Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Электрический ток и его применение. Понятие электрического тока и в чём он измеряется

Не имея определенных начальных знаний об электричестве, тяжело себе представить, как работают электрические приборы, почему вообще они работают, почему надо включать телевизор в розетку, чтобы он заработал, а фонарику хватает маленькой батарейки, чтобы он светил в темноте.

И так будем разбираться во всем по порядку.

Электричество

Электричество – это природное явление, подтверждающее существование, взаимодействие и движение электрических зарядов. Электричество впервые было обнаружено еще в VII веке до н.э. греческим философом Фалесом. Фалес обратил внимание на то, что если кусочек янтаря потереть о шерсть, он начинает притягивать к себе легкие предметы. Янтарь на древнегреческом – электрон.

Вот так и представляю себе, сидит Фалес, трет кусок янтаря о свой гиматий (это шерстяная верхняя одежда у древних греков), а затем с озадаченным видом смотрит, как к янтарю притягиваются волосы, обрывки ниток, перья и клочки бумаги.

Данное явление называется статическим электричеством . Вы можете повторить данный опыт. Для этого хорошенько потрите шерстяной тканью обычную пластмассовую линейку и поднесите ее к мелким бумажным кусочкам.

Следует отметить, что долгое время это явление не изучалось. И только в 1600 году в своем сочинении «О магните, магнитных телах и о большом магните – Земле» английский естествоиспытатель Уильям Гилберт ввел термин – электричество. В своей работе он описал свои опыты с наэлектризованными предметами, а также установил, что наэлектризовываться могут и другие вещества.

Далее на протяжении трех веков самые передовые ученые мира исследуют электричество, пишут трактаты, формулируют законы, изобретают электрические машины и только в 1897 году Джозеф Томсон открывает первый материальный носитель электричества – электрон, частицу, благодаря которой возможны электрические процессы в веществах.

Электрон – это элементарная частица, имеет отрицательный заряд примерно равный -1,602·10 -19 Кл (Кулон). Обозначается е или е – .

Напряжение

Чтобы заставить перемещаться заряженные частицы от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение . Единица измерения напряжения – Вольт (В или V ). В формулах и расчетах напряжение обозначается буквой V . Чтобы получить напряжение величиной 1 В нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж (Джоуль).

Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под естественным давлением покидает резервуар через трубу. Давайте условимся, что вода – это электрический заряд , высота водяного столба (давление) – это напряжение , а скорость потока воды – это электрический ток .

Таким образом, чем больше воды в баке, тем выше давление. Аналогично с электрической точки зрения, чем больше заряд, тем выше напряжение.

Начнем сливать воду, давление при этом будет уменьшаться. Т.е. уровень заряда опускается – величина напряжения уменьшается. Такое явление можно наблюдать в фонарике, лампочка светит все тусклее по мере того как разряжаются батарейки. Обратите внимание, чем меньше давление воды (напряжение), тем меньше поток воды (ток).

Электрический ток

Электрический ток – это физический процесс направленного движения заряженных частиц под действием электромагнитного поля от одного полюса замкнутой электрической цепи к другому. В качестве частиц, переносящих заряд, могут выступать электроны, протоны, ионы и дырки. При отсутствии замкнутой цепи ток невозможен. Частицы способные переносить электрические заряды существуют не во всех веществах, те в которых они есть, называются проводниками и полупроводниками . А вещества, в которых таких частиц нет – диэлектриками .

Единица измерения силы тока – Ампер (А ). В формулах и расчетах сила тока обозначается буквой I . Ток в 1 Ампер образуется при прохождении через точку электрической цепи заряда в 1 Кулон (6,241·10 18 электронов) за 1 секунду.

Вновь обратимся к нашей аналогии вода – электричество. Только теперь возьмем два резервуара и наполним их равным количеством воды. Отличие между баками в диаметре выходной трубы.

