технике и прикладном искусстве), М. — Л., 1940. Кокстер Г. С. М., Введение в геометрию, пер. с англ., М., 1966. Вейль Г., Симметрия, пер. с англ., М., 1968. Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.
М. И. Войцеховский.
Рис. 1. Плоская фигура, симметричная относительно прямой АВ. точка М преобразуется в М&rsquo. при отражении (зеркальном) относительно АВ.
Рис. 2. Звездчатый правильный многоугольник, обладающий симметрией восьмого порядка относительно своего центра.
Рис. 3. Куб, имеющий прямую AB осью симметрии третьего порядка, прямую CD — осью симметрии четвёртого порядка, точку О — центром симметрии. Точки М и M куба симметричны как относительно осей AB и CD, так и относительно центра О.
Рис. 4. Многогранник, обладающий зеркально-осевой симметрией. прямая AB — зеркально-поворотная ось четвёртого порядка.
Рис. 5. Фигуры, обладающие симметрией переноса: верхняя фигура имеет также бесконечное множество вертикальных осей симметрии (второго порядка), т. е. плоскостей отражения
Рис. 6. Бордюр, накладывающийся на себя или переносом на некоторый отрезок вдоль горизонтальной оси, или отражением (зеркальным) относительно той же оси и переносом вдоль неё на отрезок, вдвое меньший.
Рис. 7. Орнамент. осью переноса является любая прямая, соединяющая центры двух каких-либо завитков.
Рис. 8. Фигура, обладающая винтовой симметрией, которая осуществляется переносом вдоль вертикальной оси, дополненным вращением вокруг неё на 90°.

Симметрия — в физике. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают С. (или инвариантны) относительно данных преобразований. В математическом отношении преобразования С. составляют группу.
Опыт показывает, что физические законы симметричны относительно следующих наиболее общих преобразований.
Непрерывные преобразования
1) Перенос (сдвиг) системы как целого в пространстве. Это и последующие пространственно-временные преобразования можно понимать в двух смыслах: как активное преобразование — реальный перенос физической системы относительно выбранной системы отсчёта или как пассивное преобразование — параллельный перенос системы отсчёта. С. физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, т. е. отсутствие в пространстве каких-либо выделенных точек (однородность пространства).
2) Поворот системы как целого в пространстве. С. физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).
3) Изменение начала отсчёта времени (сдвиг во времени). С. относительно этого преобразования означает, что физические законы не меняются со временем.
4) Переход к системе отсчёта, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью . С. относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчёта (см. Относительности теория).
5) Калибровочные преобразования. Законы, описывающие взаимодействия частиц, обладающих каким-либо зарядом (электрическим зарядом, барионным зарядом, лептонным зарядом, гиперзарядом), симметричны относительно калибровочных преобразований 1-го рода. Эти преобразования заключаются в том, что волновые функции всех частиц могут быть одновременно умножены на произвольный фазовый множитель:


&psi. j &rarr. e iz j &beta. &psi. j , &psi. * j &rarr. e &minus.iz j &beta. &psi. * j ,
(1)

