Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Формула расчета тока в трехфазной сети. Расчет мощности по току и напряжению

При проектировании любых электрических цепей выполняется расчет мощности. На его основе производится выбор основных элементов и вычисляется допустимая нагрузка. Если расчет для цепи постоянного тока не представляет сложности (в соответствии с законом Ома, необходимо умножить силу тока на напряжение – Р=U*I), то с вычислением мощности переменного тока – не все так просто. Для объяснения потребуется обратиться к основам электротехники, не вдаваясь в подробности, приведем краткое изложение основных тезисов.

В цепях переменного тока расчет мощности ведется с учетом законов синусоидальных изменений напряжения и тока. В связи с этим введено понятие полной мощности (S), которая включает в себя две составляющие: реактивную (Q) и активную (P). Графическое описание этих величин можно сделать через треугольник мощностей (см. рис.1).

Под активной составляющей (Р) подразумевается мощность полезной нагрузки (безвозвратное преобразование электроэнергии в тепло, свет и т.д.). Измеряется данная величина в ваттах (Вт), на бытовом уровне принято вести расчет в киловаттах (кВт), в производственной сфере – мегаваттах (мВт).

Реактивная составляющая (Q) описывает емкостную и индуктивную электронагрузку в цепи переменного тока, единица измерения этой величины Вар.

Рис. 1. Треугольник мощностей (А) и напряжений (В)

В соответствии с графическим представлением, соотношения в треугольнике мощностей можно описать с применением элементарных тригонометрических тождеств, что дает возможность использовать следующие формулы :

  • S = √P 2 +Q 2 , – для полной мощности;
  • и Q = U*I*cos⁡ φ , и P = U*I*sin φ – для реактивной и активной составляющих.

Эти расчеты применимы для однофазной сети (например, бытовой 220 В), для вычисления мощности трехфазной сети (380 В) в формулы необходимо добавить множитель – √3 (при симметричной нагрузке) или суммировать мощности всех фаз (если нагрузка несимметрична).

Для лучшего понимания процесса воздействия составляющих полной мощности давайте рассмотрим «чистое» проявление нагрузки в активном, индуктивном и емкостном виде.

Возьмем гипотетическую схему, в которой используется «чистое» активное сопротивление и соответствующий источник переменного напряжения. Графическое описание работы такой цепи продемонстрировано на рисунке 2, где отображаются основные параметры для определенного временного диапазона (t).

Рисунок 2. Мощность идеальной активной нагрузки

Мы можем увидеть, что напряжение и ток синхронизированы как по фазе, так и частоте, мощность же имеет удвоенную частоту. Обратите внимание, что направление этой величины положительное, и она постоянно возрастает.

Как видно на рисунке 3, график характеристик емкостной нагрузки несколько отличается от активной.


Рисунок 3. График идеальной емкостной нагрузки

Частота колебаний емкостной мощности вдвое превосходит частоту синусоиды изменения напряжения. Что касается суммарного значения этого параметра, в течение одного периода гармоники оно равно нулю. При этом увеличения энергии (∆W) также не наблюдается. Такой результат указывает, что ее перемещение происходит в обоих направлениях цепи. То есть, когда увеличивается напряжение, происходит накопление заряда в емкости. При наступлении отрицательного полупериода накопленный заряд разряжается в контур цепи.

В процессе накопления энергии в емкости нагрузки и последующего разряда не производится полезной работы.

Представленный ниже график демонстрирует характер «чистой» индуктивной нагрузки. Как видим, изменилось только направление мощности, что касается наращения, оно равно нулю.


Негативное воздействие реактивной нагрузки

В приведенных выше примерах рассматривались варианты, где присутствует «чистая» реактивная нагрузка. Фактор воздействия активного сопротивления в расчет не принимался. В таких условиях реактивное воздействие равно нулю, а значит, можно не принимать его во внимание. Как вы понимаете, в реальных условиях такое невозможно. Даже, если гипотетически такая нагрузка бы существовала, нельзя исключать сопротивление медных или алюминиевых жил кабеля, необходимого для ее подключения к источнику питания.

Реактивная составляющая может проявляться в виде нагрева активных компонентов цепи, например, двигателя, трансформатора, соединительных проводов, питающего кабеля и т.д. На это тратится определенное количество энергии, что приводит к снижению основных характеристик.

Реактивная мощность воздействует на цепь следующим образом:

  • не производит ни какой полезной работы;
  • вызывает серьезные потери и нештатные нагрузки на электроприборы;
  • может спровоцировать возникновение серьезной аварии.