Откроем краны и убедимся, что поток воды из левого бака больше (диаметр трубы больше), чем из правого. Такой опыт – явное доказательство зависимости скорости потока от диаметра трубы. Теперь попробуем уравнять два потока. Для этого добавим в правый бак воды (заряд). Это даст большее давление (напряжение) и увеличит скорость потока (ток). В электрической цепи в роли диаметра трубы выступает сопротивление .

Проведенные эксперименты наглядно демонстрируют взаимосвязь между напряжением , током и сопротивлением . Подробнее о сопротивлении поговорим чуть позже, а сейчас еще несколько слов о свойствах электрического тока.

Если напряжение не меняет свою полярность, плюс на минус, и ток течет в одном направлении, то – это постоянный ток и соответственно постоянное напряжение . Если источник напряжения меняет свою полярность и ток течет то в одном направлении, то в другом – это уже переменный ток и переменное напряжение . Максимальные и минимальные значения (на графике обозначены как Io ) – это амплитудные или пиковые значения силы тока. В домашних розетках напряжение меняет свою полярность 50 раз в секунду, т.е. ток колеблется то туда, то сюда, получается, что частота этих колебаний составляет 50 Герц или сокращенно 50 Гц. В некоторых странах, например в США принята частота 60 Гц .

Сопротивление

Электрическое сопротивление – физическая величина, определяющая свойство проводника препятствовать (сопротивляться) прохождению тока. Единица измерения сопротивления – Ом (обозначается Ом или греческой буквой омега Ω ). В формулах и расчетах сопротивление обозначается буквой R . Сопротивлением в 1 Ом обладает проводник к полюсам которого приложено напряжение 1 В и протекает ток 1 А.

Проводники по-разному проводят ток. Их проводимость зависит, в первую очередь, от материала проводника, а также от сечения и длины. Чем больше сечение, тем выше проводимость, но, чем больше длина, тем проводимость ниже. Сопротивление – это обратное понятие проводимости.

На примере водопроводной модели сопротивление можно представить как диаметр трубы. Чем он меньше, тем хуже проводимость и выше сопротивление.

Сопротивление проводника проявляется, например, в нагреве проводника при протекании в нем тока. Причем, чем больше ток и меньше сечение проводника – тем сильнее нагрев.

Мощность

Электрическая мощность – это физическая величина, определяющая скорость преобразования электроэнергии. Например, вы не раз слышали: «лампочка на столько-то ватт». Это и есть мощность потребляемая лампочкой за единицу времени во время работы, т.е. преобразовании одного вида энергии в другой с некоторой скоростью.

Источники электроэнергии, например генераторы, также характеризуется мощностью, но уже вырабатываемой в единицу времени.

Единица измерения мощности – Ватт (обозначается Вт или W ). В формулах и расчетах мощность обозначается буквой P . Для цепей переменного тока применяется термин Полная мощность , единица измерения – Вольт-ампер (В·А или V·A ), обозначается буквой S .

И в завершение про Электрическую цепь . Данная цепь представляет собой некоторый набор электрических компонентов, способных проводить электрический ток и соединенных между собой соответствующим образом.

Что мы видим на этом изображении – элементарный электроприбор (фонарик). Под действием напряжения U (В) источника электроэнергии (батарейки) по проводникам и другим компонентам обладающих разными сопротивлениями 4.59 (220 Голосов)

В настоящей статье показано, что в современной физике представление об электрическом токе мифологизировано и не имеет доказательств его современной интерпретации.

С позиций эфиродинамики обосновывается представление электрического тока как потока фотонного газа и условия его существования.

Введение. В истории науки XIX век назвали веком электричества. Удивительный XIX век, заложивший основы научно-технической революции, так изменившей мир, начался с гальванического элемента — первой батарейки, химического источника тока (вольтова столба) и открытия электрического тока. Исследования электрического тока, производившиеся в большом масштабе в первые годы XIX в. дали толчок проникновению электричества во все сферы жизнедеятельности человека. Современная жизнь немыслима без радио и телевидения, телефона, смартфона и компьютера, всевозможных осветительных и нагревательных приборов, машин и устройств, в основе которых лежит возможность использования электрического тока.

