Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Принципы дизайна: композиционное равновесие, симметрия и асимметрия. Симметрия. Виды симметрии. Симметрия в природе

Симметрия ассоциируется с гармонией и порядком. И не зря. Потому что на вопрос, что такое симметрия, есть ответ в виде дословного перевода с древнегреческого. И получается, что она означает соразмерность и неизменность. А что может быть упорядоченней, чем строгое определение местоположения? И что можно назвать более гармоничным, чем то, что строго соответствует размерам?

Что означает симметрия в разных науках?

Биология. В ней важной составляющей симметрии является то, что животные и растения имеют закономерно расположенные части. Причем в этой науке не существует строгой симметрии. Всегда наблюдается некоторая асимметрия. Она допускает то, что части целого не совпадают с абсолютной точностью.

Химия. Молекулы вещества имеют определенную закономерность в расположении. Именно их симметрией объясняются многие свойства материалов в кристаллографии и других разделах химии.

Физика. Система тел и изменения в ней описываются с помощью уравнений. В них оказываются симметричные составляющие, что позволяет упростить все решение. Это выполняется благодаря поиску сохраняющихся величин.

Математика. Именно в ней в основном и дается разъяснение, что такое симметрия. Причем большее значение ей уделяется в геометрии. Здесь симметрия — это способность к отображению у фигур и тел. В узком смысле она сводится просто к зеркальному отображению.

Как определяют симметрию разные словари?

В какой бы из них мы ни заглянули, везде встретится слово «соразмерность». У Даля можно увидеть еще и такое толкование, как равномерие и равнообразие. Другими словами, симметричное - значит одинаковое. Здесь же говорится о том, что она скучна, интереснее смотрится то, в чем ее нет.

На вопрос, что такое симметрия, словарь Ожегова уже говорит об одинаковости в положении частей относительно точки, прямой или плоскости.

В словаре Ушакова упоминается еще и пропорциональность, а также полное соответствие двух частей целого друг другу.

Когда говорят об асимметрии?

Приставка «а» отрицает смысл основного существительного. Поэтому асимметрия означает то, что расположение элементов не поддается определенной закономерности. В ней отсутствует всякая неизменность.

Этот термин используется в ситуациях, когда две половины предмета не являются полностью совпадающими. Чаще всего они совсем не похожи.

В живой природе асимметрия играет важную роль. Причем она может быть как полезной, так и вредной. К примеру, сердце помещается в левую половину груди. За счет этого левое легкое существенно меньшего размера. Но это необходимо.

О центральной и осевой симметрии

В математике выделяют такие ее виды:

  • центральная, то есть выполненная относительно одной точки;
  • осевая, которая наблюдается около прямой;
  • зеркальная, она основывается на отражениях;
  • симметрия переноса.

Что такое ось и центр симметрии? Это точка или прямая, относительно которой любой точке тела найдется другая. Причем такая, чтобы расстояние от исходной до получившейся делилось пополам осью или центром симметрии. Во время движения этих точек они описывают одинаковые траектории.


Понять, что такое симметрия относительно оси, проще всего на примере. Тетрадный лист нужно сложить пополам. Линия сгиба и будет осью симметрии. Если провести к ней перпендикулярную прямую, то все точки на ней будут иметь лежащие на таком же расстоянии по другую сторону оси точки.

В ситуациях, когда необходимо найти центр симметрии, нужно поступать следующим образом. Если фигур две, то найти у них одинаковые точки и соединить их отрезком. Потом разделить пополам. Когда фигура одна, то помочь может знание ее свойств. Часто этот центр совпадает с точкой пересечения диагоналей или высот.

Какие фигуры являются симметричными?

Геометрические фигуры могут обладать осевой или центральной симметрией. Но это не обязательное условие, существует множество объектов, которые не обладают ею вовсе. К примеру, параллелограмм обладает центральной, но у него нет осевой. А неравнобедренные трапеции и треугольники не имеют симметрии совсем.

Если рассматривается центральная симметрия, фигур, обладающих ею, оказывается довольно много. Это отрезок и круг, параллелограмм и все правильные многоугольники с числом сторон, которое делится на два.

Центром симметрии отрезка (также круга) является его центр, а у параллелограмма он совпадает с пересечением диагоналей. В то время как у правильных многоугольников эта точка тоже совпадает с центром фигуры.

Если в фигуре можно провести прямую, вдоль которой ее можно сложить, и две половинки совпадут, то она (прямая) будет являться осью симметрии. Интересно то, сколько осей симметрии имеют разные фигуры.

К примеру, острый или тупой угол имеет только одну ось, которой является его биссектриса.

Если нужно найти ось в равнобедренном треугольнике, то нужно провести высоту к его основанию. Линия и будет осью симметрии. И всего одной. А в равностороннем их будет сразу три. К тому же, треугольник обладает еще и центральной симметрией относительно точки пересечения высот.

У круга может быть бесконечное число осей симметрии. Любая прямая, которая проходит через его центр, может исполнить эту роль.

Прямоугольник и ромб обладают двумя осями симметрии. У первого они проходят через середины сторон, а у второго совпадают с диагоналями.

Квадрат же объединяет предыдущие две фигуры и имеет сразу 4 оси симметрии. Они у него такие же, как у ромба и прямоугольника.

Что такое симметрия

Фундаментальным понятием науки, которое наряду с понятием "гармонии" имеет отношение практически ко всем структурам природы, науки и искусства, является "симметрия". Слово «симметрия» в переводе с греческого означает «соразмерность». Выдающийся математик Герман Вейль высоко оценил роль симметрии в современной науке: «Симметрия, как бы широко или узко мы не понимали это слово, есть идея, с помощью которой человек пытался объяснить и создать порядок, красоту и совершенство".

Рассмотрим понятие симметрии с геометрической точки зрения. В учебнике по геометрии это понятие вводится следующим образом.