Именно по этому, производя соответствующие вычисления для электроцепи, нельзя исключать фактор влияния индуктивной и емкостной нагрузки и, если необходимо, предусматривать использование технических систем для ее компенсации.

Расчет потребляемой мощности

В быту часто приходится сталкиваться с вычислением потребляемой мощности, например, для проверки допустимой нагрузки на проводку перед подключением ресурсоемкого электропотребителя (кондиционера, бойлера, электрической плиты и т.д.). Также в таком расчете есть необходимость при выборе защитных автоматов для распределительного щита, через который выполняется подключение квартиры к электроснабжению.

В таких случаях расчет мощности по току и напряжению делать не обязательно, достаточно просуммировать потребляемую энергию всех приборов, которые могут быть включены одновременно. Не связываясь с расчетами, узнать эту величину для каждого устройства можно тремя способами:




При расчетах следует учитывать, что пусковая мощность некоторых электроприборов может существенно отличаться от номинальной. Для бытовых устройств этот параметр практически никогда не указывается в технической документации, поэтому необходимо обратиться к соответствующей таблице, где содержатся средние значения параметров стартовой мощности для различных приборов (желательно выбирать максимальную величину).

Предисловие

Правильная подводка электричества к частному дому может быть сделана только после тщательного планирования, основанного на данных, полученных в ходе предварительных расчетов.

Cодержание

Подводка электричества к дому является одним из самых важных моментов подготовки строения к вводу в эксплуатацию. Правильная подводка электричества к частному дому может быть сделана только после тщательного планирования, основанного на данных, полученных в ходе предварительных расчетов. В этой статье рассказано о том, как проводится расчет электрических нагрузок в частном доме с целью улучшения экономичности и безопасности эксплуатации приборов.

Индивидуальный дом расположен в местности, где используются электрические воздушные линии. В этом случае неизолированные провода монтируют на фарфоровых или стеклянных изоляторах, укрепленных на деревянных, железобетонных или металлических опорах. Иногда вдоль линии электропередач предусматривают уличное освещение, в этом случае прокладывают еще один провод, который монтируют на тех же опорах. Уличное освещение подключают к «фазному» и нулевому проводам, а для управления ставят выключатель или магнитный пускатель, к контактам которого присоединяют провода для освещения.

В четырехпроводных электрических линиях нулевой провод обязательно заземляют на трансформаторной подстанции, а затем через каждые 100- 200 м по трассе, для чего на опорах устраивают повторные заземления. От четырех-или пятипроводной (с «фонарным» проводом) линии, проходящей вдоль улицы, делают отводы к домам, распределяя нагрузки на каждую фазу более или менее равномерно: при однофазных ответвлениях чередуют от каждой фазы (от первой фазы отвод к первому дому, от второй - ко второй, от третьей - к третьему, к четвертому - снова от первой и т. п.). Второй провод каждого двухпроводного отвода присоединяют к нулевому проводу линии.

Формула расчета нагрузки, мощности и силы тока

Для проведения изысканий может применяться формула расчета тока, которая должна учитывать несколько параметров. Расчет примерный, потому что еще нужно учитывать коэффициент мощности, равный для большинства электропотребителей 0,9-1. Если вы включаете в сеть напряжением 220 В электрическую лампочку 100 Вт, то ток в подводящих проводах 100 Вт/220 В, или 0,45 А (это при коэффициенте мощности равном 1). Если электроприемник имеет коэффициент мощности 0,9, то при мощности 100 Вт и напряжении 220 В сила тока рассчитывается следующим образом: I = W/KU = 100Вт/200Вх0,9=0,5А. Чем меньше коэффициент мощности, тем больше ток и, следовательно, больше потери энергии в проводах за счет их нагревания. Формула расчета нагрузки может быть скорректирована с учетом изменения этих параметров.

Формула мощности нагрузки используется, чтобы подсчитать электрическую потребность нескольких электроприемников, необходимо суммировать их номинальные токи, иногда у всех электроприемников коэффициент мощности одинаков или достаточно близок к единице. При различных значениях коэффициента мощности находят его усредненное значение, а чаще принимают эту величину 0,8-0,9 и вычисляют силу тока, исходя из суммы номинальных мощностей. Нагрузку на фазовый провод от трехфазного электроприемника подсчитывают, исходя из того, что на каждую фазу приходится одна треть мощности и что фазовое напряжение в 1,73 раза меньше линейного: мощность трехфазного электроприемника делят на номинальное линейное напряжение, а коэффициент мощности на 1,73. Потребители, пользующиеся трехфазным током, одну из фаз выделяют для питания однофазных электроприемников, силу тока в этом фазовом проводе определяют, суммируя нагрузки всех трех- и однофазных электроприемников. На ток в других фазовых проводах однофазные электроприемники не влияют, но они определяют ток в нулевом проводе (при включении только трехфазных электроприемников тока в нулевом проводе нет).