Однако, широкое использование электричества с первых дней открытия электрического тока находится в глубоком противоречии его теоретическому обоснованию. Ни физика XIX в., ни современная не могут ответить на вопрос: что такое электрический ток? Например, в нижеприведенном утверждении из “Британской энциклопедии” :

“Вопрос: “Что такое электричество?”, как и вопрос: “Что такое материя?”, лежит за пределами сферы физики и принадлежит сфере метафизики”.

Первые, получившие широкую известность, опыты с электрическим током были проведены итальянским физиком Гальвани в конце XVIII в. Другой итальянский физик Вольта создал первое устройство, способное давать длительный электрический ток, – гальванический элемент. Вольта показал, что соприкосновение разнородных металлов приводит их в электрическое состояние и что от присоединения к ним жидкости, проводящей электричество, образуется непосредственное течение электричества. Ток, получающийся в названном случае, называется гальваническим током и само явление гальванизмом. При этом, ток в представлении Вольта это движение электрических жидкостей — флюидов.

Существенный сдвиг в понимании сущности электрического тока был сделан

М. Фарадеем. Им было доказана тождественность отдельных видов электричества, происходящих от различных источников. Наиболее важными работами стали эксперименты по электролизу . Открытие было воспринято как одно из доказательств того что движущееся электричество фактически идентично электричеству, обусловленному трением, т. е. статическому электричеству. Его серия остроумных экспериментов по электролизу послужила убедительным подтверждением идеи, суть которой сводится к следующему: если вещество по своей природе имеет атомную структуру, то в процессе электролиза каждый атом получает определенное количество электричества.

В 1874 году ирландский физик Дж. Стоней (Стони) выступил в Белфасте с докладом, в котором использовал законы электролиза Фарадея как основу для атомарной теории электричества. По величине полного заряда, прошедшего через электролит, и довольно грубой оценке числа выделившихся на катоде атомов водорода Стоней получил для элементарного заряда число порядка 10 -20 Кл (в современных единицах). Этот доклад не был полностью опубликован вплоть до 1881 года, когда немецкий ученый

Г. Гельмгольц в одной из лекций в Лондоне отметил, что если принять гипотезу атомной структуры элементов, нельзя не прийти к выводу, что электричество также разделяется на элементарные порции или «атомы электричества». Этот вывод Гельмгольца, по существу, вытекал из результатов Фарадея по электролизу и напоминал высказывание самого Фарадея. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории.

В 1891 году Стоней, который поддерживал идею, что законы электролиза Фарадея означают существование естественной единицы заряда, ввел термин – «электрон» .

Однако, вскоре термин электрон, введенный Стонеем, теряет свою первоначальную сущность. В 1892 году Х. Лоренц формирует собственную теорию электронов. По его утверждению электричество возникает при движении крохотных заряженных частиц – положительных и отрицательных электронов.

В конце XIX в. начала развиваться электронная теория проводимости. Начала теории дал в 1900 г. немецкий физик Пауль Друде. Теория Друде вошла в учебные курсы физики под именем классической теории электропроводимости металлов. В этой теории электроны уподобляются атомам идеального газа, заполняющего кристаллическую решетку металла, а электрический ток представляется как поток этого электронного газа.

После представления модели атома Резерфорда, серии измерений величины элементарного заряда в 20-х годах ХХ ст. в физике окончательно сформировалось представление об электрическом токе, как потоке свободных электронов, структурных элементов атома вещества.

Однако, модель свободных электронов оказалась несостоятельной при объяснении сущности электрического тока в жидких электролитах, газах и полупроводниках. Для поддержки существующей теории электрического тока были введены новые носители электрического заряда – ионы и дырки.

На основании выше изложенного, в современной физике сформировалось окончательное по современным меркам понятие : электрический ток это направленное движение носителей электрических зарядов (электронов, ионов, дырок и т. п.).