Точки А и А 1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА 1 (рис. 1,а). Точка О считается симметричной самой себе.

Точки А и А 1 называются симметричными относительно прямой а (ось симметрии), если прямая а проходит через середину отрезка АА 1 и перпендикулярна к этому отрезку (рис. 1, б). Каждая точка прямой а считается симметричной самой себе.

Точки А и А 1 называются симметричными относительно плоскости (плоскость симметрии), если плоскость проходит через середину отрезка АА 1 и перпендикулярна к этому отрезку (рис.1,в). Каждая точка плоскости считается симметричной самой себе.

Т
очка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно неё некоторой точке той же фигуры.
Если фигура имеет Рис. 1 центр (ось, плоскость симметрии), то говорят, что она обладает центральной (осевой, зеркальной) симметрией.

В книге Шафрановского И.И. «Симметрия в природе» определение симметрии дается следующим образом. Плоскостью симметрии P Рис.2 называется такая плоскость, которая делит фигуру на две зеркально равные части, расположенные друг относительно друга так, как предмет и его зеркальное отражение. Например, изображенный на рис.2 слева равнобедренный треугольник ABC с высотой BD разделяется на две зеркально равные половины ABD и BCD ; при этом высота BD является "следом" плоскости симметрии P , перпендикулярной плоскости треугольника. На рис. 2 справа изображен также прямоугольный параллелепипед (кирпичик, спичечный коробок), который имеет три взаимно перпендикулярные плоскости симметрии 3P . Нетрудно установить, что куб обладает девятью плоскостями симметрии - 9P .

Второй тип элементов симметрии: ось симметрии. Осью симметрии называется такая прямая линия, вокруг которой несколько раз повторяются равные части симметричной фигуры. Эти равные части расположены так, что после поворота вокруг оси на некоторый угол фигура занимает в пространстве то же положение, которое она занимала и до поворота, только на месте одних ее частей оказались другие равные им части. Число самосовмещений фигуры при ее повороте вокруг оси на 360º называется «порядком оси». Доказано, что порядок оси может быть только целым числом. Обозначим ось симметрии L n , где n ее порядок.

Например, равносторонний треугольник имеет ось симметрии L 3 , то есть существуют три способа поворота треугольника вокруг оси, при котором происходит его "самосовмещение". Ясно, что квадрат имеет ось симметрии L 4 , а пентагон - L 5 . Конус также имеет ось симметрии, причем, поскольку число поворотов конуса вокруг своей оси симметрии, приводящих к "самосовмещению" бесконечно, то говорят, что конус имеет ось симметрии типа.

Наконец, центром симметрии C называется такая особая точка внутри фигуры, характеризующаяся тем, что любая проведенная через точку прямая по обе стороны от нее и на равных расстояниях встречает одинаковые (соответственные) точки фигуры. "Идеальным" примером фигуры, имеющей центр симметрии является шар. Центр шара и является его центром симметрии.

Симметрия широко встречается в объектах живой и неживой природы. На явление симметрии в живой природе обратили внимание еще пифагорейцы в связи с развитием ими учения о гармонии. Установлено, что в природе наиболее распространены два вида симметрии - "зеркальная" и "лучевая" (или "радиальная") симметрии. "Зеркальной" симметрией обладает бабочка, листок или жук (Рис.3-а) и часто такой вид симметрии называется "симметрией листка" или "билатеральной симметрией". К формам с лучевой симметрией относятся гриб, ромашка, сосновое дерево (Рис.3-б) и часто такой вид симметрии называется "ромашково-грибной" симметрией.


Рис. 3. Природные формы с "билатеральной" (а)

и "радиальной" (b) симметрией.

Еще в 19-м веке исследования в этой области привели к заключению, что симметрия природных форм в значительной степени зависит от влияния сил земного тяготения, которое в каждой точке имеет симметрию конуса. В результате был найден следующий закон, которому подчиняются формы природных тел: "Все то, что растет или движется по вертикали, то есть вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой ("ромашково-грибной") симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии - "симметрии листка" (одна плоскость симметрии)".

от греч. symmetria - соразмерность) - равномерное, сходное расположение элементов формы какого-нибудь искусственного предмета; в широком смысле слова - инвариантность (неизменность) структуры, формы материального объекта (системы объектов) относительно его преобразования, в силу чего симметрия связана с сохранением тех или иных величин, характеризующих данный объект (систему), например, энергии, импульса и т. д. (теорема Нетер в теоретической физике). (См. также Сингонии, Кристаллы, Кристаллография).

Отличное определение

Неполное определение ↓

Симметрия (symmetria)

Упорядочение целого есть, по Платону, превращение целого в гармонию, а определенное строение гармонии есть симметрия, пропорция, ритм.

а) Платон не дал достаточно ясного и развитого определения симметрии, хотя это понятие весьма важно для эстетики. Его высказывания о симметрии (Phileb, 23с - 27d)., к сожалению, чересчур общи. Они сводятся примерно к следующему: представим себе какой-нибудь пустой фон, на котором ничего не нарисовано. Нарисуем на этом фоне фигуру - круг, квадрат, треугольник, прямоугольник и т. д. Такая фигура обозначается при помощи прямой или кривой линии. Допустим далее, что мы не рассматриваем взятый нами фон и нарисованную фигуру отдельно друг от друга, а как нечто целое. Такое представление правильно, потому что фигура так или иначе заняла и подчинила себе определенную часть фона. Что же это за фигура, какой она имеет конкретный вид? Ее вид может быть красивый или некрасивый, соразмерный или несоразмерный, симметричный и несимметричный. Придали ли мы фигуре тот именно вид, который хотели, или это нам не удалось? Наше эстетическое чувство подскажет, хороша ли эта фигура или нехороша, стройна она или не стройна, прекрасна или уродлива, и т. д. Вот это простейшее и общечеловеческое рассуждение как раз и надо иметь в виду, чтобы понять содержание трудного платоновского диалога «Филеб».