Формула расчета силы тока при правильном применении позволяет формировать устойчивую к перепадам напряжения сеть. Практически все электроприемники в вашем доме имеют различное электрическое сопротивление, определяемое результатом деления величин электрического напряжения и силы электрического тока. Электрическое сопротивление (проводника, электроутюга, телевизора и т. п.) в омах (Ом), равно электрическому напряжению в вольтах (В), деленному на силу тока в амперах (А): R = U/I. Если к электроприемнику приложено напряжение 220 В и при этом протекает ток силой 0,5 А, то сопротивление цепи составляет 440Ом. Если сопротивление увеличить, сила тока пропорционально уменьшится. Используя приведенные зависимости: I =W/U и R=U/I, путем арифметических действий получим: WR = U2.

Отсюда, можно, зная величину электрического напряжения и мощность электропотребителя, вычислить его сопротивление. Или вычислить мощность, зная величины R и U. Например, сопротивление электроприемника мощностью 220 Вт составляет 484 Ом, а сопротивление электроприемника мощностью 1 кВт - 48,4 Ом.

Сопротивление проводов электрической сети обычно находится в пределах от долей Ома до 1-2 Ом, нагрев проводов электрическим током зависит от сопротивления и силы тока, поэтому если электрическое соединение сделано плохо (недостаточно затянуты винты, небрежно скручены и зачищены провода), его сопротивление оказывается больше и возникает опасный перегрев, появляется возможность загорания. При коротком замыкании напряжение сети приложено к замкнутым между собой проводам, сопротивление мало, и сила тока возрастает, превосходя допустимые значения. Если при этом нет необходимых мер защиты (например, отсутствуют предохранители), провода также могут загореться.

У домовладельцев возникает вопрос: каким проводом лучше монтировать электропроводку - с медной или алюминиевой жилой? Конечно, вопрос корректен, если подразумеваются одинаковые провода: сечение жилы, тип изоляции и т. п. Удельное сопротивление меди в 1,6 раза меньше, чем удельное сопротивление алюминия. Для передачи одной и той же электрической мощности до опасного нагрева нужно выбрать сечение алюминиевой жилы в 1,6 больше, по сравнению с медной.

Коэффициент теплопроводности меди 390 Вк/м x К, а у алюминия 209 X= Вк / м x К, то есть у меди в 1,7 больше. Это означает, что, если в одном месте медной жилы, например, за счет плохого контакта, возник перегрев - температура повысилась, то такое повышение температуры быстрее будет распределяться по медной жиле по сравнению с алюминиевой. Следовательно, использование медных проводников имеет несомненные преимущества по сравнению с алюминиевыми.

По определению мощность есть энергия в единицу времени, электрическая энергия Е равна: Е = Wt, где t - время.

Измеряют величину Е при помощи электросчетчиков. Если мощность электроприемников суммарно составляет 1 кВт, то за 1 час работы будет израсходован 1 кВт/час, такое же количество электроэнергии израсходуют за 4 часа электроприемники мощностью 250 Вт или электролампа мощностью 100 Вт за 10 часов.

Вам понадобиться: в доме всегда включено много электропотребителей - электрические лампочки, холодильник, телевизор, электронагреватели и т. п. Обычно все они соединены параллельно, однако в редких случаях встречается и последовательное соединение потребителей. Вам, например, необходимо рассчитать, купив новый электроприбор (и зная его мощность и напряжение, которые должны быть приведены в паспорте) не только силу тока через этот прибор, но и какой автомат-предохранитель нужно поставить в цепи прибора, если параллельно ему уже подключены другие. То есть необходимы самые краткие данные для расчета электрических цепей.

Далее, если у вас есть конкретная электрическая цепь, подставляя величины U, Rv R2 и т. д., вы получите необходимые численные значения, только не забудьте все величины записывать в Международной системе единиц СИ - вольтах, амперах, Омах и ваттах. Впрочем, если вы привыкли к лошадиным силам (л. с.), то запомните, что 1 л. с. — 735,5 Вт.

Приведенные сведения из электротехники - тот технический минимум, который вам необходимо знать, чтобы грамотно эксплуатировать электрические системы в своем доме.

