Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Полистирол получают полимеризацией. Полистирол и его сополимеры. Удельное объемное электрическое сопротивление, Ом∙м

В широком разнообразии полимерных материалов особое место занимает полистирол. Из этого материала производят огромное количество различных пластиковых изделий как для бытового, так и для промышленного использования. Сегодня мы с вами познакомимся с формулой полистирола, его свойствами, способами получения и направлениями использования.

Общая характеристика

Полистирол является синтетическим полимером, относящимся к классу термопластов. Как можно понять из названия, он представляет собой продукт полимеризации винилбензола (стирола). Это твердый стеклообразный материал. Формула полистирола в общем виде выглядит следующим образом: [СН 2 СН(С 6 Н 5)] n . В сокращенном варианте она выглядит так: (C 8 H 8) n . Сокращенная формула полистирола встречается чаще.

Химические и физические свойства

Наличие фенольных групп в формуле структурного звена полистирола препятствует упорядоченному размещению макромолекул и образованию кристаллических структур. В этой связи материал является жестким, но хрупким. Он представляет собой аморфный полимер с малой механической прочностью и высоким уровнем светопропускания. Он производится в виде прозрачных цилиндрических гранул, из которых путем экструзии получают необходимую продукцию.

Полистирол является хорошим диэлектриком. Он растворяется в ароматических углеводородах, ацетоне, сложных эфирах, и собственном мономере. В низших спиртах, фенолах, алифатических углеводородах, а также простых эфирах полистирол не растворим. При смешивании вещества с другими полимерами, происходит «сшивание», в результате которого образуются сополимеры стирола, обладающие более высокими конструктивными качествами.

Вещество обладает низким влагопоглощением и устойчивостью к радиоактивному облучению. Вместе с тем оно разрушается под действием ледяной уксусной, и концентрированной азотной кислот. При воздействии ультрафиолета полистирол портится - на поверхности образуется микротрещины и желтизна, увеличивается его хрупкость. При нагревании вещества до 200 °С оно начинает разлагаться с выделением мономера. При этом, начиная с температуры в 60 °С, полистирол теряет форму. При нормальной температуре вещество не токсично.

Основные свойства полистирола:

  1. Плотность - 1050-1080 кг/м 3 .
  2. Минимальная рабочая температура - 40 градусов мороза.
  3. Максимальная рабочая температура - 75 градусов тепла.
  4. Теплоемкость - 34*10 3 Дж/кг*К.
  5. Теплопроводность - 0,093-0,140 Вт/м*К.
  6. Коэффициент термического расширения - 6*10 -5 Ом·см.

В промышленности полистирол получают с помощью радикальной полимеризации стирола. Современные технологии позволяют проводить этот процесс с минимальным количеством непрореагировавшего вещества. Реакция получения полистирола из стирола осуществляется тремя способами. Рассмотрим отдельно каждый из них.

Эмульсионный (ПСЭ)

Это самый старый метод синтеза, который так и не получил широкого промышленного применения. Эмульсионный полистирол получают в процессе полимеризации стирола в водных растворах щелочей при температуре 85-95 °С. Для этой реакции необходимы такие вещества: вода, стирол, эмульгатор и инициатор процесса полимеризации. Стирол предварительно избавляют от ингибиторов (гидрохинона и трибутил-пирокатехина). Инициаторами реакции выступают водорастворимые соединения. Как правило, это персульфат калия или двуокись водорода. В качестве эмульгаторов применяют щелочи, соли сульфокислот и соли жирных кислот.

Процесс происходит следующим образом. В реактор наливают водный раствор касторового масла и при тщательном перемешивании вводят стирол вместе с инициаторами полимеризации. Полученную смесь греют до 85-95 градусов. Растворенный в мицеллах мыла мономер, поступая из капель эмульсии, начинает полимеризоваться. Так получаются полимер-мономерные частицы. На протяжении 20 % времени реакции мицеллярное мыло идет на образование слоев адсорбции. Далее процесс идет внутри частиц полимера. Реакция завершается, когда содержание стирола в смеси будет составлять примерно 0,5 %.