Вместо того, чтобы говорить о фоне, Платон вводит понятие беспредельного. Конечно, не сразу станут понятными слова Платона о том, что беспредельное «может» быть и как угодно велико и как угодно мало, что оно пусто и ничего в себе не содержит. Итак, наш фон есть платоновское беспредельное. Далее, на нашем фоне мы чертим некую фигуру, т. е. ограничиваем некоторую часть фона. Эту фигуру Платон называет не очень понятным термином - «предел». Предел - это в данном случае просто ограниченность известной части фона. Но наш чертеж, ограничивший часть фона от прочего фона, создал именно определенную фигуру. Эту фигуру Платон именует не совсем понятным термином - «смешение» беспредельного и предела. Это не есть какое бы то ни было смешение каких бы то ни было разных предметов. Этот термин можно сравнить с тем, как воспринимается чертеж фигуры, когда эта фигура, выделяясь на каком-либо фоне, действительно «смешивается» с этим фоном, но ясно, что это понятие «смешение» специфично. Еще труднее и непонятнее термин Платона, употребляемый им для обозначения того, какая же именно фигура у нас получилась, т. е. какую именно идею мы хотели воплотить в чертеже, идею ли, например, треугольника или идею круга, или вообще какую-нибудь определенную идею. Платон назвал это «причиной смешения». Слово «причина» здесь либо неудачное, либо мы просто не сумели перевести соответствующий греческий термин. Ясно, однако, что фигура эта совершенно определенна. Это не фигура вообще, а треугольник, прямоугольник, круг и т. д. Та ли это фигура, которую мы хотели начертить? Здесь появляется новая ступень в понимании чертежа, которую Платон называет сразу тремя терминами: «симметрией», «истиной» и «красотой». Конечно, полученная нами фигура.либо симметрична, либо несимметрична, либо она соответствует нашей идее и потому истинна, либо мы в чем-нибудь ошиблись при чертеже, и тогда она не истинна, и она либо красива, либо некрасива. Это тоже ясно. Но слишком общий характер этих терминов и отсутствие всяких рассуждении об их взаимозависимости делают их не вполне ясными, почему в комментариях античных авторов на «Филеба» Платона по этому поводу было немало споров. Следовательно, симметрия по «Филебу» Платона, предполагает, по крайней мере, четыре разных понятия - беспредельного, предела, смешения того и другого и причины этого смешения. И, кроме того, даже и в этом случае понятие симметрии еще не очень ясно отмежевано от понятия истины и красоты. Если иметь в виду любовь Платона к архитектонике понятий и к их схематизму, разделение красота, истина и симметрия есть не что иное, как повторение первоначальной диалектики беспредельного, предела и смешения на высшей ступени. Наиболее интересно и ближе всего подходит к нашему пониманию эстетики рассуждение об удовольствии, или наслаждении, и разумности. Удовольствие, или наслаждение, -это что-то беспредельное, так как оно, взятое само по себе, ненасытно, вечно стремится как бы слепо и не имеет никакого предела. Разумность, ум, или интеллект, наоборот, всегда основывается на известной системе, на тех или иных точных разграничениях, на воздержании от наслаждений и потому является твердым и определенным принципом, «пределом». Если под красотой Платон понимает синтез наслаждения и разумности, т. е. как бы внутреннюю сторону соразмерности симметрии, то он очевидно, предвидит весьма распространенные впоследствии европейские учения о соединении удовольствия и ума в красоте. Истинное понятие красоты всегда включает не только удовольствие, но и разумную идейность. Учение Платона о симметрии оказывается не так уж наивным и общим; оно в некоторой степени отражает и реальную эстетическую действительность и реальное ее восприятие.

б) Мы исходили из того, что эстетическая и всякая иная терминология вырабатывалась у Платона постепенно, иной раз с большими усилиями и часто принимала неясные и запутанные формы. Однако изучать эстетику Платона нельзя на основании только некоторых материалов «Филеба». Необходимо обратить внимание на употребление термина «симметрия» и в других диалогах.

Например, интересно следующее в «Законах» (Legg., II 668 а): «Ведь равное является равным и симметричное (symmetron) симметричным не потому, что так нравится или так по вкусу кому-либо, но мерилом здесь является, по преимуществу, истина, а не другое». В данном случае «симметрия» уже предполагает «истину», так что, по крайней мере, в этом пункте мы были правы в пашей догадке относительно места «симметрии» в «Филебе». К «Филебу» примыкает и суждение в «Законах» (Legg., VI 773 а): «Равное и соразмерное в отношении добродетели бесконечно выше чрезмерного (acratoy)». Эти примеры показывают также, что Платон недаром поместил свою «симметрию» в такой общей области, как область творческого смешения предела и беспредельного. Указанные два текста весьма слабо подчеркивают структурную сторону симметрии, так что «соразмерность» здесь можно понимать в самом широком смысле. Как «истина» и «красота» есть какое-то соответствие (т. е. взаимосоответствие предела и беспредельного), таким же соответствием является и симметрия.

О структурности симметрии читаем: «Храм самого Посейдона имел одну стадию в длину три плефра в ширину и пропорционально (symmetron) тому на вид высоту» (Critias, 116 d). Что тут значит симметрия, нам неясно. Но ясно, что имеется в виду какое-то структурное соответствие. С такого же рода принципом структурности можно столкнуться в «Софисте», где говорится об искажении предметов, образующихся вследствие перспективы:

«Если они [художники] создают истинную симметрию прекрасных предметов, то ты знаешь, что более высокое кажется меньше нижнего, а более низкое - больше, ввиду того, что первые бывают видимы нами издали, а последние вблизи... Так же не расстаются ли при таких обстоятельствах художники с истиной, когда образам, отделываемым ими, они придают не действительно прекрасные «размеры» (tas oysas simmetrias), но кажущиеся таковыми» (Soph., 235 е - 236 а). Здесь «симметрия» только намекает на структурность, на деле же она означает (как это и переведено) именно «размеры» или (если перевести также приставку этого слова) «совокупность размеров».