Указания по определению и расчету мощностей электрических нагрузок электроприборов с примерами

Далее приведены указания по расчету электрических нагрузок в частном домовладении для улучшения производительности сети. Проводимый предварительно расчет мощности электроприборов позволяет также сократить финансовые затраты на оплату счетов за электроэнергию.

Выберем для составления схемы достаточно типичный вариант двухэтажного дома и последовательно рассмотрим все этапы составления электрической схемы электропроводки.

Для того чтобы провести определение электрических нагрузок, поступим следующим образом: разместим на плане дома по помещениям все электропотребители, которые могут быть включены в доме. Далее представлены практические примеры расчета электрических сетей, которые можно использовать для составления собственного плана.

Первый этаж.

  • Гостиная 30 м2. Из электропотребителей здесь: телевизор (60 Вт), музыкальный центр (50 Вт), видеоплеер (10 Вт). Для освещения используются люстра (5 лампочек по 60-300 Вт) и два бра по 100 Вт - вместе 500 Вт.
  • Коридор, крыльцо - освещение электролампами по 100 Вт (всего 200 Вт).
  • Кухня: электрическая плита (1,5 кВт), стиральная машина (1,8 кВт), электронагреватель (1,5 кВт), холодильник (400 Вт), освещение - люстра (200 Вт) и бра (100 Вт), вместе 300 Вт.

Второй этаж.

  • Спальня - освещение - бра (200 Вт).
  • Туалетная комната - освещение (100 Вт).
  • Холл - освещение (200 Вт).

Для включения всех указанных потребителей монтируют групповую сеть. Групповую сеть выполняют, как правило, тремя группами. Первая группа предназначена для питания осветительных приборов, вторая служит для присоединения штепсельных розеток на 6А без защитных (зануляющих или заземляющих) контактов, третья питает электроприемники, требующие занулений корпуса прибора, например, кухонную плиту. К этой группе присоединяют штепсельные розетки с защитным контактом.

Нельзя объединять нулевые проводники разных групп в провод, который служит для присоединения защитных контактов штепсельных розеток в нулевые проводники, нельзя вводить ни выключатели, ни предохранители. Допускается смешанное питание штепсельных розеток и освещения.

Если поступить по всем правилам, то есть объединим в одну группу осветительные приборы, во вторую - штепсельные розетки на 6А, в третью - штепсельные розетки с защитным контактом, то в итоге получим большой расход проводов. Если проводя расчет электрических нагрузок, пример взять за основу, то стоит провести корректировку мощностей в соответствии с паспортными данными электроприборов.

Методы и формула расчета сопротивления и напряжения электрической нагрузки

Сопротивление нагрузки формула позволяет рассчитывать максимально точно при планировании наиболее эффективной работы сети. Для того чтобы узнать напряжение нагрузки, формула должна включать в себя все параметра работающих приборов. Методы расчета электрических нагрузок в частном домовладении можно посмотреть далее на этой странице в примерах проведения исследований.

Группа № 1

Объединим штепсельные розетки и осветительные приборы в гостиной в группу № 1. Суммарная мощность всех одновременно включенных приборов равна 620 Вт. Представим, что возникла необходимость включить еще настольную лампу, фен для сушки волос, кофемолку, электропаяльник и т. п. - мало ли какие возникают ситуации. Добавим на такие непредвиденные расходы еще 300 Вт - пусть максимальная мощность всех электропотребителей, включенных одновременно в гостиной, достигнет 900 Вт. Не бойтесь в разумных пределах завысить мощность электропотребителей - небольшие дополнительные расходы на электропроводку с лихвой окупятся отсутствием опасности возгорания в вашем доме. Максимальная сила тока в цепи: I= (900Вт) /200В=4,1А.

Величина силы тока на подходе к предохранителю цепи, а ток в проводах, ведущих к бра, будет значительно меньше. Если провод к бра через ответвительную коробку отходит от центральных жил, то сила тока в нем: 100Вт/220В=0,45 А.

К бра можно проложить провод со значительно меньшим сечением.

Максимальная допустимая нагрузка на штепсельную розетку без заземленных контактов 1500 Вт, а количество розеток на 30 м2 гостиной 3-5 штук (по СНиП - 1 розетка на 6-10 м2 жилой площади). Наконец, общий максимальный ток не превышает 6 A, то есть можно использовать 6 A предохранитель для этой части групповой сети. Сейчас используют автоматические выключатели, расцепители которых рассчитаны на 16 A - осветительная сеть и сеть штепсельных розеток.