Далее эмульсия поступает на стадию осаждения, позволяющую снизить содержание остаточного мономера. С этой целью ее коагулируют раствором соли (поваренной) и высушивают. В результате получается порошкообразная масса с размером частиц до 0,1 мм. Остаток щелочи сказывается на качестве получаемого материала. Устранить примеси полностью невозможно, а их наличие обуславливает желтоватый оттенок полимера. Этот метод позволяет получить продукт полимеризации стирола с наибольшей молекулярной массой. Получаемое таким способом вещество имеет обозначение ПСЭ, которое периодически можно встретить в технических документах и старых учебниках по полимерам.

Суспензионный (ПСС)

Этот метод осуществляется по периодической схеме, в реакторе, оборудованном мешалкой и теплоотводящей рубашкой. Для подготовки стирола его суспензируют в химически чистой воде с помощью стабилизаторов эмульсии (поливиниловый спирт, полиметакрилат натрия, гидроксид магния), а также инициаторов полимеризации. Процесс полимеризации проходит под давлением, при постоянном повышении температуры, вплоть до 130 °С. В итоге получается суспензия, из которой первичный полистирол отделяют с помощью центрифугирования. После этого вещество промывают и высушивают. Этот метод также считается устаревшим. Он пригоден в основном для синтезирования сополимеров стирола. Его применяют в основном в производстве пенополистирола.

Блочный (ПСМ)

Получение полистирола общего назначения в рамках этого метода можно проводить по двум схемам: полной и неполной конверсии. Термическая полимеризация по непрерывной схеме осуществляется на системе, состоящей из 2-3 последовательно соединенных колонных аппаратов-реакторов, каждый из которых оборудован мешалкой. Реакцию проводят постадийно, увеличивая температуру с 80 до 220 °С. Когда степень превращения стирола доходит до 80-90 %, процесс прекращается. При методе неполной конверсии степень полимеризации достигает 50-60 %. Остатки непрореагировавшего стирола-мономера удаляют из расплава путем вакуумирования, доводя его содержание до 0,01-0,05 %. Полученный блочным методом полистирол отличается высокой стабильностью и чистотой. Эта технология является наиболее эффективной, в том числе и потому, что практически не имеет отходов.

Применение полистирола

Полимер выпускается в виде прозрачных цилиндрических гранул. В конечные изделия их перебарывают путем экструзии или литья, при температуре 190-230 °С. Из полистирола производят большое количество пластиков. Распространение он получил благодаря своей простоте, невысокой цене и широкому ассортименту марок. Из вещества получают массу предметов, которые стали неотъемлемой частью нашей повседневной жизни (детские игрушки, упаковка, одноразовая посуда и так далее).

Полистирол широко используют в строительстве. Из него делают теплоизоляционные материалы - сэндвич-панели, плиты, несъемные опалубки и прочее. Кроме того, из данного вещества производят отделочные декоративные материалы - потолочные багеты и декоративную плитку. В медицине полимер используют для производства одноразовых инструментов и некоторых деталей в системах переливания крови. Вспененный полистирол также применяют в системах для очистки воды. В пищевой промышленности используют тонны упаковочного материала, сделанного из данного полимера.

Существует и ударопрочный полистирол, формула которого изменяется путем добавления бутадиенового и бутадиенстирольного каучука. На этот вид полимера приходится более 60 % всего производства полистирольного пластика.

Благодаря предельно низкой вязкости вещества в бензоле можно получить подвижные растворы в придельных концентрациях. Этим обуславливается использование полистирола в составе одного из видов напалма. Он играет роль загустителя, у которого по мере увеличения молекулярной массы полистирола уменьшается зависимость «вязкость-температура».