Приведем текст, где имеется в виду составленность из единиц длины, но без всякого структурного взаимоотношения этих длин: «Будучи равным, оно будет тех же мер [т. е. «из того же количества единиц меры»], с тем, чем оно будет равно... Если же оно больше или меньше, по сравнению с тем, чему оно соразмерно (xymmetron), то в отношении к меньшему оно будет иметь больше мер [больше размером], а в отношении к большему оно будет иметь меньше мер [меньше размером]... С чем же оно несоизмеримо (me symmetron), в отношении к тому оно будет один раз иметь меньшие меры, другой раз большие» (Parm., 140 b). Под «симметрией», очевидно, здесь понимается просто математическая соизмеримость, т. е. возможность нахождения единой меры измерения.

в) Для характеристики термина «симметрия» имеет важное значение текст из диалога Платона «Теэтет» (147d-148 а). Текст этот представляет значительные трудности с чисто филологической стороны. Идея его сводится к тому, что Платон выдвигает на первый план при изучении симметрии прямоугольники, где стороны измеряются определенным рациональным числом, а диагонали иррациональным. Взаимоотношение стороны и диагонали каждого такого прямоугольника создает особого рода симметрию, на основе которой, как это исследовано современными теоретиками архитектуры, античные мастера возводили храмовые постройки периода классики.

Рассуждение о симметрии из «Теэтета» не осталось без отклика также и в современной искусствоведческой литературе. А именно, Д. Хэмбидж в своем учении о динамической симметрии в архитектуре3 ссылается как раз на это место платоновского «Теэтета», хотя и не подвергает его специальному анализу. Он обосновывается на большом искусствоведческом и естественнонаучном материале и, между прочим, на анализе всех основных архитектурных элементов Парфенона (а также и других греческих храмов)4. Если иметь в виду терминологию «Теэтета», то наименование рассматриваемой у этого автора симметрии как «динамической» нужно считать весьма удачным.

Рассуждение о симметрии в «Теэтете» в своем существе не выходит за пределы «Филеба», но только конкретизирует его. Объединение «предела» и «беспредельного» в художественном образе достигается в «Теэтете» при помощи геометрического построения. Геометрия в диалоге «Теэтета» служит здесь тем телесным и практическим началом, при помощи которого Платон делает свои отвлеченные построения. С помощью геометрии Платон пытается перевести на научный язык практику античного изобразительного искусства (в данном случае архитектуры).

В понятии симметрии у Платона имеется довольно существенное расхождение с обычным пониманием в западно-европейской эстетике. Расхождение это больше всего заметно благодаря чересчур большому объему этого понятия у Платона. Теперь представляют симметрию.главным образом как наличие взаимно эквивалентных частей, расположенных вокруг некоего центра или оси. Платоновское же понятие симметрии сводилось к наличию взаимно эквивалентных частей при очень расширенном понимании «центра» или «оси». Тут мыслятся не только числовые и геометрические отношения, но и отношения любых сфер бытия и жизни вообще.

Больше всего, конечно, «симметрия» мыслится (как и все прочие эстетические формы) у Платона в отношении души и космоса. Как увидим, она свойственна уже и всем элементарным фигурам, из которых строится у Платона космос (Tim., 69 b), но особенно она фиксируется на живом теле и душе и во взаимоотношениях души и тела (Tim., 87 с). Можно сказать, симметрия обладает здесь столь же широким значением, что и в досократовской эстетике, но только в ней подчеркнут творческий момент, совершенно растворенный в космологическом и физическом представлении о мире у досократиков.

Отличное определение

Неполное определение ↓

Симметрия I Симме́трия (от греч. symmetria - соразмерность)

в математике,

1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости α в пространстве (относительно прямой а на плоскости), - преобразование пространства (плоскости), при котором каждая точка М переходит в точку M" такую, что отрезок MM" перпендикулярен плоскости α (прямой а ) и делится ею пополам. Плоскость α (прямая а ) называется плоскостью (осью) С.

Отражение - пример ортогонального преобразования (См. Ортогональное преобразование), изменяющего ориентацию (См. Ориентация) (в отличие от собственного движения). Любое ортогональное преобразование можно осуществить последовательным выполнением конечного числа отражений - этот факт играет существенную роль в исследовании С. геометрических фигур.

2) Симметрия (в широком смысле) - свойство геометрической фигуры Ф , характеризующее некоторую правильность формы Ф , неизменность её при действии движений и отражений. Точнее, фигура Ф обладает С. (симметрична), если существует нетождественное ортогональное преобразование, переводящее эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой (См. Группа), называемой группой симметрии этой фигуры (иногда сами эти преобразования называются симметриями).

Так, плоская фигура, преобразующаяся в себя при отражении, симметрична относительно прямой - оси С. (рис. 1 ); здесь группа симметрии состоит из двух элементов. Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360°/n , n - целое число ≥ 2, переводят её в себя, то Ф обладает С. n -го порядка относительно точки О - центра С. Примером таких фигур являются правильные многоугольники (рис. 2 ); группа С. здесь - т. н. циклическая группа n -го порядка. Окружность обладает С. бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).

Простейшими видами пространственной С., помимо С., порожденной отражениями, являются центральная С., осевая С. и С. переноса.