За направление электрического тока принимают направление движения положительных зарядов; если ток создаётся отрицательно заряженными частицами (напр., электронами), то направление тока считают противоположным движению частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени. Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий: — наличие в среде свободных электрических зарядов; — создание в среде электрического поля.

Однако, данное представление электрического тока оказалось несостоятельным при описании явления сверхпроводимости. Кроме того, как выяснилось, существует много противоречий в указанном представлении электрического тока при описании функционирования практически всех типов электронных приборов. Необходимость интерпретации понятия электрический ток в разных условиях и в разных типах электронных приборах с одной стороны, а также непонимание сущности электрического тока с другой, заставило современную физику сделать из электрона – носителя электрического заряда, “фигаро” (“свободный”, “быстрый”, “выбитый”, “испущенный ”, “тормозной ”, “релятивистский”, “фото”, “термо” и т. п.), что окончательно завело вопрос “что такое электрический ток?” в тупик.

Значимость теоретического представления электрического тока в современных условиях значительно выросла не только из-за широкого применения электричества в жизнедеятельности человека, но и из-за высокой стоимости и технической целесообразности, например, научных мегапроектов , реализуемых всеми развитыми странами мира, в которых понятие электрического тока играет существенную роль.

Эфиродинамическая концепция представления электрического тока. Из выше приведенного определения следует, что электрический ток это направленное движение носителей электрических зарядов . Очевидно, что вскрытие физической сущности электрического тока находится в решении проблемы физической сущности электрического заряда и того, что является носителем этого заряда.

Проблема физической сущности электрического заряда это не решенная проблема, как классической физикой, так и современной квантовой на протяжении всей истории развития электричества. Решение этой проблемы оказалось возможным только с использованием методологии эфиродинамики , новой концепции физики XXI в..

Согласно эфиродинамическому определению : электрический заряд это мера движения потока эфира… . Электрический заряд это свойство присущее всем элементарным частицам и только. Электрический заряд это величина знакоопределенная, т. е. всегда положительная.

Из указанной физической сущности электрического заряда следует некорректность выше представленного определения электрического тока в части того, что ионы, дырки и т. п. не могут быть причиной электрического тока в связи с тем, что не являются носителями электрического заряда, так как не являются элементами организационного уровня физической материи – элементарные частицы (согласно определению).

Электроны, как элементарные частицы имеют электрический заряд, однако, согласно определению : являются одной из основных структурных единиц вещества, образуют электронные оболочки атомов , строение которых определяет большинство оптических, электрических, магнитных, механических и химических свойств вещества, не могут быть подвижными (свободными) носителями электрического заряда. Свободный электрон это миф, созданный современной физикой для интерпретации понятия электрический ток, не имеющий ни одного практического или теоретического доказательства. Очевидно, что, как только “свободный” электрон покинет атом вещества, образуя электрический ток, непременно должны произойти изменения физико-химических свойств этого вещества (согласно определению), чего в природе не наблюдается. Это предположение было подтверждено опытами немецкого физика Карла Виктора Эдуарда Рикке : “прохождение тока через металлы (проводники первого рода) не сопровождается химическим изменением их.” В настоящее время, зависимость физико-химических свойств вещества от наличия того или иного электрона в атоме вещества хорошо изучена и подтверждена экспериментально, например, в работе .

Также существует ссылка на опыты , выполненные впервые в 1912 г. Л. И. Мандельштамом и Н. Д. Папалекси, но не опубликованные ими. Четыре года спустя (1916 г.) Р. Ч. Толмен и Т. Д. Стюарт опубликовали результаты своих опытов, оказавшихся аналогичными опытам Мандельштама и Папалекси. В современной физике эти опыты служат непосредственным подтверждением того, что переносчиками электричества в металле следует считать свободные электроны.