Преимущества

Белый термопластичный полимер может стать отличной заменой пластику ПВХ, а прозрачный - оргстеклу. Популярность вещество получило главным образом благодаря гибкости и легкости в обработке. Оно отлично формуется и обрабатывается, предотвращает потери тепла и, что немаловажно, имеет низкую стоимость. Благодаря тому, что полистирол может хорошо пропускать свет, его даже используют в остеклении зданий. Однако размещать такое остекление на солнечной стороне нельзя, так как под действием ультрафиолета вещество портится.

Полистирол давно используется для изготовления пенопластов и сопутствующих материалов. Теплоизоляционные свойства полистирола во вспененном состоянии, позволяют использовать его для утепления стен, пола, кровли и потолков, в зданиях различного назначения. Именно благодаря обилию утеплительных материалов, во главе которых стоит пенополистирол, простые обыватели знают о рассматриваемом нами веществе. Эти материалы отличаются простой в использовании, устойчивостью к гниению и агрессивным средам, а также отличными теплоизоляционными свойствами.

Недостатки

Как и у любого другого материала, у полистирола есть недостатки. Прежде всего, это экологическая небезопасность (речь идет об отсутствии методов безопасной утилизации), недолговечность и пожароопасность.

Переработка

Сам по себе полистирол не представляет опасности для окружающей среды, однако некоторые продукты, полученные на его основе, требуют особого обращения.

Отходы материала и его сополимеров накапливаются в виде изделий, вышедших из употребления, и промышленных отходов. Вторичное использование полистирольных пластиков, производится несколькими путями:

  1. Утилизация промышленных отходов, которые были сильно загрязнены.
  2. Переработка технологических отходов методами литья, экструзии и прессования.
  3. Утилизация изношенных изделий.
  4. Утилизация смешанных отходов.

Вторичное применение полистирола позволяет получить новые качественные изделия со старого сырья, не загрязняя при это окружающую среду. Одним из перспективных направлений переработки полимера является производство полистиролбетона, который применяется в строительстве зданий малой этажности.

Продукты разложения полимера, образующиеся при термодеструкции или термоокислительной деструкции, токсичны. В процессе переработки полимера путем частичной деструкции могут выделяться пары бензола, стирола, этилбензола, оксида углерода и толуола.

Сжигание

При сжигании полимера выделяется диоксид углерода, монооксид углерода и сажа. В общем виде уравнение реакции горения полистирола выглядит так: (С 8 Н 8) n + О 2 = СО 2 + Н 2 О. Сжигание полимера, содержащего добавки (компоненты увеличивающие прочность, красители и т. д.), приводит к выбросу ряда других вредных веществ.

Министерство образования Российской Федерации и науки

Российской Федерации

Государственное образовательное учреждение высшего

профессионального образования

“Алтайский Государственный Технический Университет

им. И.И. Ползунова”

Реферат.

По дисциплине «органическая химия» на тему:

«Полистирол (поливинилбензол)»

Выполнила студентка гр. ПКМ-71:

Бархатова Л. Н.

Проверила старший преподаватель

кафедры ФиТКМ: Арсентьева С.Н.

Барнаул 2008г.

Введение, общая характеристика и классификация полимеров

1. Историческая справка

2. Описание полистирола

3. Основные свойства

3.1.Физические свойства

3.2.Химические свойства

4. Получение

5. Надмолекулярная структура, конформация, конфигурация

6. Способы отверждения

7. Применение в промышленности

Заключение

Список литературы


Введение

Общая характеристика и классификация полимеров

Полимером называется органическое вещество, длинные молеку­лы которого построены из одинаковых многократно повторяю­щихся звеньев – мономеров.