где &psi. j — волновая функция частицы j, &psi. * j — комплексно сопряжённая ей функция, z j — соответствующий частице заряд, выраженный в единицах элементарного заряда (например, элементарного электрического заряда e), &beta. — произвольный числовой множитель.
Наряду с этим Электромагнитные взаимодействия симметричны относительно калибровочных (градиентных) преобразований 2-го рода для потенциалов электромагнитного поля (A, &phi.):
A &rarr. А + grad f, 23/2302744.tif, (2)
где &fnof.(x, y, z, t) — произвольная функция координат (x, y, z) и времени (t), c — скорость света. Чтобы преобразования (1) и (2) в случае электромагнитных полей выполнялись одновременно, следует обобщить калибровочные преобразования 1-го рода: необходимо потребовать, чтобы законы взаимодействия были симметричны относительно преобразований (1) с величиной &beta., являющейся произвольной функцией координат и времени: 23/2302745.tif, где &eta. — Планка постоянная.
Связь калибровочных преобразований 1-го и 2-го рода для электромагнитных взаимодействий обусловлена двоякой ролью электрического заряда: с одной стороны, электрический заряд является сохраняющейся величиной, а с другой — он выступает как константа взаимодействия, характеризующая связь электромагнитного поля с заряженными частицами.
Преобразования (1) отвечают законам сохранения различных зарядов (см. ниже), а также некоторым внутренним С. взаимодействия. Если заряды являются не только сохраняющимися величинами, но и источниками полей (как электрический заряд), то соответствующие им поля должны быть также калибровочными полями (аналогично электромагнитным полям), а преобразования (1) обобщаются на случай, когда величины &beta. являются произвольными функциями координат и времени (и даже операторами, преобразующими состояния внутренней С.).
Такой подход в теории взаимодействующих полей приводит к различным калибровочным теориям сильных и слабых взаимодействий (т. н. Янга — Милса теория).
6) Изотопическая инвариантность сильных взаимодействий. Сильные взаимодействия симметричны относительно поворотов в особом «изотоническом пространстве». Одним из проявлений этой С. является зарядовая независимость ядерных сил, заключающаяся в равенстве сильных взаимодействий нейтронов с нейтронами, протонов с протонами и нейтронов с протонами (если они находятся соответственно в одинаковых состояниях). Изотопическая инвариантность является приближённой С., нарушаемой электромагнитными взаимодействиями. Она представляет собой часть более широкой приближённой С. сильных взаимодействий — SU (3)-C. (см. Сильные взаимодействия).
Дискретные преобразования
Перечисленные выше типы С. характеризуются параметрами, которые могут непрерывно изменяться в некоторой области значений (например, сдвиг в пространстве характеризуется тремя параметрами смещения вдоль каждой из координатных осей, поворот — тремя углами вращения вокруг этих осей и т. д.). Наряду с непрерывными С. большое значение в физике имеют дискретные С. Основные из них следующие.
1) Пространственная инверсия (P). Относительно этого преобразования симметричны процессы, вызванные сильным и электромагнитным взаимодействиями. Указанные процессы одинаково описываются в двух различных декартовых системах координат, получаемых одна из другой изменением направлений осей координат на противоположные (т. н. переход от «правой» к «левой» системе координат).
Это преобразование может быть получено также зеркальным отражением относительно трёх взаимно перпендикулярных плоскостей. поэтому С. по отношению к пространственной инверсии называемой обычно зеркальной С. Наличие зеркальной С. означает, что если в природе осуществляется какой-либо процесс, обусловленный сильным или электромагнитным взаимодействием, то может осуществиться и другой процесс, протекающий с той же вероятностью и являющийся как бы
«зеркальным изображением» первого. При этом физические величины, характеризующие оба процесса, будут связаны определённым образом. Например, скорости частиц и напряжённости электрического поля изменят направления на противоположные, а направления напряжённости магнитного поля и момента количества движения не изменятся.
Нарушением такой С. представляются явления (например, правое или левое вращение плоскости поляризации света), происходящие в веществах-изомерах (оптическая Изомерия). В действительности, однако, зеркальная С. в таких явлениях не нарушена: она проявляется в том, что для любого, например левовращающего, вещества существует аналогичное по химическому составу вещество, молекулы которого являются
«зеркальным изображением» молекул первого и которое будет правовращающим.
Нарушение зеркальной С. наблюдается в процессах, вызванных слабым взаимодействием.
2) Преобразование замены всех частиц на античастицы (Зарядовое сопряжение, С). С. относительно этого преобразования также имеет место для процессов, происходящих в результате сильного и электромагнитного взаимодействий, и нарушается в процессах слабого взаимодействия. При преобразовании зарядового сопряжения меняются на противоположные значения заряды частиц, напряжённости электрического и магнитного полей.
3) Последовательное проведение (произведение) преобразований инверсии и зарядового сопряжения (Комбинированная инверсия, СР). Поскольку сильные и электромагнитные взаимодействия симметричны относительно каждого из этих преобразований, они симметричны и относительно комбинированной инверсии. Однако относительно этого преобразования оказываются симметричными и слабые взаимодействия, которые не обладают С. по отношению к преобразованию инверсии и зарядовому сопряжению в отдельности . С. процессов слабого взаимодействия относительно комбинированной инверсии может быть указанием на то, что отсутствие зеркальной С. в них связано со структурой элементарных частиц и что античастицы по своей структуре являются как бы
«зеркальным изображением» соответствующих частиц. В этом смысле процессы слабого взаимодействия, происходящие с какими-либо частицами, и соответствующие процессы с их античастицами связаны между собой так же, как явления в оптических изомерах.
Открытие распадов долгоживущих K 0 L -мезонов на 2 &pi.-мезона и наличие зарядовой асимметрии в распадах K 0 L &rarr. &pi. + + e &minus. + &nu. e (&pi. + + &mu. &minus. + &nu. &mu.) и K 0 L &rarr. &pi. &minus. + е + + &nu. е (&pi. &minus. + &mu. + + &nu. &mu.) (см. К-мезоны) указывают на существование сил, несимметричных относительно комбинированной инверсии.
Пока не установлено, являются ли эти силы малыми добавками к известным фундаментальным взаимодействиям (сильному, электромагнитному, слабому) или же имеют особую природу. Нельзя также исключить возможность того, что нарушение СР-С. связано с особыми геометрическими свойствами пространства-времени на малых интервалах.
4) Преобразование изменения знака времени (Обращение времени, T). По отношению к этому преобразованию симметричны все элементарные процессы, протекающие в результате сильного, электромагнитного и слабого взаимодействий (за исключением распадов K 0 L -meзонов).
5) Произведение трёх преобразований: зарядового сопряжения С, инверсии Р и обращения времени Т (СРТ-симметрия. см. СРТ-теорема) . СРТ-С. вытекает из общих принципов квантовой теории поля. Она связана главным образом с С. относительно Лоренца преобразований и локальностью взаимодействия (т. е. с взаимодействием полей в одной точке). Эта С. должна была бы выполняться, даже если бы взаимодействия были несимметричны относительно каждого из преобразований C, P и T в отдельности. Следствием СРТ-инвариантности является т. н. перекрёстная (кроссинг) С. в описании процессов, происходящих с частицами и античастицами. Так, например, три реакции — упругое рассеяние какой-либо частицы a на частице b: a + b
&rarr. a + b, упругое рассеяние античастицы a на частице b: a + b &rarr. a + b и аннигиляция частицы а и её античастицы a в пару частиц b, b: а + a &rarr. b + b описываются единой аналитической функцией (зависящей от квадрата полной энергии системы и квадрата переданного импульса), которая в различных областях изменения этих переменных даёт амплитуду каждого из указанных процессов.
6) Преобразование перестановки одинаковых частиц. Волновая функция системы, содержащей одинаковые частицы, симметрична относительно перестановки любой пары одинаковых частиц (т. е. их координат и Спинов) с целым, в частности нулевым, спином и антисимметрична относительно такой перестановки для частиц с полуцелым спином (см. Квантовая механика).
Симметрия и законы сохранения
Согласно Нётер теореме, каждому преобразованию С., характеризуемому одним непрерывно изменяющимся параметром, соответствует величина, которая сохраняется (не меняется со временем) для системы, обладающей этой С. Из С. физических законов относительно сдвига замкнутой системы в пространстве, поворота её как целого и изменения начала отсчёта времени следуют соответственно законы сохранения импульса, момента количества движения и энергии. Из С. относительно калибровочных преобразований 1-го рода — законы сохранения зарядов (электрического, барионного и др.), из изотопической инвариантности — сохранение изотопического спина в процессах сильного взаимодействия. Что касается дискретных С., то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив Суперпозиции принцип, из существования дискретных С. следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Существование таких величин можно продемонстрировать на примере пространственной чётности, сохранение которой вытекает из С. относительно пространственной инверсии. Действительно, пусть