Для того, чтобы понять некорректность этих опытов, достаточно рассмотреть схему и методику опыта , в котором в качестве проводника использовалась катушка индуктивности, которая раскручивалась вокруг своей оси и резко останавливалась. Катушка с помощью скользящих контактов была подключена к гальванометру , который регистрировал возникновение инерционной ЭДС. Фактически можно сказать, что в данном опыте роль сторонних сил, создающих ЭДС, играла сила инерции, т. е. если в металле есть свободные носители заряда, обладающие массой, то они должны подчиняться закону инерции . Утверждение “они должны подчиняться закону инерции ошибочно в том плане, что согласно уровневому подходу в организации физической материи , электроны, как элементы уровня “элементарные частицы“ подчиняются только законам электро- и газодинамики, т. е. законы механики (Ньютона) к ним не применимы.

Для убедительности этого предположения рассмотрим известную задачу 3.1: вычислить отношение электростатической (Fэ) и гравитационной (Fгр) сил взаимодействия между двумя электронами, между двумя протонами.

Решение: для электронов Fэ / Fгр = 4·10 42 , для протонов Fэ / Fгр = 1,24·10 36 , т.е. влияние гравитационных сил настолько мало, что принимать их во внимание не приходится. Данное утверждение справедливо и для сил инерции.

Это значит, что выражение для ЭДС (предложенное Р. Ч. Толменом и Т. Д. Стюартом), исходя из ее определения через сторонние силы F стор , действующие на заряды внутри проводника, подвергшегося торможению:

ε = 1/e ∫F стор ∙dl,

некорректно в своей постановке, ввиду того, что F стор → 0.

Тем не менее, в результате опыта наблюдалось кратковременное отклонение стрелки гальванометра, которое требует объяснения. Для понимания этого процесса следует обратить внимание на сам гальванометр, в качестве которого был использован так называемый баллистический гальванометр . Его инструкция по использованию имеет такой вариант.

Баллистический гальванометр может использоваться в качестве веберметра (т.е. измерять магнитный поток через замкнутый проводник, например катушку), для этого к контактам баллистического гальванометра подключают индуктивную катушку , которую помещают в магнитное поле . Если после этого резко убрать катушку из магнитного поля или повернуть так чтобы ось катушки была перпендикулярна силовым линиям поля, то можно измерить заряд прошедший через катушку, вследствие электромагнитной индукции , т.к. изменение магнитного потока пропорционально прошедшему заряду, проградуировав соответствующим образом гальванометр, можно определять изменение потока в веберах .

Из выше изложенного очевидно, что использование баллистического гальванометра в качестве веберметра соответствует методике опыта Р. Ч. Толмена и Т. Д. Стюарта по наблюдению инерционного тока в металлах. Открытым остается вопрос об источнике магнитного поля, которым, например, могло быть магнитное поле Земли. Влияние внешнего магнитного поля Р. Ч. Толменом и Т. Д. Стюартом во внимание не принималось и не исследовалось, что и привело к мифологизации результатов опыта.

Сущность электрического тока. Из выше изложенного следует, что ответом на вопрос, что такое электрический ток? также является решение проблемы носителя электрического заряда. На основании существующих представлений этой проблемы можно сформулировать ряд требований, которым должен удовлетворять носитель электрического заряда. А именно: носитель электрического заряда должен быть элементарной частицей; носитель электрического заряда должен быть свободным и долгоживущим элементом; носитель электрического заряда не должен разрушать структуру атома вещества.

Не сложный анализ существующих фактов позволяет сделать вывод, что выше указанным требованиям удовлетворяет только один элемент уровня “элементарные частицы” физической материи: элементарная частица – фотон .

Совокупность фотонов вместе со средой (эфиром), в которой они существуют, образуют фотонный газ.

Принимая во внимание физическую сущность фотона и выше приведенные сведения можно дать следующее определение:

электрический ток это поток фотонного газа, предназначенный для переноса энергии.