а) В случае центральной симметрии (инверсии) относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трёх взаимно перпендикулярных плоскостей, другими словами, точка О - середина отрезка, соединяющего симметричные точки Ф (рис. 3 ). б) В случае осевой симметрии, или С. относительно прямой n -го порядка, фигура накладывается на себя вращением вокруг некоторой прямой (оси С.) на угол 360°/n . Например, куб имеет прямую AB осью С. третьего порядка, а прямую CD - осью С. четвёртого порядка (рис. 3 ); вообще, правильные и полуправильные многогранники симметричны относительно ряда прямых. Расположение, количество и порядок осей С. играют важную роль в кристаллографии (см. Симметрия кристаллов), в) Фигура, накладывающаяся на себя последовательным вращением на угол 360°/2k вокруг прямой AB и отражением в плоскости, перпендикулярной к ней, имеет зеркально-осевую С. Прямая AB , называется зеркально-поворотной осью С. порядка 2k , является осью С. порядка k (рис. 4 ). Зеркально-осевая С. порядка 2 равносильна центральной С. г) В случае симметрии переноса фигура накладывается на себя переносом вдоль некоторой прямой (оси переноса) на какой-либо отрезок. Например, фигура с единственной осью переноса обладает бесконечным множеством плоскостей С. (поскольку любой перенос можно осуществить двумя последовательными отражениями от плоскостей, перпендикулярных оси переноса) (рис. 5 ). Фигуры, имеющие несколько осей переноса, играют важную роль при исследовании кристаллических решёток (См. Кристаллическая решётка).

В искусстве С. получила распространение как один из видов гармоничной композиции (См. Композиция). Она свойственна произведениям архитектуры (являясь непременным качеством если не всего сооружения в целом, то его частей и деталей - плана, фасада, колонн, капителей и т. д.) и декоративно-прикладного искусства. С. используется также в качестве основного приёма построения бордюров и Орнамент ов (плоских фигур, обладающих соответственно одной или несколькими С. переноса в сочетании с отражениями) (рис. 6 , 7 ).

Комбинации С., порожденные отражениями и вращениями (исчерпывающие все виды С. геометрических фигур), а также переносами, представляют интерес и являются предметом исследования в различных областях естествознания. Например, винтовая С., осуществляемая поворотом на некоторый угол вокруг оси, дополненным переносом вдоль той же оси, наблюдается в расположении листьев у растений (рис. 8 ) (подробнее см. в ст. Симметрия в биологии). С. конфигурации молекул, сказывающаяся на их физических и химических характеристиках, имеет значение при теоретическом анализе строения соединений, их свойств и поведения в различных реакциях (см. Симметрия в химии). Наконец, в физических науках вообще, помимо уже указанной геометрической С. кристаллов и решёток, приобретают важное значение представления о С. в общем смысле (см. ниже). Так, симметричность физического пространства-времени, выражающаяся в его однородности и изотропности (см. Относительности теория), позволяет установить т. н. Сохранения законы ; обобщённая С. играет существенную роль в образовании атомных спектров и в классификации элементарных частиц (см. Симметрия в физике).

3) Симметрия (в общем смысле) означает инвариантность структуры математического (или физического) объекта относительно его преобразований. Например, С. законов теории относительности определяется инвариантностью их относительно Лоренца преобразований (См. Лоренца преобразования). Определение совокупности преобразований, оставляющих без изменения все структурные соотношения объекта, т. е. определение группы G его автоморфизмов, стало руководящим принципом современной математики и физики, позволяющим глубоко проникнуть во внутреннее строение объекта в целом и его частей.

Поскольку такой объект можно представить элементами некоторого пространства Р , наделённого соответствующей характерной для него структурой, постольку преобразования объекта являются преобразованиями Р . Т. о. получается представление группы G в группе преобразований Р (или просто в Р ), а исследование С. объекта сводится к исследованию действия G на Р и отысканию инвариантов этого действия. Точно так же С. физических законов, управляющих исследуемым объектом и обычно описывающихся уравнениями, которым удовлетворяют элементы пространства Р , определяется действием G на такие уравнения.

Так, например, если некоторое уравнение линейно на линейном же пространстве Р и остаётся инвариантным при преобразованиях некоторой группы G , то каждому элементу g из G соответствует линейное преобразование T g в линейном пространстве R решений этого уравнения. Соответствие g T g является линейным представлением G и знание всех таких её представлений позволяет устанавливать различные свойства решений, а также помогает находить во многих случаях (из «соображений симметрии») и сами решения. Этим, в частности, объясняется необходимость для математики и физики развитой теории линейных представлений групп. Конкретные примеры см. в ст. Симметрия в физике.

Лит.: Шубников А. В., Симметрия. (Законы симметрии и их применение в науке, технике и прикладном искусстве), М. - Л., 1940; Кокстер Г. С. М., Введение в геометрию, пер. с англ., М., 1966; Вейль Г., Симметрия, пер. с англ., М., 1968; Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.

М. И. Войцеховский.

Рис. 3. Куб, имеющий прямую AB осью симметрии третьего порядка, прямую CD - осью симметрии четвёртого порядка, точку О - центром симметрии. Точки М и M" куба симметричны как относительно осей AB и CD, так и относительно центра О.

II Симметри́я

в физике. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают С. (или инвариантны) относительно данных преобразований. В математическом отношении преобразования С. составляют группу (См. Группа).

Опыт показывает, что физические законы симметричны относительно следующих наиболее общих преобразований.

Непрерывные преобразования

1) Перенос (сдвиг) системы как целого в пространстве. Это и последующие пространственно-временные преобразования можно понимать в двух смыслах: как активное преобразование - реальный перенос физической системы относительно выбранной системы отсчёта или как пассивное преобразование - параллельный перенос системы отсчёта. С. физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, т. е. отсутствие в пространстве каких-либо выделенных точек (однородность пространства).

2) Поворот системы как целого в пространстве. С. физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).

3) Изменение начала отсчёта времени (сдвиг во времени). С. относительно этого преобразования означает, что физические законы не меняются со временем.

4) Переход к системе отсчёта, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью. С. относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчёта (См. Инерциальная система отсчёта) (см. Относительности теория).