&psi. 1 — волновая функция, описывающая какое-либо состояние системы, а &psi. 2 — волновая функция системы, получающаяся в результате пространств. инверсии (символически: &psi. 2 = P&psi. 1 , где P — оператор пространств. инверсии). Тогда, если существует С. относительно пространственной инверсии,
&psi. 2 является одним из возможных состояний системы и, согласно принципу суперпозиции, возможными состояниями системы являются суперпозиции &psi. 1 и &psi. 2: симметричная комбинация &psi. s = &psi. 1 +
&psi. 2 и антисимметричная &psi. а = &psi. 1 — &psi. 2 . При преобразованиях инверсии состояние &psi. 2 не меняется (т. к. P&psi. s = P&psi. 1 + P&psi. 2 = &psi. 2 + &psi. 1 = &psi. s),
а состояние &psi. a меняет знак (P&psi. a = P&psi. 1 — P&psi. 2 = &psi. 2 — &psi. 1 = — &psi. a). В первом случае говорят, что пространственная чётность системы положительна (+1), во втором — отрицательна (-1). Если волновая функция системы задаётся с помощью величин, которые не меняются при пространственной инверсии (таких, например, как момент количества движения и энергия), то вполне определённое значение будет иметь и чётность системы. Система будет находиться в состоянии либо с положительной, либо с отрицательной чётностью (причём переходы из одного состояния в другое под действием сил, симметричных относительно пространственной инверсии, абсолютно запрещены).
Аналогично, из С. относительно зарядового сопряжения и комбинированной инверсии следует существование зарядовой чётности (C-чётности) и комбинированной чётности (СР-чётности). Эти величины, однако, могут служить характеристикой только для абсолютно нейтральных (обладающих нулевыми значениями всех зарядов) частиц или систем. Действительно, система с отличным от нуля зарядом при зарядовом сопряжении переходит в систему с противоположным знаком заряда, и поэтому невозможно составить суперпозицию этих двух состояний, не нарушая закона сохранения заряда. Вместе с тем для характеристики системы сильно взаимодействующих частиц (адронов) с нулевыми барионным зарядом и Странностью (или гиперзарядом), но отличным от нуля электрическим зарядом, можно ввести т. н. G-чётность. Эта характеристика возникает из изотопической инвариантности сильных взаимодействий (которую можно трактовать как С. относительно преобразования поворота в «изотопическом пространстве»)
и зарядового сопряжения. Примером такой системы может служить пи-мезон. См. также ст. Сохранения законы.
Симметрия квантово-механических систем и стационарные состояния. Вырождение
Сохранение величин, отвечающих различным С. квантово-механические системы, является следствием того, что соответствующие им операторы коммутируют с гамильтонианом системы, если он не зависит явно от времени (см. Квантовая механика, Перестановочные соотношения). Это означает, что указанные величины измеримы одновременно с энергией системы, т. е. могут принимать вполне определённые значения при заданном значении энергии. Поэтому из них можно составить т. н. полный набор величин, определяющих состояние системы. Т. о., стационарные состояния (состояния с заданной энергией) системы определяются величинами, отвечающими С. рассматриваемой системы.
Наличие С. приводит к тому, что различные состояния движения квантовомеханической системы, которые получаются друг из друга преобразованием С., обладают одинаковыми значениями физических величин, не меняющихся при этих преобразованиях. Т. о., С. системы, как правило, ведёт к вырождению . Например, определённому значению энергии системы может отвечать несколько различных состояний, преобразующихся друг друга при преобразованиях С. В математическом отношении эти состояния представляют базис неприводимого представления группы С. системы (см. Группа) . Это обусловливает плодотворность применения методов теории групп в квантовой механике.
Помимо вырождения уровней энергии, связанного с явной С. системы (например, относительно поворотов системы как целого), в ряде задач существует дополнительное вырождение, связанное с т. н. скрытой С. взаимодействия. Такие скрытые С. существуют, например, для кулоновского взаимодействия и для изотропного Осциллятора.
Если система, обладающая какой-либо С., находится в поле сил, нарушающих эту С. (но достаточно слабых, чтобы их можно было рассматривать как малое возмущение), происходит расщепление вырожденных уровней энергии исходной системы: различные состояния, которые в силу С. системы имели одинаковую энергию, под действием
«несимметричного» возмущения приобретают различные энергетические смещения. В случаях, когда возмущающее поле обладает некоторой С., составляющей часть С. исходной системы, вырождение уровней энергии снимается не полностью: часть уровней остаётся вырожденной в соответствии с С. взаимодействия,
«включающего» возмущающее поле.
Наличие в системе вырожденных по энергии состояний, в свою указывает на существование С. взаимодействия и позволяет в принципе найти эту С., когда она заранее не известна. Последнее обстоятельство играет важнейшую роль, например, в физике элементарных частиц. Существование групп частиц с близкими массами и одинаковыми др. характеристиками, но различными электрическими зарядами (т. н. изотопических мультиплетов) позволило установить изотопическую инвариантность сильных взаимодействий, а возможность объединения частиц с одинаковыми свойствами в более широкие группы привело к открытию SU (3)-C. сильного взаимодействия и взаимодействий, нарушающих эту С. (см. Сильные взаимодействия). Существуют указания, что сильное взаимодействие обладает ещё более широкой группой С.
Весьма плодотворно понятие т. н. динамической С. системы, которое возникает, когда рассматриваются преобразования, включающие переходы между состояниями системы с различными энергиями. Неприводимым представлением группы динамической С. будет весь спектр стационарных состояний системы. Понятие динамической С. можно распространить и на случаи, когда гамильтониан системы зависит явно от времени, причём в одно неприводимое представление динамической группы С. объединяются в этом случае все состояния квантово-механической системы, не являющиеся стационарными (т. е. не обладающие заданной энергией).
Лит.: Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.
С. С. Герштейн . Симметрия — в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами.
Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. (см. Симметрия в математике). Так, молекула аммиака NH 3 обладает симметрией правильной треугольной пирамиды, молекула метана CH 4 — симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия). Наиболее полное описание симметрии как равновесных, так и неравновесных конфигураций молекул достигается на основе представлений о т. н. динамических группах симметрии — группах, включающих не только операции пространственной симметрии ядерной конфигурации, но и операции перестановки тождественных ядер в различных конфигурациях. Например, динамическая группа симметрии для молекулы NH 3 включает также и операцию инверсии этой молекулы: переход атома N с одной стороны плоскости, образованной атомами Н, на другую её сторону.
Симметрия равновесной конфигурации ядер в молекуле влечёт за собой определённую симметрию волновых функций различных состояний этой молекулы, что позволяет проводить классификацию состояний по типам симметрии. Переход между двумя состояниями, связанный с поглощением или испусканием света, в зависимости от типов симметрии состояний может либо проявляться в молекулярном спектре, либо быть запрещенным, так что соответствующая этому переходу линия или полоса будет отсутствовать в спектре. Типы симметрии состояний, между которыми возможны переходы, влияют на интенсивность линий и полос, а также и на их поляризацию. Например, у гомоядерных двухатомных молекул запрещены и не проявляются в спектрах переходы между электронными состояниями одинаковой чётности, электронные волновые функции которых ведут себя одинаковым образом при операции инверсии. у молекул бензола и аналогичных соединений запрещены переходы между невырожденными электронными состояниями одного и того же типа симметрии и т. п. Правила отбора по симметрии дополняются для переходов между различными состояниями правилами отбора, связанными со Спином этих состояний.
У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии g-фактора (Ланде множитель), что сказывается на структуре спектров электронного парамагнитного резонанса, тогда как у молекул, ядра атомов которых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса.
В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отдельных орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в которой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные
(&sigma.) и антисимметричные (&pi.) относительно операции отражения в этой плоскости. Молекулы, у которых верхними (по энергии) занятыми орбиталями являются &pi.-орбитали, образуют специфические классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отдельных фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химических превращений, например при фотохимических реакциях.
Представления о симметрии имеют важное значение при теоретическом анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллического поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетических уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.
В 1965 P. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химических реакциях, подтвержденный впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органической химии. Этот принцип (правило Вудворда — Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.
Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.
Лит.: Хохштрассер Р., Молекулярные аспекты симметрии, пер. с англ., М., 1968.