Для понимания механизма движения электрического тока рассмотрим известную модель транспортировки газа метана . Упрощенно она включает в себя магистральный трубопровод, который доставляет газ метан от газового месторождения к месту потребления. Для перемещения газа метана по магистральному трубопроводу необходимо выполнение условия – давление газа метана в начале трубопровода должно быть больше давления газа метана в его конце.

По аналогии с транспортировкой газа метана рассмотрим схему движения электрического тока, состоящую из батареи (источника электрического тока), имеющей два контакта “+” и “-“ и проводника. Если к контактам батареи подсоединить металлический проводник, то получим модель движения электрического тока, подобную транспортировке газа метана.

Условием существования электрического тока в проводнике по аналогии с моделью транспортировки газа метана является наличие: источника (газа) повышенного давления, т. е. источника высокой концентрации носителей электрического заряда; трубопровода – проводника; потребителя газа, т. е. элемента, обеспечивающего снижение давления газа, т. е. элемента (сток), обеспечивающего уменьшение концентрации носителей электрического заряда.

Отличием электрических схем от газо-, гидро- и др. является то, что конструктивно источник и сток исполняются в одном узле (химическом источнике тока-батарее, электрогенераторе и т. п.). Механизм протекания электрического тока заключается в следующем: после подсоединения проводника к батарее, например, химическому источнику тока , в зоне контакта “+” (анод) происходит химическая реакция восстановления, в результате которой осуществляется генерация фотонов, т. е. образуется зона повышенной концентрации носителей электрического заряда. В это же время, в зоне контакта “-“ (катода) под воздействием фотонов, оказавшихся в этой зоне в результате перетока по проводнику, происходит реакция окисления (потребления фотонов), т. е. образуется зона пониженной концентрации носителей электрического заряда. Носители электрического заряда (фотоны) из зоны высокой концентрации (источника) движутся по проводнику в зону низкой концентрации (стоку). Таким образом, сторонней силой или электродвижущей силой (ЭДС), обеспечивающей электрический ток в цепи является разность концентрации (давления) носителей электрического заряда (фотонов), образующейся в результате работы химического источники тока.

Это обстоятельство еще раз подчеркивает справедливость основного вывода энергодинамики , согласно которому силовые поля (и в том числе электрическое поле) создается не массами, зарядами и токами самими по себе, а их неравномерным распределением в пространстве.

Исходя из рассмотренной сущности электрического тока, очевидна абсурдность опыта Р. Ч. Толмена и Т. Д. Стюарта по наблюдению инерционного тока в металлах. Способа генерации фотонов за счет изменения скорости механического движения какого-либо макроскопического тела в природе в настоящее время не существует.

Интересным аспектом выше изложенного представления электрического тока является его сравнение с представлением понятия “свет”, рассмотренного в работе : свет это поток фотонного газа… . Указанное сравнение позволяет сделать вывод: свет это электрический ток. Различие в этих понятиях заключается только в спектральном составе фотонов, образующих свет или электрический ток, например, в металлических проводниках. Для более убедительного понимания этого обстоятельства рассмотрим схему генерации электрического тока с помощью солнечной батареи. Поток солнечного света (фотонов видимого диапазона) от источника (солнце) достигает солнечной батареи, которая преобразует падающий поток света в электрический ток (поток фотонов), который по металлическому проводнику поступает потребителю (сток). В данном случае солнечная батарея выполняет роль преобразователя спектра потока фотонов, излучаемого солнцем в спектр фотонов электрического тока в металлическом проводнике.

Выводы . В современной физике не существует доказательств, что электрический ток это направленное движение электронов или каких-либо других частиц. Напротив, современные представления об электроне, электрическом заряде и опыты Рикке показывают на ошибочность данного понятия электрического тока.

Обоснование совокупности требований к носителю электрического заряда, с учетом его эфиродинамической сущности, позволили установить, что электрический ток это поток фотонного газа, предназначенный для переноса энергии.

Движение электрического тока осуществляется из зоны высокой концентрации фотонов (исток) в зону низкой концентрации (сток).