5) Калибровочные преобразования. Законы, описывающие взаимодействия частиц, обладающих каким-либо зарядом (электрическим зарядом (См. Электрический заряд), барионным зарядом (См. Барионный заряд), лептонным зарядом (См. Лептонный заряд), Гиперзаряд ом), симметричны относительно калибровочных преобразований 1-го рода. Эти преобразования заключаются в том, что волновые функции (См. Волновая функция) всех частиц могут быть одновременно умножены на произвольный фазовый множитель:

где ψ j - волновая функция частицы j , z j - соответствующий частице заряд, выраженный в единицах элементарного заряда (например, элементарного электрического заряда е ), β - произвольный числовой множитель.

А А + grad f, , (2)

где f (x , у , z, t ) - произвольная функция координат (х , у , z ) и времени (t ), с - скорость света. Чтобы преобразования (1) и (2) в случае электромагнитных полей выполнялись одновременно, следует обобщить калибровочные преобразования 1-го рода: необходимо потребовать, чтобы законы взаимодействия были симметричны относительно преобразований (1) с величиной β, являющейся произвольной функцией координат и времени: η - Планка постоянная. Связь калибровочных преобразований 1-го и 2-го рода для электромагнитных взаимодействий обусловлена двоякой ролью электрического заряда: с одной стороны, электрический заряд является сохраняющейся величиной, а с другой - он выступает как константа взаимодействия, характеризующая связь электромагнитного поля с заряженными частицами.

Преобразования (1) отвечают законам сохранения различных зарядов (см. ниже), а также некоторым внутренним С. взаимодействия. Если заряды являются не только сохраняющимися величинами, но и источниками полей (как электрический заряд), то соответствующие им поля должны быть также калибровочными полями (аналогично электромагнитным полям), а преобразования (1) обобщаются на случай, когда величины β являются произвольными функциями координат и времени (и даже операторами (См. Операторы), преобразующими состояния внутренней С.). Такой подход в теории взаимодействующих полей приводит к различным калибровочным теориям сильных и слабых взаимодействий (т. н. Янга - Милса теория).

Дискретные преобразования

Перечисленные выше типы С. характеризуются параметрами, которые могут непрерывно изменяться в некоторой области значений (например, сдвиг в пространстве характеризуется тремя параметрами смещения вдоль каждой из координатных осей, поворот - тремя углами вращения вокруг этих осей и т. д.). Наряду с непрерывными С. большое значение в физике имеют дискретные С. Основные из них следующие.

Симметрия и законы сохранения

Согласно Нётер теореме (См. Нётер теорема), каждому преобразованию С., характеризуемому одним непрерывно изменяющимся параметром, соответствует величина, которая сохраняется (не меняется со временем) для системы, обладающей этой С. Из С. физических законов относительно сдвига замкнутой системы в пространстве, поворота её как целого и изменения начала отсчёта времени следуют соответственно законы сохранения импульса, момента количества движения и энергии. Из С. относительно калибровочных преобразований 1-го рода - законы сохранения зарядов (электрического, барионного и др.), из изотопической инвариантности - сохранение изотопического спина (См. Изотопический спин) в процессах сильного взаимодействия. Что касается дискретных С., то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив Суперпозиции принцип , из существования дискретных С. следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Существование таких величин можно продемонстрировать на примере пространственной чётности (См. Чётность), сохранение которой вытекает из С. относительно пространственной инверсии. Действительно, пусть ψ 1 - волновая функция, описывающая какое-либо состояние системы, а ψ 2 - волновая функция системы, получающаяся в результате пространств. инверсии (символически: ψ 2 = Р ψ 1 , где Р - оператор пространств. инверсии). Тогда, если существует С. относительно пространственной инверсии, ψ 2 является одним из возможных состояний системы и, согласно принципу суперпозиции, возможными состояниями системы являются суперпозиции ψ 1 и ψ 2: симметричная комбинация ψ s = ψ 1 + ψ 2 и антисимметричная ψ а = ψ 1 - ψ 2 . При преобразованиях инверсии состояние ψ 2 не меняется (т. к. P ψ s = P ψ 1 + P ψ 2 = ψ 2 + ψ 1 = ψ s), а состояние ψ a меняет знак (P ψ a = P ψ 1 - P ψ 2 = ψ 2 - ψ 1 = - ψ a). В первом случае говорят, что пространственная чётность системы положительна (+1), во втором - отрицательна (-1). Если волновая функция системы задаётся с помощью величин, которые не меняются при пространственной инверсии (таких, например, как момент количества движения и энергия), то вполне определённое значение будет иметь и чётность системы. Система будет находиться в состоянии либо с положительной, либо с отрицательной чётностью (причём переходы из одного состояния в другое под действием сил, симметричных относительно пространственной инверсии, абсолютно запрещены).

Симметрия квантово-механических систем и стационарные состояния. Вырождение

Сохранение величин, отвечающих различным С. квантово-механические системы, является следствием того, что соответствующие им операторы коммутируют с гамильтонианом системы, если он не зависит явно от времени (см. Квантовая механика , Перестановочные соотношения). Это означает, что указанные величины измеримы одновременно с энергией системы, т. е. могут принимать вполне определённые значения при заданном значении энергии. Поэтому из них можно составить т. н. полный набор величин, определяющих состояние системы. Т. о., стационарные состояния (См. Стационарное состояние) (состояния с заданной энергией) системы определяются величинами, отвечающими С. рассматриваемой системы.

Наличие С. приводит к тому, что различные состояния движения квантовомеханической системы, которые получаются друг из друга преобразованием С., обладают одинаковыми значениями физических величин, не меняющихся при этих преобразованиях. Т. о., С. системы, как правило, ведёт к вырождению (См. Вырождение). Например, определённому значению энергии системы может отвечать несколько различных состояний, преобразующихся друг через друга при преобразованиях С. В математическом отношении эти состояния представляют базис неприводимого представления группы С. системы (см. Группа). Это обусловливает плодотворность применения методов теории групп в квантовой механике.