Размер молекулы полимера определяется степенью полимери­зации n, т.е. числом звеньев в цепи. Если n= от 10 до 20, вещества представляют собой легкие масла. С возрастанием n увеличива­ется вязкость, вещество становится воскообразным, наконец, при n=1000 образуется твердый полимер. Степень полимеризации неограниченна: она может быть 10 4 , и тогда длина молекул достига­ет микрометров. Молекулярная масса полимера равна произве­дению молекулярной массы мономера и степени полимеризации. Обычно она находится в пределах от 10 3 до 3×10 5 . Столь большая длина молекул препятствует их правильной упаковке, и структура полимеров варьирует от аморф­ной до частично кристаллической. Доля кристалличности в зна­чительной мере определяется геометрией цепей. Чем ближе укла­дываются цепи, тем более кристалличным полимер становится. Кристалличность даже в лучшем случае оказывается несовершенной .

Аморфные полимеры плавятся в диапазоне температур, зави­сящем не только от их природы, но и от длины цепей; кристалли­ческие имеют точку плавления.

По происхождению полимеры делятся на три группы: синтетические полимеры (искусственные), природные органические и природные неорганические полимеры.

Синтетические полимеры получаются путем ступенчатой или цепной полимеризации низкомолекулярных полимеров.

Природные неорганические полимеры – это например расплав магмы, оксид кремния.

Природные органические полимеры образуются в результате жизнедеятельности рас­тений и животных и содержатся в древесине, шерсти, коже. Это протеин, целлюлоза, крахмал, шеллак, лигнин, латекс.

Обычно природные полимеры подвергаются операциям выде­ления очистки, модификации, при которых структура основных цепей остается неизменной. Продуктом такой переработки явля­ются искусственные полимеры. Примерами являются натураль­ный каучук, изготовляемый из латекса, целлулоид, представляю­щий собой нитроцеллюлозу, пластифицированную камфарой для повышения эластичности.

Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются неза­менимыми и до сих пор, например в целлюлозно-бумажной про­мышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических поли­меров – материалов, полученных синтезом из низкомолекуляр­ных веществ и не имеющих аналогов в природе. Развитие хими­ческой технологии высокомолекулярных веществ – неотъемлемая и существенная часть современнойНТР. Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой. По химической структуре полимеры делятся на линейные, разветв­ленные, сетчатые и пространственные. Молекулы линейных поли­меров химически инертны по отношению друг к другу и связаны между собой лишь силами Ван-дер-Ваальса. При нагревании вязкость таких полимеров уменьшается и они способны обратимо переходить сначала в высокоэластическое, а затем и в вязкотекучее состояния (рисунок 1). Поскольку единственным следствием нагрева является изменение пластичности, линейные полимеры называют термопластичными. Не следует думать, что термин «ли­нейные» обозначает прямолинейные, наоборот, для них более ха­рактерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность.

Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под дей­ствием реагентов.

Разветвленные (привитые) полимеры более прочны, чем ли­нейные. Контролируемое разветвление цепей служит одним из основных промышленных методов модификации свойств термопластичных полимеров.

Сетчатая структура характерна тем, что цепи связаны друг с другом, а это сильно ограничивает движение и приводит к изме­нению как механических, так и химических свойств. Обычная ре­зина мягка, но при вулканизации серой образуются ковалентные связи типа S-ноль, и прочность растет. Полимер может приобрести сетчатую структуру и спонтанно, например, под действием света и кислорода произойдет старение с потерей эластичности и рабо­тоспособности. Наконец, если молекулы полимера содержат реакционноспособные группы, то при нагревании они соединяются множеством поперечных прочных связей, полимер оказывается сшитым, т. е. приобретает пространственную структуру. Таким образом, нагрев вызывает реакции, резко и необратимо изменяю­щие свойства материала, который приобретает прочность и вы­сокую вязкость, становится нерастворимым и неплавким. Вслед­ствие большой реакционной способности молекул, проявляющей­ся при повышении температуры, такие полимеры называют тер­мореактивными. Нетрудно представить, что их молекулы активны не только по отношению друг к другу, но и к поверхностям ино­родных тел. Поэтому термореактивные полимеры, в отличие от термопластичных, обладают высокой адгезионной способностью даже при низких температурах, что позволяет использовать их в качестве защитных покрытий, клеев и связующего в композици­онных материалах.