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение трех условий: поддержание (генерация) высокой концентрации фотонов в зоне истока, наличие проводника, обеспечивающего переток фотонов и создание зоны потребления фотонов в области стока.

Электричество Электрон.

  • Багоцкий В. С., Скундин А. М. Химические источники тока. – М.: Энергоиздат, 1981. – 360 с.
  • Эткин В.А. Энергодинамика (синтез теорий переноса и преобразования энергии).- СПб, Наука, 2008. 409 с.
  • Лямин В. С., Лямин Д. В. О постоянстве скорости света.
  • Лямин В.С. , Лямин Д. В. г. Львов

    ». Сегодня я хочу затронуть такую тему, как электрический ток. Что же это такое? Давайте попытаемся вспомнить школьную программу.

    Электрический ток – это упорядоченное движение заряженных частиц в проводнике

    Если вы помните, чтобы заряженные частицы пришли в движение, (возник электрический ток) нужно создать электрическое поле. Чтобы возникло электрическое поле можно провести такие элементарные опыты, как потереть о шерсть пластиковую ручку и она какое-то время будет притягивать легкие предметы. Тела способные после натирания притягивать предметы называются наэлектризованные. Можно сказать, что у тела в таком состоянии есть электрические заряды, а сами тела называются заряженными. Из школьной программы мы знаем, что все тела состоят из мельчайших частиц (молекул). Молекула — это частица вещества, которую можно отделить от тела и она будет обладать всеми свойствами присущими этому телу. Молекулы сложных тел образовываются из различных сочетаний атомов простых тел. Например, молекула воды состоит из двух простых: атома кислорода и одного атома водорода.

    Атомы, нейтроны, протоны и электроны — что это такое?

    В свою очередь, атом состоит из ядра и вращающихся вокруг него электронами. Каждый электрон атома обладает небольшим электрическим зарядом. Например, атом водорода состоит из ядра вращающего вокруг него электрона. Ядро атома состоит, в свою очередь, из протонов и нейтронов. Ядро атома, в свою очередь, обладает электрическим зарядом. Протоны, входящие в состав ядра, имеют такие же по величине электрические заряды и электроны. Но протоны, в отличие от электронов, малоподвижны, но их масса во много раз больше массы электрона. Частица нейтрон, входящий в состав атома, не имеет никакого электрического заряда, нейтральна. Электроны, которые вращаются вокруг ядра атома и протоны, входящие в состав ядра, являются носителями равных по величине электрических зарядов. Между электроном и протоном всегда действует сила взаимного притяжения, а между самими электронами и между протонами сила взаимного отталкивания. В силу этого, электрон обладает отрицательным электрическим зарядом, а протон положительным. Из этого можно сделать вывод, что существует 2 рода электричества: положительное и отрицательное. Наличие в атоме равноименно заряженных частиц приводит к тому, что между положительно заряженным ядром атома и вращающимися вокруг него электронами действуют силы взаимного притяжения, скрепляющие атом в одно целое. Атомы отличаются друг от друга по количеству нейтронов и протонов в ядрах, из-за чего не одинаков положительный заряд ядер атомов различных веществ. У атомов различных веществ количество вращающихся электронов не одинаково и определяется величиной положительного заряда ядра. У атомов одних веществ прочно связаны с ядром, а у других эта связь может быть значительно слабее. Этим объясняется различная прочность тел. Стальная проволока значительно прочнее медной, значит, частицы стали сильнее притягиваются друг к другу, чем частицы меди. Притяжение между молекулами особо заметно, когда они находятся близко друг к другу. Самый яркий пример — две капли воды сливаются в одну при соприкосновении.