Понимать, что такое симметрия в математике, необходимо, чтобы в дальнейшем освоить базовые и продвинутые темы алгебры, геометрии. Немаловажно это и для понимания черчения, архитектуры, правил построения рисунка. Несмотря на тесную связь с самой точной наукой - математикой, симметрия важна и для артистов, художников, творцов, и для тех, кто занимается научной деятельностью, причем в любой области.

Общая информация

Не только математика, но и естественные науки во многом основаны на понятии симметрии. Более того, оно встречается в повседневной жизни, является одним из базовых для природы нашей Вселенной. Разбираясь, что такое симметрия в математике, необходимо упомянуть, что существует несколько типов этого явления. Принято говорить о таких вариантах:

  • Двустороннем, то есть такой, когда симметрия зеркальная. Это явление в ученой среде принято именовать «билатеральным».
  • Эн-ном порядке. Для этого понятия ключевое явление - это угол поворота, вычисляемый разделением 360 градусов на некоторую заданную величину. Кроме того, заранее определяется ось, вокруг которой эти повороты совершаются.
  • Падиальная, когда явление симметрии наблюдают, если повороты совершатся произвольно на некоторый случайный по величине угол. Ось также выбирается независимым образом. Для описания такого явления применяют группу SO(2).
  • Сферическая. В этом случае речь идет о трех измерениях, в которых объект вращают, выбирая произвольные углы. Выделяют конкретный случай изотропии, когда явление становится локальным, свойственным среде либо пространству.
  • Вращательная, соединившая в себе две описанные ранее группы.
  • Лоренц-инвариативная, когда имеют место произвольные вращения. Для этого типа симметрии ключевым понятием становится «пространство-время Минковского».
  • Супер, определяемая как замена бозонов фермионами.
  • Высшая, выявляемая в ходе группового анализа.
  • Трансляционная, когда имеются сдвиги пространства, для которых ученые выявляют направление, расстояние. На основе полученных данных проводят сравнительный анализ, позволяющий выявить симметрию.
  • Калибровочная, наблюдаемая в случае независимости калибровочной теории при соответствующих преобразованиях. Здесь особенное внимание обращают на теорию поля, в том числе фокусируются на идеях Янга-Миллса.
  • Кайно, принадлежащая к классу электронных конфигураций. О том, что представляет собой такая симметрия, математика (6 класс) представления не имеет, ведь это наука высшего порядка. Явление обусловлено вторичной периодичностью. Было открыто в ходе научной работы Е. Бирона. Терминология введена С. Щукаревым.

Зеркальная

Во время обучения в школе учащихся практически всегда просят сделать работу «Симметрия вокруг нас» (проект по математике). Как правило, ее рекомендуют к выполнению в шестом классе обычной школы с общей программой преподавания предметов. Чтобы справиться с проектом, необходимо сперва ознакомиться с понятием симметрии, в частности, выявить, что представляет собой зеркальный тип как один из базовых и наиболее понятных для детей.

Для выявления явления симметрии рассматривают конкретную геометрическую фигуру, а также выбирают плоскость. Когда говорят о симметричности рассматриваемого объекта? Сперва на нем выбирают некоторую точку, а затем находят для нее отражение. Между ними двумя проводят отрезок и вычисляют, под каким углом к выбранной ранее плоскости он проходит.

Разбираясь, что такое симметрия в математике, помните, что выбранная для выявления этого явления плоскость будет называться именно плоскостью симметрии и никак иначе. Проведенный отрезок должен пересекаться с ней под прямым углом. Расстояние от точки до этой плоскости и от нее до второй точки отрезка должно быть равным.

Нюансы

О чем еще интересном можно узнать, разбирая такое явление, как симметрия? Математика (6 класс) рассказывает, что две фигуры, считающиеся симметричными, совсем не обязательно идентичны друг другу. Понятие равности существует в узком и широком смысле. Так вот, симметричные объекты в узком - не одно и то же.

Какой пример из жизни можно привести? Элеметарный! Что скажете насчет наших перчаток, варежек? Мы все привыкли их носить и знаем, что терять нельзя, ведь вторую такую в пару уже не подобрать, а значит, покупать придется обе заново. А все почему? Потому что парные изделия, хотя и симметричны, но рассчитаны на левую и правую руку. Это - типичный пример зеркальной симметрии. Что касается равности, то такие объекты признают «зеркально равными».

А что с центром?

Рассматривать центральную симметрию начинают с определения свойств тела, применительно к которому необходимо оценить явление. Чтобы назвать его симметричным, сперва выбирают некоторую точку, расположенную по центру. Далее выбирают точку (условно назовем ее А) и ищут для нее парную (условно обозначим Е).

При определении симметричности точки А и Е соединяют между собой прямой линией, захватывающей центральную точку тела. Далее измеряют получившуюся прямую. Если отрезок от точки А до центра объекта равен отрезку, отделяющему центр от точки Е, можно говорить о том, что найден центр симметрии. Центральная симметрия в математике - одно из ключевых понятий, позволяющих далее развивать теории геометрии.

А если вращаем?

Разбирая, что такое симметрия в математике, нельзя упустить из внимания понятие вращательного подтипа этого явления. Для того чтобы разобраться с терминами, берут тело, имеющее центральную точку, а также определяют целое число.

В ходе эксперимента заданное тело вращают на угол, равный результату деления 360 градусов на выбранный целый показатель. Для этого необходимо знать, что такое (2 класс, математика, школьная программа). Эта ось - прямая, соединяющая две выбранные точки. О симметрии вращения можно говорить, если при выбранном угле поворота тело будет находиться в том же положении, как и до проведения манипуляций.

В том случае, когда натуральным числом было выбрано 2, и обнаружено явление симметрии, говорят, что определена осевая симметрия в математике. Такая характерна для ряда фигур. Типичный пример: треугольник.

О примерах подробнее

Практика многолетнего преподавания математики и геометрии в средней школе показывает, что проще всего с явлением симметрии разобраться, объясняя его на конкретных примерах.

Для начала рассмотрим сферу. Для такого тела одновременно свойственны явления симметричности:

  • центральной;
  • зеркальной;
  • вращательной.

В качестве главной выбирают точку, расположенную точно по центру фигуры. Чтобы подобрать плоскость, определяют большой круг и словно бы «нарезают» его на пласты. О чем говорит математика? Поворот и центральная симметрия в случае шара - понятия взаимосвязанные, при этом диаметр фигуры будет служить осью для рассматриваемого явления.

Еще один наглядный пример - круглый конус. Для этой фигуры свойственна В математике и архитектуре это явление нашло широкое теоретическое и практическое применение. Обратите внимание: в качестве оси для явления выступает ось конуса.

Наглядно демонстрирует изучаемое явление Этой фигуре свойственна зеркальная симметрия. Плоскостью выбирают «срез», параллельный основаниям фигуры, удаленный от них на равные промежутки. Создавая геометрический, начертательный, архитектурный симметрия важна не меньше, чем точным и начертательным наукам), помните о применимости на практике и пользе при планировании несущих элементов явления зеркальности.