Термопластичные полимеры получают по реакции полимери­зации, протекающей по схеме (рисунок 2).

Рисунок 2 – Реакции образования полимеров: а) – полимеризация, б) - поликонденсация

При цепной полимеризации молекулярная масса нарастает почти мгновенно, промежуточные продукты неустойчивы, реакция чувствительна к присутствию примесей и требует, как правило, высоких давлений. Неудивительно, что такой процесс в естествен­ных условиях невозможен, и все природные полимеры образова­лись иным путем. Современная химия создала новый инстру­мент - реакцию полимеризации, и благодаря ему большой класс термопластичных полимеров. Реакция полимеризации реализует­ся лишь в сложной аппаратуре специализированных производств, и термопластичные полимеры потребитель получает в готовом виде.

Реакционноспособные молекулы термореактивных полимеров могут образоваться более простым и естественным путем – посте­пенно от мономера к димеру, потом к тримеру, тетрамеру и т. д. Такое объединение мономеров, их «конденсацию», называют ре­акцией поликонденсации; она не требует ни высокой чистоты, ни давлений, но сопровождается изменением химического состава, а часто и выделением побочных продуктов (обычно водяного пара) (рисунок 2). Именно эта реакция реализуется в природе; она мо­жет быть легко осуществлена за счет лишь небольшого нагрева в самых простых условиях, вплоть до домашних. Такая высокая технологичность термореактивных полимеров предоставляет ши­рокие возможности изготовлять различные изделия на нехимиче­ских предприятиях, в том числе на радиозаводах .

Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифици­ровать следующим образом: пластмассы, волокниты, слоистые пластики, пленки, покрытия, клеи.


1. Историческая справка

Промышленность ластмасс зародилась на рубеже XX века. Легко полимеризующийся стирол и его стеклообразный твердый полимер сразу же привлекли внимание. Основы химии и техноло­гии производства полистирола заложили Остромысленский и Штау-дингер. Последний предложил цепной механизм образования макромолекул полистирола.

Первый патент на получение полистирола (способом термической спонтанной полимеризации в массе) был взят в Германии в 1911г. Там же в 1920 г. началось промышленное производство полимера. В 1936г. уже производилось 6000 т/год.

За пределами Германии рост производства полистирола долгое время сдерживался высокой ценой на мономер. Стимулом к бурному развитию послужило создание в США во время второй мировой войны крупнотоннажного производства бутадиен-стирольного каучукачто, естественно, привело к снижению цен на стирол. После Войныпроизводство полистирола и сополимеров стирола, содержащихболее 50 процентов стирола по составу (в отличие от бутадиен-стирольного каучука, где стирола около 30 процентов), развивалось самостоятельно. Разработка таких эффективных продуктов; как пенополистирол, ударопрочные полимеры стирола, АБС-пластики, позволила полистирольным пластикам в целом занять третье место в мировом производстве пластмасс после полиэтилена и поливинилхлорида.

Министерство образования Российской Федерации и науки

Российской Федерации

Государственное образовательное учреждение высшего

профессионального образования

“Алтайский Государственный Технический Университет

им. И.И. Ползунова”

Реферат.

По дисциплине «органическая химия» на тему:

«Полистирол (поливинилбензол)»

Выполнила студентка гр. ПКМ-71:

Бархатова Л. Н.

Проверила старший преподаватель

кафедры ФиТКМ: Арсентьева С.Н.

Барнаул 2008г.

Введение, общая характеристика и классификация полимеров

1. Историческая справка

2. Описание полистирола

3. Основные свойства

3.1.Физические свойства

3.2.Химические свойства

4. Получение

5. Надмолекулярная структура, конформация, конфигурация

6. Способы отверждения

7. Применение в промышленности

Заключение

Список литературы


Введение

Общая характеристика и классификация полимеров

Полимером называется органическое вещество, длинные молеку­лы которого построены из одинаковых многократно повторяю­щихся звеньев – мономеров.