    Электрический заряд

    В атоме любого вещества количество электронов, вращающихся вокруг ядра, ровно количеству протонов, содержащихся в ядре. Электрический заряд электрона и протона равны по величине, значит, отрицательный заряд электронов равен положительному заряду ядра. Эти заряды взаимно уравновешивают друг друга, а атом остается нейтральным. В атоме электроны создают вокруг ядра электронную оболочку. Электронная оболочка и ядро атома находятся в непрерывном колебательном движении. При движении атомы сталкиваются друг с другом и от них вылетает один или несколько электронов. Атом перестает быть нейтральным, становится положительно заряженным. Так как его положительный заряд стал больше отрицательного (слабая связь между электроном и ядром — метал и уголь). У других тел (дерево и стекло) нарушение электронных оболочек не происходит. Оторвавшись от атомов, свободные электроны беспорядочно двигаются и могут захватываться другими атомами. Процесс появлений и исчезновений в теле происходит непрерывно. С увеличением температуры, скорость колебательного движения атомов возрастает, столкновения учащаются, становятся сильнее, количество свободных электронов увеличивается. Однако тело остается электрически нейтральным, так как количество электронов и протонов в теле не меняется. Если из тела удалить некоторое количество свободных электронов, то плюсовой заряд становится больше суммарного заряда. Тело окажется заряжено положительно и наоборот. Если в теле создается недостаток электронов, то оно заряжается дополнительно. Если избыток — отрицательно. Чем больше этот недостаток или избыток, тем больше электрический заряд. В первом случае (больше положительно заряженных частиц) тела называют проводниками (металлы, водные растворы солей и кислот), а во втором (недостаток электронов, отрицательно заряженных частиц) диэлектриками или изоляторами (янтарь, кварц, эбонит). Для продолжительного существования электрического тока, в проводнике необходимо постоянно поддерживать разность потенциалов.

    Ну вот и небольшой курс физики закончен. Я думаю, вы, с моей помощью, вспомнили школьную программу за 7 класс, а что такое разность потенциалов разберем в моей следующей статье. До новых встреч на страницах сайта.

    Электрический ток это заряженные частицы, способные упорядоченно передвигаться в каком-либо проводнике. Это движение происходит под воздействием электрического поля. Возникновение электрических зарядов происходит, практически, постоянно. Особенно ярко это проявляется, когда различные вещества контактируют между собой.

    Если возможно полное свободное перемещение зарядов относительно друг друга, то эти вещества являются проводниками. Когда такое передвижение невозможно, данная категория веществ считается изоляторами. К проводникам относятся все металлы с различной степенью проводимости, а также соляные и кислотные растворы. Изоляторами могут быть природные вещества в виде эбонита, янтаря, различных газов и кварцев. Они могут иметь искусственное происхождение, например, ПВХ, полиэтилен и прочие.

    Величины электрического тока

    Как физическая величина, ток может измеряться по своим основным параметрам. По результатам измерений, определяется возможность использования электричества в той или иной области.

    Существует два вида электрического тока - постоянный и переменный. Первый, всегда остается неизменным во времени и направлении, а во втором случае, происходят изменения по этим параметрам за определенный промежуток времени.

    Электрическим током называется упорядоченное движение заряженных частиц.

    2. При каких условиях возникает электрический ток?

    Электрический ток возникает, если имеются свободные заряды, а так же в результате действия внешнего электрического поля. Для получения электрического поля достаточно создать разность потенциалов между какими-то двумя точками проводника.

    3. Почему движение заряженных частиц в проводнике в отсутствие внешнего электрического поля является хаотическим?

    Если отсутствует внешнее электрическое поле, то отсутствует и дополнительная составляющая скорости направленная вдоль напряженности электрического поля, а значит, все направления движения частиц равноправны.

    4. Чем отличается движение заряженных частиц в проводнике в отсутствие и при наличии внешнего электрического поля?

    В отсутствии электрического поля движение заряженных частиц хаотично, а при его наличии - движение частиц это результат хаотичного и поступательного движений.

    5. Как выбирается направление электрического тока? В каком направлении движутся электроны в металлическом проводнике, по которому протекает электрический ток?

    За направление электрического тока принято направление движения положительно заряженных частиц. В металлическом проводнике электроны движутся в сторону, противоположную направлению тока.

    Похожие публикации