Помимо вырождения уровней энергии, связанного с явной С. системы (например, относительно поворотов системы как целого), в ряде задач существует дополнительное вырождение, связанное с т. н. скрытой С. взаимодействия. Такие скрытые С. существуют, например, для кулоновского взаимодействия и для изотропного Осциллятор а.

Если система, обладающая какой-либо С., находится в поле сил, нарушающих эту С. (но достаточно слабых, чтобы их можно было рассматривать как малое возмущение), происходит расщепление вырожденных уровней энергии исходной системы: различные состояния, которые в силу С. системы имели одинаковую энергию, под действием «несимметричного» возмущения приобретают различные энергетические смещения. В случаях, когда возмущающее поле обладает некоторой С., составляющей часть С. исходной системы, вырождение уровней энергии снимается не полностью: часть уровней остаётся вырожденной в соответствии с С. взаимодействия, «включающего» возмущающее поле.

Наличие в системе вырожденных по энергии состояний, в свою очередь, указывает на существование С. взаимодействия и позволяет в принципе найти эту С., когда она заранее не известна. Последнее обстоятельство играет важнейшую роль, например, в физике элементарных частиц. Существование групп частиц с близкими массами и одинаковыми др. характеристиками, но различными электрическими зарядами (т. н. изотопических мультиплетов) позволило установить изотопическую инвариантность сильных взаимодействий, а возможность объединения частиц с одинаковыми свойствами в более широкие группы привело к открытию SU (3)-C . сильного взаимодействия и взаимодействий, нарушающих эту С. (см. Сильные взаимодействия). Существуют указания, что сильное взаимодействие обладает ещё более широкой группой С.

Весьма плодотворно понятие т. н. динамической С. системы, которое возникает, когда рассматриваются преобразования, включающие переходы между состояниями системы с различными энергиями. Неприводимым представлением группы динамической С. будет весь спектр стационарных состояний системы. Понятие динамической С. можно распространить и на случаи, когда гамильтониан системы зависит явно от времени, причём в одно неприводимое представление динамической группы С. объединяются в этом случае все состояния квантово-механической системы, не являющиеся стационарными (т. е. не обладающие заданной энергией).

Лит.: Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.

С. С. Герштейн.

III Симметри́я

в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами.

Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. (см. Симметрия в математике). Так, молекула аммиака NH 3 обладает симметрией правильной треугольной пирамиды, молекула метана CH 4 - симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия). Наиболее полное описание симметрии как равновесных, так и неравновесных конфигураций молекул достигается на основе представлений о т. н. динамических группах симметрии - группах, включающих не только операции пространственной симметрии ядерной конфигурации, но и операции перестановки тождественных ядер в различных конфигурациях. Например, динамическая группа симметрии для молекулы NH 3 включает также и операцию инверсии этой молекулы: переход атома N с одной стороны плоскости, образованной атомами Н, на другую её сторону.

Симметрия равновесной конфигурации ядер в молекуле влечёт за собой определённую симметрию волновых функций (См. Волновая функция) различных состояний этой молекулы, что позволяет проводить классификацию состояний по типам симметрии. Переход между двумя состояниями, связанный с поглощением или испусканием света, в зависимости от типов симметрии состояний может либо проявляться в молекулярном спектре (См. Молекулярные спектры), либо быть запрещенным, так что соответствующая этому переходу линия или полоса будет отсутствовать в спектре. Типы симметрии состояний, между которыми возможны переходы, влияют на интенсивность линий и полос, а также и на их поляризацию. Например, у гомоядерных двухатомных молекул запрещены и не проявляются в спектрах переходы между электронными состояниями одинаковой чётности, электронные волновые функции которых ведут себя одинаковым образом при операции инверсии; у молекул бензола и аналогичных соединений запрещены переходы между невырожденными электронными состояниями одного и того же типа симметрии и т. п. Правила отбора по симметрии дополняются для переходов между различными состояниями правилами отбора, связанными со Спин ом этих состояний.

У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии g -фактора (Ланде множитель), что сказывается на структуре спектров электронного парамагнитного резонанса (См. Электронный парамагнитный резонанс), тогда как у молекул, ядра атомов которых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса (См. Ядерный магнитный резонанс).

В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отдельных орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в которой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные (σ) и антисимметричные (π) относительно операции отражения в этой плоскости. Молекулы, у которых верхними (по энергии) занятыми орбиталями являются π-орбитали, образуют специфические классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отдельных фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химических превращений, например при фотохимических реакциях.

Представления о симметрии имеют важное значение при теоретическом анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллического поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетических уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.

В 1965 P. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химических реакциях, подтвержденный впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органической химии. Этот принцип (правило Вудворда - Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.

Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.

Лит.: Хохштрассер Р., Молекулярные аспекты симметрии, пер. с англ., М., 1968; Болотин А. Б., Степанов Н. ф.. Теория групп и ее применения в квантовой механике молекул, М., 1973; Вудворд Р., Хоффман Р., Сохранение орбитальной симметрии, пер. с англ., М., 1971.

Н. Ф. Степанов.

IV Симметри́я

в биологии (биосимметрия). На явление С. в живой природе обратили внимание ещё в Древней Греции пифагорейцы (5 в. до н. э.) в связи с развитием ими учения о гармонии. В 19 в. появились единичные работы, посвященные С. растений (французские учёные О. П. Декандоль, О. Браво), животных (немецкий - Э. Геккель), биогенных молекул (французские - А. Вешан, Л. Пастер и др.). В 20 в. биообъекты изучали с позиций общей теории С. (советские учёные Ю. В. Вульф, В. Н. Беклемишев, Б. К. Вайнштейн, голландский физикохимик Ф. М. Егер, английский кристаллографы во главе с Дж. Берналом) и учения о правизне и левизне (советские учёные В. И. Вернадский, В. В. Алпатов, Г. Ф. Гаузе и др.; немецкий учёный В. Людвиг). Эти работы привели к выделению в 1961 особого направления в учении о С. - биосимметрики.