А если более интересные фигуры?

О чем нам может рассказать математика (6 класс)? Центральная симметрия есть не только в таком простом и понятном объекте, как шар. Она свойственна и более интересным и сложным фигурам. Например, таков параллелограмм. Для такого объекта центральной точкой становится та, в которой пересекаются его диагонали.

А вот если рассматривать равнобедренную трапецию, то это будет фигура с осевой симметрией. Выявить ее можно в том случае, если правильно выбрать ось. Тело симметрично относительно линии, перпендикулярной основанию и пересекающей его ровно посередине.

Симметрия в математике и архитектуре обязательно учитывает ромб. Эта фигура примечательна тем, что одновременно объединяет в себе два типа симметричности:

  • осевой;
  • центральный.

В качестве оси необходимо выбрать диагональ объекта. В том месте, где диагонали ромба пересекаются, расположен его центр симметрии.

О красоте и симметрии

Формируя проект математике, симметрия для которого была бы ключевой темой, обычно в первую очередь вспоминают мудрые слова великого ученого Вейля: «Симметрия - это идея, которую долгие века пытается понять обычный человек, ведь именно она создает совершенную красоту через уникальный порядок».

Как известно, иные предметы кажутся большинству прекрасными, в то время как другие отталкивают, даже если в них нет очевидных изъянов. Почему так происходит? Ответ на этот вопрос показывает взаимосвязь архитектуры и математики в симметрии, ведь именно это явление и становится основой оценки предмета как эстетически привлекательного.

Одна из самых красивых женщин на нашей планете - это супермодель Кисти Тарликтон. Она уверена, что к успеху пришла в первую очередь благодаря уникальному явлению: ее губы симметричны.

Как известно, природа и тяготеет к симметрии, и не может ее достичь. Это не общее правило, но взгляните на окружающих людей: в человеческих лицах практически не найти абсолютной симметрии, хотя очевидно стремление к ней. Чем более симметрично лицо собеседника, тем он кажется красивее.

Как симметрия стала идеей о прекрасном

Удивительно, что на симметричности основано восприятие человеком красоты окружающего его пространства и объектов в нем. Долгие века люди стремятся понять, что же кажется прекрасным, а что отталкивает нелицеприятностью.

Симметричность, пропорции - вот то, что помогает визуально воспринимать некоторый объект и оценивать его положительно. Все элементы, части должны быть сбалансированы и находиться в разумных пропорциях друг с другом. Уже давно выяснили, что асимметричные предметы нравятся людям гораздо меньше. Все это связывают с понятием «гармония». Над тем, почему это так важно для человека, с древних пор ломали головы мудрецы, артисты, художники.

Стоит приглядеться к геометрическим фигурам, и явление симметрии станет очевидным и доступным для понимания. Наиболее типичные симметричные явления в окружающем нас пространстве:

  • горные породы;
  • цветы и листья растений;
  • парные наружные органы, присущие живым организмам.

Описанные явления имеют источником саму природу. А вот что можно увидеть симметричного, приглядевшись к изделиям человеческих рук? Заметно, что люди тяготеют к созданию именно такового, если стремятся сделать нечто красивое или функциональное (или и такое, и такое одновременно):

  • узоры и орнаменты, популярные с древних времен;
  • строительные элементы;
  • элементы конструкций техники;
  • рукоделие.

О терминологии

«Симметрия» - слово, пришедшее в наш язык от древних греков, впервые обративших на это явление пристальное внимание и попытавшихся изучить его. Термин обозначает наличие некоторой системы, а также гармоничное сочетание частей объекта. Переводя слово «симметрия», можно подобрать в качестве синонимов:

  • пропорциональность;
  • одинаковость;
  • соразмерность.

С древних пор симметрия является важным понятием для развития человечества в разных областях и отраслях. Народы с древности имели общие представления об этом явлении, преимущественно рассматривая его в широком смысле. Симметрия обозначала гармоничность и уравновешенность. В наше время терминологию преподают в обычной школе. Например, что такое (2 класс, математика) детям рассказывает учительница на обычном занятии.

Как идея это явление зачастую становится начальным посылом научных гипотез и теорий. Особенно популярно это было в прежние столетия, когда по всему миру властвовала идея математической гармонии, присущей самой системе мироздания. Знатоки тех эпох были убеждены, что симметричность есть проявление божественной гармонии. А вот в Древней Греции философы уверяли, что симметрична вся Вселенная, и все это базировалось по постулате: «Симметрия прекрасна».

Великие греки и симметрия

Симметричность будоражила умы известнейших ученых Древней Греции. До наших дней дошли свидетельства того, что Платон призывал отдельно восхищаться По его мнению, такие фигуры - это олицетворения стихий нашего мира. Существовала следующая классификация:

Во многом именно из-за этой теории принято именовать правильные многогранники платоновыми телами.

А вот терминологию ввели еще раньше, и тут не последнюю роль сыграл скульптор Поликлет.

Пифагор и симметрия

В период жизни Пифагора и в последующем, когда его учение переживало свой расцвет, явление симметрии удалось четко оформить. Именно тогда симметричность подверглась научному анализу, давшему важные для практического применения результаты.

Согласно полученным выводам:

  • Симметрия базируется на понятиях пропорций, однообразности и равенства. При нарушении того или иного понятия фигура становится менее симметричной, постепенно переходя в полностью асимметричную.
  • Существует 10 противоположных пар. Согласно учению, симметрия представляет собой явление, сводящее в единое противоположности и тем самым формирующее вселенную в целом. Этот постулат долгие века оказывал сильное влияние на ряд наук как точных, так и философских, а также естественных.

Пифагор и его последователи выделяли «совершенно симметричные тела», к которым причисляли удовлетворяющие условиям:

  • каждая грань - многоугольник;
  • грани встречаются в углах;
  • фигура должна иметь равные стороны и углы.

Именно Пифагор первым сказал, что таковых тел существует всего лишь пять. Это великое открытие положило начало геометрии и исключительно важно для современной архитектуры.

А вы хотите своими глазами увидеть самое прекрасное явление симметрии? Поймайте зимой снежинку. Удивительно, но факт - это крошечный кусочек падающего с неба льда имеет не только крайне сложную кристаллическую структуру, но еще и идеально симметричен. Рассмотрите ее внимательно: снежинка действительно прекрасна, а ее сложные линии завораживают.

Итак, что касается геометрии: выделяют три основных вида симметрии.