Размер молекулы полимера определяется степенью полимери­зации n, т.е. числом звеньев в цепи. Если n= от 10 до 20, вещества представляют собой легкие масла. С возрастанием n увеличива­ется вязкость, вещество становится воскообразным, наконец, при n=1000 образуется твердый полимер. Степень полимеризации неограниченна: она может быть 10 4 , и тогда длина молекул достига­ет микрометров. Молекулярная масса полимера равна произве­дению молекулярной массы мономера и степени полимеризации. Обычно она находится в пределах от 10 3 до 3×10 5 . Столь большая длина молекул препятствует их правильной упаковке, и структура полимеров варьирует от аморф­ной до частично кристаллической. Доля кристалличности в зна­чительной мере определяется геометрией цепей. Чем ближе укла­дываются цепи, тем более кристалличным полимер становится. Кристалличность даже в лучшем случае оказывается несовершенной .

Аморфные полимеры плавятся в диапазоне температур, зави­сящем не только от их природы, но и от длины цепей; кристалли­ческие имеют точку плавления.

По происхождению полимеры делятся на три группы: синтетические полимеры (искусственные), природные органические и природные неорганические полимеры.

Синтетические полимеры получаются путем ступенчатой или цепной полимеризации низкомолекулярных полимеров.

Природные неорганические полимеры – это например расплав магмы, оксид кремния.

Природные органические полимеры образуются в результате жизнедеятельности рас­тений и животных и содержатся в древесине, шерсти, коже. Это протеин, целлюлоза, крахмал, шеллак, лигнин, латекс.

Обычно природные полимеры подвергаются операциям выде­ления очистки, модификации, при которых структура основных цепей остается неизменной. Продуктом такой переработки явля­ются искусственные полимеры. Примерами являются натураль­ный каучук, изготовляемый из латекса, целлулоид, представляю­щий собой нитроцеллюлозу, пластифицированную камфарой для повышения эластичности.

Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются неза­менимыми и до сих пор, например в целлюлозно-бумажной про­мышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических поли­меров – материалов, полученных синтезом из низкомолекуляр­ных веществ и не имеющих аналогов в природе. Развитие хими­ческой технологии высокомолекулярных веществ – неотъемлемая и существенная часть современнойНТР. Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой. По химической структуре полимеры делятся на линейные, разветв­ленные, сетчатые и пространственные. Молекулы линейных поли­меров химически инертны по отношению друг к другу и связаны между собой лишь силами Ван-дер-Ваальса. При нагревании вязкость таких полимеров уменьшается и они способны обратимо переходить сначала в высокоэластическое, а затем и в вязкотекучее состояния (рисунок 1). Поскольку единственным следствием нагрева является изменение пластичности, линейные полимеры называют термопластичными. Не следует думать, что термин «ли­нейные» обозначает прямолинейные, наоборот, для них более ха­рактерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность.

Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под дей­ствием реагентов.

Разветвленные (привитые) полимеры более прочны, чем ли­нейные. Контролируемое разветвление цепей служит одним из основных промышленных методов модификации свойств термопластичных полимеров.

Сетчатая структура характерна тем, что цепи связаны друг с другом, а это сильно ограничивает движение и приводит к изме­нению как механических, так и химических свойств. Обычная ре­зина мягка, но при вулканизации серой образуются ковалентные связи типа S-ноль, и прочность растет. Полимер может приобрести сетчатую структуру и спонтанно, например, под действием света и кислорода произойдет старение с потерей эластичности и рабо­тоспособности. Наконец, если молекулы полимера содержат реакционноспособные группы, то при нагревании они соединяются множеством поперечных прочных связей, полимер оказывается сшитым, т. е. приобретает пространственную структуру. Таким образом, нагрев вызывает реакции, резко и необратимо изменяю­щие свойства материала, который приобретает прочность и вы­сокую вязкость, становится нерастворимым и неплавким. Вслед­ствие большой реакционной способности молекул, проявляющей­ся при повышении температуры, такие полимеры называют тер­мореактивными. Нетрудно представить, что их молекулы активны не только по отношению друг к другу, но и к поверхностям ино­родных тел. Поэтому термореактивные полимеры, в отличие от термопластичных, обладают высокой адгезионной способностью даже при низких температурах, что позволяет использовать их в качестве защитных покрытий, клеев и связующего в композици­онных материалах.