Наиболее интенсивно изучалась структурная С. биообъектов. Исследование С. биоструктур - молекулярных и надмолекулярных - с позиций структурной С. позволяет заранее выявить возможные для них виды С., а тем самым число и вид возможных модификаций, строго описывать внешнюю форму и внутреннее строение любых пространственных биообъектов. Это привело к широкому использованию представлений структурной С. в зоологии, ботанике, молекулярной биологии. Структурная С. проявляется прежде всего в виде того или иного закономерного повторения. В классической теории структурной С., развитой немецким учёным И. Ф. Гесселем, Е. С. Федоровым (См. Фёдоров) и другими, вид С. объекта может быть описан совокупностью элементов его С., т. е. таких геометрических элементов (точек, линий, плоскостей), относительно которых упорядочены одинаковые части объекта (см. Симметрия в математике). Например, вид С. цветка флокса (рис. 1 , в) - одна ось 5-го порядка, проходящая через центр цветка; производимые посредством её операции - 5 поворотов (на 72, 144, 216, 288 и 360°), при каждом из которых цветок совпадает с самим собой. Вид С. фигуры бабочки (рис. 2 , б) - одна плоскость, делящая её на 2 половины - левую и правую; производимая посредством плоскости операция - зеркальное отражение, «делающее» левую половинку правой, правую - левой, а фигуру бабочки совмещающей с самой собой. Вид С. радиолярии Lithocubus geometricus (рис. 3 , б), помимо осей вращения и плоскостей отражения содержит ещё и центр С. Любая проведённая через такую единственную точку внутри радиолярии прямая по обе стороны от неё и на равных расстояниях встречает одинаковые (соответственные) точки фигуры. Операции, производимые посредством центра С., - отражения в точке, после которых фигура радиолярии также совмещается сама с собой.

В живой природе (как и в неживой) из-за различных ограничений обычно встречается значительно меньшее число видов С., чем возможно теоретически. Например, на низших этапах развития живой природы встречаются представители всех классов точечной С. - вплоть до организмов, характеризующихся С. правильных многогранников и шара (см. рис. 3 ). Однако на более высоких ступенях эволюции встречаются растения и животные в основном т. н. аксиальной (вида n ) и актиноморфной (вида n (m ) С . (в обоих случаях n может принимать значения от 1 до ∞). Биообъекты с аксиальной С. (см. рис. 1 ) характеризуются лишь осью С. порядка n . Биообъекты сактиноморфной С. (см. рис. 2 ) характеризуются одной осью порядка n и пересекающимися по этой оси плоскостями m . В живой природе наиболее распространены С. вида n = 1 и 1․m = m , называется соответственно асимметрией (См. Асимметрия) и двусторонней, или билатеральной, С. Асимметрия характерна для листьев большинства видов растений, двусторонняя С. - до известной степени для внешней формы тела человека, позвоночных животных и многих беспозвоночных. У подвижных организмов такая С., по-видимому, связана с различиями их движении вверх-вниз и вперёд-назад, тогда как их движения направо-налево одинаковы. Нарушение у них билатеральной С. неизбежно привело бы к торможению движения одной из сторон и превращению поступательного движения в круговое. В 50-70-х гг. 20 в. интенсивному изучению (прежде всего в СССР) подверглись т. н. диссимметрические биообъекты (рис. 4 ). Последние могут существовать по крайней мере в двух модификациях - в форме оригинала и его зеркального отражения (антипода). При этом одна из этих форм (неважно какая) называется правой или D (от лат. dextro), другая - левой или L (от лат. laevo). При изучении формы и строения D- и L-биообъектов была развита теория диссимметризующих факторов, доказывающая возможность для любого D- или L-объекта двух и более (до бесконечного числа) модификаций (см. также рис. 5 ); одновременно в ней содержались и формулы для определения числа и вида последних. Эта теория привела к открытию т. н. биологической изомерии (См. Изомерия) (разных биообъектов одного состава; на рис. 5 изображены 16 изомеров листа липы).

При изучении встречаемости биообъектов было установлено, что в одних случаях преобладают D-, в других L-формы, в третьих они представлены одинаково часто. Бешаном и Пастером (40-е гг. 19 в.), а в 30-х гг. 20 в. советским учёным Г. Ф. Гаузе и другими было показано, что клетки организмов построены только или преимущественно из L-amинокислот, L-белков, D-дезоксирибонуклеиновых кислот, D-сахаров, L-алкалоидов, D- и L-терпенов и т. д. Столь фундаментальная и характерная черта живых клеток, названная Пастером диссимметрией протоплазмы, обеспечивает клетке, как было установлено в 20 в., более активный обмен веществ и поддерживается посредством сложных биологических и физико-химических механизмов, возникших в процессе эволюции. Сов. учёный В. В. Алпатов в 1952 на 204 видах сосудистых растений установил, что 93,2% видов растений относятся к типу с L-, 1,5% - с D-ходом винтообразных утолщений стенок сосудов, 5,3% видов - к типу рацемическому (число D-сосудов примерно равно числу L-сосудов).

При изучении D- и L-биообъектов было установлено, что равноправие между D-и L-формами в ряде случаев нарушено из-за различия их физиологических, биохимических и др. свойств. Подобная особенность живой природы была названа диссимметрией жизни. Так, возбуждающее влияние L-amинокислот на движение плазмы в растительных клетках в десятки и сотни раз превосходит такое же действие их D-форм. Многие антибиотики (пенициллин, грамицидин и др.), содержащие D-amинокислоты, обладают большей бактерицидностью, чем их формы c L-amинокислотами. Чаще встречающиеся винтообразные L-kopнеплоды сахарной свёклы на 8-44% (в зависимости от сорта) тяжелее и содержат на 0,5-1% больше сахара, чем D-kopнеплоды.

Похожие публикации