Во-первых, центральная симметрия (или симметрия относительно точки) – это преобразование плоскости (или пространства), при котором единственная точка (точка О – центр симметрии) остаётся на месте, остальные же точки меняют своё положение: вместо точки А получаем точку А1 такую, что точка О середина отрезка АА1. Чтобы построить фигуру Ф1, симметричную фигуре Ф относительно точки О, нужно через каждую точку фигуры Ф провести луч, проходящий через точку О (центр симметрии), и на этом луче отложить точку, симметричную выбранной относительно точки О. Множество построенных таким образом точек даст фигуру Ф1.


Большой интерес вызывают фигуры, имеющие центр симметрии: при симметрии относительно точки О любая точка фигурф Ф преобразуется опять же в некоторую точку фигуры Ф. Таких фигур в геометрии встречается много. Например: отрезок (середина отрезка – центр симметрии), прямая (любая её точка – центр её симметрии), окружность (центр окружности – центр симметрии), прямоугольник (точка пересечения его диагоналей – центр симметрии). Много центральносимметричных объектов в живой и неживой природе (сообщение учащихся). Часто люди сами создают объекты, имеющие центр симмет рии (примеры из рукоделия, примеры из машиностроения, примеры из архитектуры и много других примеров).

Во-вторых, осевая симметрия (или симметрия относительно прямой) – это преобразование плоскости (или пространства), при котором только точки прямой р остаются на месте (эта прямая является осью симметрии), остальные же точки меняют своё положение: вместо точки В получаем такую точку В1, что прямая р является серединным перпендикуляром к отрезку ВВ1. Чтобы построить фигуру Ф1, симметричную фигуре Ф, относительно прямой р, нужно для каждой точки фигуры Ф построить точку, симметричную ей относительно прямой р. Множество всех этих построенных точек и дают искомую фигуру Ф1. Много существует геометрических фигур, имеющих ось симметрии.

У прямоугольника их две, у квадрата – четыре, у круга – любая прямая, проходящая через его центр. Если присмотреться к буквам алфавита, то и среди них можно найти, имеющие горизонтальную или вертикальную, а иногда и обе оси симметрии. Объекты, имеющие оси симметрии достаточно часто встречаются в живой и неживой природе (доклады учащихся). В своей деятельности человек создаёт много объектов (например, орнаменты), имеющих несколько осей симметрии.

______________________________________________________________________________________________________

В-третьих, плоскостная (зеркальная) симметрия (или симметрия относительно плоскости) – это преобразование пространства, при котором только точки одной плоскости сохраняют своё местоположение (α-плоскость симметрии), остальные точки пространства меняют своё положение: вместо точки С получается такая точка С1, что плоскость α проходит через середину отрезка СС1, перпендикулярно к нему.

Чтобы построить фигуру Ф1,симметричную фигуре Ф относительно плоскости α, нужно для каждой точки фигуры Ф выстроить симметричные относительно α точки, они в своём множестве и образуют фигуру Ф1.

Чаще всего в окружающем нас мире вещей и объектов нам встречаются объёмные тела. И некоторые из этих тел имеют плоскости симметрии, иногда даже несколько. И сам человек в своей деятельности (строительство, рукоделие, моделирование, ...) создаёт объекты имеющие плоскости симметрии.

Стоит отметить, что наряду с тремя перечисленными видами симметрии, выделяют (в архитектуре) переносную и поворотную , которые в геометрии являются композициями нескольких движений.

Сбалансированная композиция кажется правильной. Она смотрится устойчиво и эстетически привлекательно. Хотя какие-то из ее элементов могут особенно выделяться, являясь фокальными точками — ни одна часть не притягивает взгляд настолько, чтобы подавлять остальные. Все элементы сочетаются друг с другом, плавно соединяясь между собой и образуя единое целое.

Несбалансированная композиция вызывает напряжение. Когда дизайн дисгармоничен, отдельные его элементы доминируют над целым, и композиция становится меньше, чем сумма ее частей. Иногда подобная дисгармония может иметь смысл, но чаще всего баланс, упорядоченность и ритм — это лучшее решение.

Несложно понять, что такое баланс с точки зрения физики — мы ощущаем его постоянно: если что-то не сбалансировано, оно неустойчиво. Наверняка в детстве вы качались на качелях-доске — вы на одном конце, ваш друг — на другом. Если вы весили примерно одинаково, вам было легко на них балансировать.

Нижеследующая картинка иллюстрирует баланс: два человека одинакового веса находятся на равном расстоянии от точки опоры, на которой балансируют качели.

Качели в симметричном равновесии

Человек на правом конце доски раскачивает ее по часовой стрелке, а человек на левом — против. Они прикладывают одинаковую силу в противоположных направлениях, так что сумма равна нулю.

Но если бы один человек был намного тяжелее, равновесие бы исчезло.

Отсутствие равновесия

Эта картинка кажется неправильной, потому что мы знаем, что фигура слева слишком мала, чтобы уравновесить фигуру справа, и правый конец доски должен касаться земли.

Но если передвинуть более крупную фигуру в центр доски, картинка приобретет более правдоподобный вид:

Качели в асимметричном равновесии

Вес более крупной фигуры нивелируется тем, что она расположена ближе к точке опоры, на которой балансируют качели. Если вы когда-нибудь качались на таких качелях или, по крайней мере, видели, как это делают другие, то понимаете, что происходит.

Композиционное равновесие в дизайне основано на тех же принципах. Физическая масса заменяется визуальной, и направление, в котором на нее действует сила притяжения, заменяется визуальным направлением:

1. Визуальная масса — это воспринимаемая масса визуального элемента, мера того, насколько данный элемент страницы привлекает внимание.

2. Визуальное направление — это воспринимаемое направление визуальной силы, в котором, как нам кажется, двигался бы объект, если бы он мог двигаться под влиянием физических сил, действующих на него.

Для измерения этих сил нет инструментов и для расчета зрительного баланса нет формул: чтобы определить, сбалансирована ли композиция, вы ориентируетесь только на свои глаза.

Почему визуальное равновесие важно?

Визуальное равновесие так же значимо, как и физическое: несбалансированная композиция вызывает у зрителя дискомфорт. Посмотрите на вторую иллюстрацию с качелями: она кажется неправильной, потому что мы знаем, что качели должны касаться земли.

С точки зрения маркетинга, визуальная масса — это мера визуального интереса, который вызывает какая-либо область или элемент страницы. Когда лендинг визуально сбалансирован, каждая его часть вызывает некоторый интерес, а сбалансированный дизайн удерживает внимание зрителя.

При отсутствии визуального равновесия посетитель может не увидеть некоторые элементы дизайна — скорее всего, он не станет рассматривать области, уступающие другим по визуальному интересу, так что информация, связанная с ними, останется незамеченной.

Если вы хотите, чтобы пользователи узнали все, что вы намерены им сообщить — подумайте о разработке сбалансированного дизайна.