У нас есть большой «запас прочности», около 12 А (16 А - 4 А), поэтому в группу №1 можно включить освещение кухни, коридора, крыльца, туалетной комнаты и гаража. Тогда суммарная мощность всех электропотребителей в гостиной и осветительных приборов в других комнатах составит около 1,6 кВт, сила тока не превысит 7,3 А, и для этой группы №1 расцепитель автоматического выключателя, рассчитанный на 16 А, нас вполне устроит, так как 16 А, или 3,6 кВт - это мощность всех одновременно включенных потребителей.

Группа №2

В группу № 2 выделим розетки с защитным контактом для электрической плиты, электронагревателя, холодильника и стиральной машины. Суммарная мощность этих приборов 5,3 кВт, а сила тока в цепи группы № 2 составит: I=5,3кВт/220В=24А.

Практически исключаются случаи одновременного включения всех перечисленных приборов, и для этой группы можно использовать автоматический выключатель с расцепителем на силу тока 25 А.

Группа № 3

Наконец, в группу № 3 включите розетки и освещение второго этажа. При указанных выше электропотребителях установите автоматический выключатель на 16 A.

Любой электроприбор характеризуется несколькими основными параметрами, среди которых ток и мощность. Иногда в указываются лишь мощность и напряжение, ток в этом случае легко найти, воспользовавшись знаменитыми формулами Ома (разумеется, с рядом оговорок - например, должен быть известен cos). Верно также обратное: зная ток и напряжение, можно выполнить расчет мощности. В глобальной Сети есть много материалов по данной теме, но большая их часть рассчитана на специалистов.

Давайте рассмотрим, что понимают под термином «электрическая мощность», какие существуют ее разновидности и как можно сделать расчет мощности. Физический смысл мощности указывает, насколько быстро в установке (приборе) происходит преобразование электроэнергии в тот или иной вид полезной работы. Вот так все просто! Для неэлектрических же устройств вполне допустимо использовать термин «производительность».

В электротехнике принято разделение, согласно которому существует активная и реактивная мощность. Первая непосредственно преобразуется в полезную работу, поэтому считается основной. Единицей измерения служит Ватт и производные - Киловатт, Мегаватт и пр. На бытовых электроприборах указывается именно она. Хотя это вовсе не означает, что реактивной составляющей нет. В свою очередь вторая - нежелательная, так как в выполнении работы не участвует, а растрачивается на различные виды потерь. Измеряется в «вар» (вольт-ампер реактивный) и производных - киловольт-ампер реактивный и т.д. Сумма активной и реактивной составляющих формируют полную мощность (вольт-ампер, ВА).

Яркий пример потребителя с чистой активной нагрузкой - электрический ТЭН. При прохождении по нему электрического тока генерируется тепло, причем в прямой зависимости. Точно так же действует потребитель реактивной энергии - классический трансформатор. При его работе в витках обмотки создается магнитное поле, которое само по себе не нужно (используется свойство электромагнитной индукции). Магнитопровод намагничивается, происходят потери. Другими словами:

где sin Fi - синус угла между векторами тока и напряжения. Его знак зависит от характера нагрузки (емкостная или индуктивная).

Расчет мощности начинают с определения рода тока: постоянный или переменный, так как формулы не являются универсальными.

В первом случае используется следствие из классического закона Ома. Мощность P является произведением тока I на напряжение U:

P=I*U (Вт=А*В).

При цепи с источником питания учитывается направление ЭДС: это нужно для расчета сопротивления самого источника. Так, генератор или батарея, в которых ток течет от «-» к «+», выдавая энергию в нагрузку цепи, отдает мощность. Если же течение тока противоположно приложенному потенциалу (зарядка аккумуляторной батареи), то имеет место поглощение мощности источником ЭДС.

Формула расчета мощности для (однофазная цепь) учитывает коэффициент - «косинус фи». Он представляет собой отношение активной составляющей мощности к полной. Очевидно, что в случае с ТЭНом косинус будет равняться 1 (идеальный вариант), так как реактивной составляющей нет. Иначе для снижения потерь на стороне генератора применяют различные компенсаторы или иные технические решения.

Таким образом:

Расчет мощности в выполняется для каждой фазы, а полученные значения затем суммируются. Для переменного тока полная мощность рассчитывается как из суммы квадратов активной и реактивной составляющих. Для генерирующих устройств (подстанции) более важно знать именно полную мощность, так как на основе этого подбираются все остальные элементы последующих цепей. Очевидно, что в большинстве случаев нельзя заранее узнать характер нагрузки.

Похожие публикации