Термопластичные полимеры получают по реакции полимери­зации, протекающей по схеме (рисунок 2).

При цепной полимеризации молекулярная масса нарастает почти мгновенно, промежуточные продукты неустойчивы, реакция чувствительна к присутствию примесей и требует, как правило, высоких давлений. Неудивительно, что такой процесс в естествен­ных условиях невозможен, и все природные полимеры образова­лись иным путем. Современная химия создала новый инстру­мент - реакцию полимеризации, и благодаря ему большой класс термопластичных полимеров. Реакция полимеризации реализует­ся лишь в сложной аппаратуре специализированных производств, и термопластичные полимеры потребитель получает в готовом виде.

Реакционноспособные молекулы термореактивных полимеров могут образоваться более простым и естественным путем – посте­пенно от мономера к димеру, потом к тримеру, тетрамеру и т. д. Такое объединение мономеров, их «конденсацию», называют ре­акцией поликонденсации; она не требует ни высокой чистоты, ни давлений, но сопровождается изменением химического состава, а часто и выделением побочных продуктов (обычно водяного пара) (рисунок 2). Именно эта реакция реализуется в природе; она мо­жет быть легко осуществлена за счет лишь небольшого нагрева в самых простых условиях, вплоть до домашних. Такая высокая технологичность термореактивных полимеров предоставляет ши­рокие возможности изготовлять различные изделия на нехимиче­ских предприятиях, в том числе на радиозаводах .

Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифици­ровать следующим образом: пластмассы, волокниты, слоистые пластики, пленки, покрытия, клеи.


1. Историческая справка

Промышленность ластмасс зародилась на рубеже XX века. Легко полимеризующийся стирол и его стеклообразный твердый полимер сразу же привлекли внимание. Основы химии и техноло­гии производства полистирола заложили Остромысленский и Штау-дингер. Последний предложил цепной механизм образования макромолекул полистирола.

Первый патент на получение полистирола (способом термической спонтанной полимеризации в массе) был взят в Германии в 1911г. Там же в 1920 г. началось промышленное производство полимера. В 1936г. уже производилось 6000 т/год.

За пределами Германии рост производства полистирола долгое время сдерживался высокой ценой на мономер. Стимулом к бурному развитию послужило создание в США во время второй мировой войны крупнотоннажного производства бутадиен-стирольного каучукачто, естественно, привело к снижению цен на стирол. После Войныпроизводство полистирола и сополимеров стирола, содержащихболее 50 процентов стирола по составу (в отличие от бутадиен-стирольного каучука, где стирола около 30 процентов), развивалось самостоятельно. Разработка таких эффективных продуктов; как пенополистирол, ударопрочные полимеры стирола, АБС-пластики, позволила полистирольным пластикам в целом занять третье место в мировом производстве пластмасс после полиэтилена и поливинилхлорида.

В СССР производство полистирола развернулось в послевоенные годы. Как и в других странах, основу производства составляют процессы свободнорадикальной полимеризации в блоке (массе), суспензии и эмульсии .

В настоящее время производятся практически все основные типы сополимеров стирола, включая сополимеры с α-метилстиролом, метилметакрилатом, ударопрочные сополимеры с каучуком, двойные и тройные сополимеры с акрилонитрилом (включая АВС-пластики) и др.


2. Описание полистирола

Полистирол – термопластичный аморфный полимер с формулой

[-СН 2 -С(С 6 Н 5)Н-] n

Структурная формула:

Полистирол – прозрачное стеклообразное вещество, молекулярная масса 30-500 тыс., плотность 1,06 г/см 3 (20 °С), температура стеклования 93°С.