Четыре типа равновесия

Есть несколько способов добиться композиционного равновесия. Картинки из раздела выше иллюстрируют два из них: первая — пример симметричного баланса, а вторая — асимметричного. Два других типа — радиальный и мозаичный.

Симметричное равновесие достигается, когда объекты, равные по визуальной массе, размещаются на равном расстоянии от точки опоры или оси в центре. Симметричное равновесие вызывает ощущение формальности (поэтому иногда оно называется формальным равновесием) и элегантности. Приглашение на свадьбу — пример композиции, которую вы, скорее всего, захотите сделать симметричной.

Недостаток симметричного равновесия в том, что оно статично и иногда кажется скучным: если половина композиции — это зеркальное отражение другой половины, то как минимум одна половина будет достаточно предсказуема.

2. Асимметричное равновесие

Асимметричное равновесие достигается, когда объекты по разные стороны от центра имеют одинаковую визуальную массу. При этом на одной половине может находиться доминирующий элемент, уравновешенный несколькими менее важными фокальными точками на другой половине. Так, визуально тяжелый элемент (красный круг) на одной стороне уравновешен рядом более легких элементов на другой (синие полосы).

Асимметричное равновесие более динамично и интересно. Оно вызывает ощущение современности, движения, жизни и энергии. Асимметричного равновесия сложнее достичь, потому что отношения между элементами более сложны, но, с другой стороны, оно оставляет больше простора для творчества.

Радиальное равновесие достигается, когда элементы расходятся лучами из общего центра. Лучи солнца или круги на воде после того, как в нее упал камень — это примеры радиального равновесия. Удерживать фокальную точку (точка опоры) легко, поскольку она всегда в центре.

Лучи расходятся из центра и ведут к нему же, делая его самой заметной частью композиции.

Мозаичное равновесие (или кристаллографический баланс) — это сбалансированный хаос, как на картинах Джексона Поллока. У такой композиции нет выраженных фокальных точек, и все элементы одинаково важны. Отсутствие иерархии, на первый взгляд, создает визуальный шум, но, тем не менее, каким-то образом все элементы сочетаются и образуют единое целое.

Симметрия и асимметрия

И симметрия, и асимметрия может применяться в композиции вне зависимости от того, каков тип ее равновесия: вы можете использовать объекты симметричной формы для создания асимметричной композиции, и наоборот.

Симметрия, как правило, считается красивой и гармоничной. Впрочем, она также может показаться статичной и скучной. Асимметрия обычно представляется более интересной и динамичной, хотя и не всегда красивой.

Симметрия

Зеркальная симметрия (или двусторонняя симметрия) возникает, когда две половины композиции, расположенные по разные стороны от центральной оси, являются зеркальными отражениями друг друга. Скорее всего, услышав слово «симметрия», вы представляете себе именно это.

Направление и ориентация оси могут быть какими угодно, хотя зачастую она или вертикальная, или горизонтальная. Многие естественные формы, растущие или движущиеся параллельно поверхности земли, отличаются зеркальной симметрией. Ее примеры — крылья бабочки и человеческие лица.

Если две половины композиции отражают друг друга абсолютно точно, такая симметрия называется чистой. В большинстве случаев отражения не полностью идентичны, и половины немного отличаются друг от друга. Это неполная симметрия — в жизни она встречается гораздо чаще, чем чистая симметрия.

Круговая симметрия (или радиальная симметрия) возникает, когда объекты располагаются вокруг общего центра. Их количество и угол, под которым они расположены относительно центра, могут быть любыми — симметрия сохраняется, пока присутствует общий центр. Естественные формы, растущие или движущиеся перпендикулярно поверхности земли, отличаются круговой симметрией — например, лепестки подсолнуха. Чередование без отражения может быть использовано, чтобы продемонстрировать мотивацию, скорость или динамичное действие: представьте крутящиеся колеса движущегося автомобиля.

Трансляционная симметрия (или кристаллографическая симметрия) возникает, когда элементы повторяются через определенные промежутки. Пример такой симметрии — повторяющиеся планки забора. Трансляционная симметрия может возникнуть в любом направлении и на любом расстоянии, если направление совпадает. Естественные формы обретают такую симметрию через репродукцию. При помощи трансляционной симметрии вы можете создать ритм, движение, скорость или динамичное действие.

Бабочка — пример зеркальной симметрии, планки забора — трансляционной, подсолнух — круговой.

Симметричные формы чаще всего воспринимаются как фигуры на фоне. Визуальная масса симметричной фигуры будет больше, чем масса асимметричной фигуры подобного размера и формы. Симметрия создает баланс сама по себе, но она может оказаться слишком стабильной и слишком спокойной, неинтересной.

У асимметричных форм нет такой сбалансированности, как у симметричных, но вы можете и асимметрично уравновесить всю композицию. Асимметрия часто встречается в естественных формах: вы правша или левша, ветки деревьев растут в разных направлениях, облака принимают случайные формы.

Асимметрия приводит к более сложным отношениям между элементами пространства и поэтому считается более интересной, чем симметрия, а значит — ее можно использовать, чтобы привлечь внимание.

Пространство вокруг асимметричных форм более активно: узоры часто непредсказуемы, и в целом у вас больше свободы самовыражения. Обратная сторона асимметрии в том, что ее сложнее сделать сбалансированной.

Вы можете совмещать симметрию и асимметрию и добиваться хороших результатов — создавайте симметричное равновесие асимметричных форм и наоборот, разбивайте симметричную форму случайной меткой, чтобы сделать ее интереснее. Сталкивайте симметрию и асимметрию в композиции, чтобы ее элементы привлекали больше внимания.

Принципы гештальт-психологии

Принципы дизайна не возникают из ничего: они следуют из психологии нашего восприятия визуальной среды. Многие принципы дизайна вырастают из принципов гештальт-психологии, а также основываются друг на друге.

Так, один из принципов гештальт-психологии касается именно симметрии и порядка и может применяться к композиционному равновесию. Впрочем, это едва ли не единственный принцип, применимый к нему.

Другие принципы гештальт-психологии, такие как фокальные точки и простота — складываются в визуальную массу, а фактор хорошего продолжения, фактор общей судьбы и параллелизм, задают визуальное направление. Симметричные формы чаще всего воспринимаются как фигуры на фоне.

Примеры различных подходов к веб-дизайну

Настало время реальных примеров. Лендинги, представленные ниже, сгруппированы по четырем типам равновесия. Возможно, вы воспримите дизайн этих страниц по-другому, и это хорошо: критическое мышление важнее, чем безоговорочное принятие.

Примеры симметричного равновесия

Дизайн сайта Helen & Hard симметричен. Страница «О нас» на скриншоте снизу и все остальные страницы этого сайта сбалансированы похожим образом:

Скриншот страницы «О нас» сайта Helen & Hard

Все элементы, находящиеся по разные стороны вертикальной оси, расположенной в центре страницы, зеркально отражают друг друга. Логотип, навигационная панель, круглые фотографии, заголовок, три колонки текста — центрированы.

Впрочем, симметрия не идеальна: например, колонки содержат разное количество текста. Кстати, обратите внимание на верх страницы. И логотип, и навигационная панель расположены по центру, но визуально они не кажутся центрированными. Возможно, логотип стоило центрировать по амперсанду или, по крайней мере, по области рядом с ним.

В трех текстовых ссылках меню, расположенных в правой части навигационной панели, больше букв, чем в ссылках левой части — кажется, что центр должен располагаться между About и People. Может быть, если расположить эти элементы в действительности не по центру, но так, чтобы визуально они казались центрированными, композиция в целом выглядела бы более сбалансированной.

Домашняя страница Tilde — еще один пример дизайна с симметричным равновесием. Как и на Helen & Hard, все располагается вокруг вертикальной оси, проходящей по центру страницы: навигация, текст, люди на фотографиях.

Скриншот домашней страницы Tilde

Как и в случае с Helen & Hard, симметрия не идеальна: во-первых, центрированные строчки текста не могут быть отражением фотографии снизу, а во-вторых, пара элементов выбивается из общего ряда — стрелка «Meet the Team» указывает вправо, и текст внизу страницы заканчивается еще одной стрелкой вправо. Обе стрелки являются призывами к действию и обе нарушают симметрию, привлекая к себе дополнительное внимание. Кроме того, по цвету обе стрелки контрастируют с фоном, что тоже притягивает взгляд.

Примеры асимметричного равновесия

Домашняя страница Carrie Voldengen демонстрирует асимметричное равновесие вокруг доминирующей симметричной формы. Глядя на композицию в целом, можно увидеть несколько отдельных друг от друга форм:

Скриншот веб-сайта Carrie Voldengen

Большую часть страницы занимает прямоугольник, состоящий из решетки меньших прямоугольных изображений. Сама по себе решетка симметрична и по вертикальной, и по горизонтальной оси и выглядит очень прочной и стабильной — можно даже сказать, что она слишком сбалансирована и выглядит неподвижной.

Блок текста справа нарушает симметрию. Решетке противопоставлен текст и круглый логотип в левом верхнем углу страницы. Эти два элемента имеют примерно равную визуальную массу, воздействующую на решетку с разных сторон. Расстояние до воображаемой точки опоры примерно такое же, как и масса. Блок текста справа больше и темнее, но круглый голубой логотип добавляет веса своей области и даже совпадает с верхним левым углом решетки по цвету. Текст внизу решетки, кажется, свисает с нее, но он достаточно легкий, чтобы не нарушать композиционного равновесия.

Обратите внимание, что пустое пространство тоже кажется сбалансированным. Пустоты слева, сверху и снизу, а также справа под текстом — уравновешивают друг друга. В левой части страницы больше пустого пространства, чем справа, но в правой части есть дополнительное пространство вверху и внизу.

Изображения в шапке страницы Hirondelle USA сменяют друг друга. Скриншот, представленный ниже, был сделан специально для того, чтобы продемонстрировать асимметричное композиционное равновесие.

Скриншот Hirondelle USA

Колонна на фотографии смещена чуть вправо от центра и создает заметную вертикальную линию, поскольку мы знаем, что колонна — это очень тяжелый объект. Перила слева создают прочную связь с левым краем экрана и тоже представляются достаточно надежными.

Текст над перилами как будто опирается на них; к тому же, справа он визуально сбалансирован фотографией мальчика. Может показаться, что перила как бы свисают с колонны, нарушая баланс, но наличие мальчика и более темный фон за ним уравновешивают композицию, а светлый текст восстанавливает баланс в целом.

Примеры радиального равновесия

Домашняя страница Vlog.it демонстрирует радиальное равновесие, что заметно на скриншоте. Все, кроме объекта в правом верхнем углу, организовано вокруг центра, и три кольца изображений вращаются вокруг центрального круга.

Скриншот домашней страницы Vlog.it

Впрочем, на скриншоте не видно, как страница загружается: линия рисуется из нижнего левого угла экрана к его центру — и с этого момента все, что появляется на странице, вращается вокруг центра или расходится из него лучами, как круги по воде.

Маленький круг в правом верхнем углу добавляет трансляционной симметрии и асимметрии, повышая визуальный интерес к композиции.

На домашней странице Opera’s Shiny Demos нет кругов, но все текстовые ссылки расходятся из общего центра, и легко представить, как вся эта конструкция вращается вокруг одного из центральных квадратов или, может быть, одного из углов:

Скриншот домашней страницы Opera’s Shiny Demos

Название Shiny Demos в левом верхнем углу и логотип Opera в правом нижнем — уравновешивают друг друга и тоже как будто исходят из того же центра, что и текстовые ссылки.

Это хороший пример того, что для достижения радиального равновесия не обязательно использовать круги.

Примеры мозаичного равновесия

Вы можете подумать, что мозаичный баланс используется на сайтах реже всего, особенно после того, как в качестве примера были названы картины Джексона Поллока. Но мозаичное равновесие встречается гораздо чаще, чем кажется.

Яркий пример — домашняя страница Rabbit’s Tale. Разбросанные по экрану буквы определенно создают ощущение хаоса, но композиционное равновесие присутствует.

Скриншот домашней страницы Rabbit’s Tale

Почти равные по величине области цвета и пространства, расположенные с двух сторон, справа и слева — уравновешивают друг друга. Кролик в центре служит точкой опоры. Каждый элемент не привлекает внимания сам по себе.

Сложно разобраться, какие конкретные элементы уравновешивают друг друга, но в целом баланс присутствует. Может быть, визуальная масса правой стороны немного больше, но не настолько, чтобы нарушить равновесие.

Сайты с большим количеством контента, например, новостные порталы или сайты журналов, тоже демонстрируют мозаичное равновесие. Вот скриншот домашней страницы The Onion:

Скриншот домашней страницы The Onion

Здесь множество элементов, их расположение не симметрично, размер текстовых колонок не одинаков, и сложно понять, что уравновешивает что. Блоки содержат разное количество контента, и, следовательно, их размеры различаются. Объекты не располагаются вокруг какого-нибудь общего центра.

Блоки разных размеров и плотности создают некоторое ощущение беспорядка. Поскольку сайт обновляется каждый день, структура этого хаоса постоянно меняется. Но в целом равновесие сохраняется.

Заключение

Принципы дизайна во многом берут начало из гештальт-психологии и теории восприятия и опираются на то, как мы воспринимаем и интерпретируем окружающую визуальную среду. Например, одна из причин, по которым мы замечаем фокальные точки, заключается в том, что они контрастируют с элементами вокруг них.

Похожие публикации