Для полистирола характерно коптящее пламя с цветочным сладковатым запахом (Этот запах корицы обычно можно обнаружить, уколов исследуемый предмет раскаленной иглой). Если к тому же предмет падает на пол с металлическим звоном то, скорее всего полистирол .

Это твердое, упругое, бесцветное вещество. Фенильные группы препятствуют упорядоченному расположению макромолекул и формированию кристаллических образований. Это жесткий, аморфный полимер с невысокой механической прочностью при растяжении и изгибе. Полистирол имеет низкую плотность, низкую термическую стойкость, обладает отличными диэлектрическими свойствами и весьма низкой прочностью при ударе. Он легко деформируется при относительно невысоких температурах (80°C). При контакте с жирами выделяет мономер стирола. Для улучшения свойств полистирола его модифицируют различными сополимерами и подвергают сшиванию.

Полистирол – дешёвый крупнотоннажный термопласт; характеризуется высокой твёрдостью, хорошими диэлектрическими свойствами, влагостойкостью, легко окрашивается и формуется, химически стоек, растворяется в ароматически и хлорированных алифатических углеводородах. Лучшими эксплуатационными свойствами обладают различные сополимеры стирола. Так, повышения теплостойкости и прочности при растяжении (на ~ 60 процентов) достигают сополимеризацией стирола с акрилонитрилом или a-метилстиролом, повышения прочности и ударной вязкости (от 5-10 до 50-100 кДж/м 2) – получением привитых сополимеров стирола с 5-10% каучука, например бутадиенового (ударопрочный полистирол), а также тройных сополимеров акрилонитрила, бутадиена и стирола (т. н. АБС-пластик). Заменой акрилонитрила на метилметакрилат синтезируют прозрачные тройные сополимеры .


3. Основные свойства

3.1. Физические свойства

Стирол горюч и взрывоопасен. Пределы взрывоопасности в смеси с воздухом при комнатной температуре от 1,1 до 6,1 объемн. %. Допу­стимая концентрация паров в воздухе не выше 0,5 мг/м система­тическое вдыхание паров стирола в концентрации выше допустимой приводит к хроническому заболеванию печени.

Важнейшие физические свойства стирола и α-метилстирола при­ведены ниже:

Таблица 1 – Физические свойства стирола и α-метилстирола

Стирол α-метилстирол
Структурная формула
Молекулярный вес 104,14 119,14
Т. кипения при 760 мм рт. ст., °C 145,2 165,38
Градиент кипения, °C/мм рт. ст. 0,049 0,052
Т. замерзания при 760 мм рт.ст., °C –30,628
Плотность при 20 °C, г/см 3 0,90600 0,88 (25 °C)
Дипольный момент, Кл×м 0,37×10 -30
1,735 2,04
Вязкость при 20 °C, Па×с 0,078 0,080
Поверхностное натяжение, Н/м 0,0322 (20 °C) 0,0317 (25 °C)
Теплота испарения при 20 °C, кДж/моль 44,6 40,4
9,719×10 -4 11×10 -4
Критическая температура, °C 373 386
Критическое давление, МПа 3,93 4,84
Коэффициент преломления 1,54682 1,5386

Таблица 2 – Зависимость температуры кипения стирола от давления

Зависимость ряда физических свойств стирола от температуры дается эмпирическими уравнениями:

для давления паров (P-в мм рт. ст., Т-в °C):

для плотности:

для поверхностного натяжения (30-90°C):

Распространенные в технике три основных процесса полимериза­ции стирола приводят к получению продукта, разного внешнего вида. При блочной полимеризации процесс ведут путем постепенного нагревания жидкого мономера. Температурный режим подбирают таким образом, чтобы полимеризующаяся масса все время находилась в вязкотекучем состоянии. Это означает, что в конце процесса, когда конверсия мономера достигает значения, близкого к предель­ному, температура расплавленного полистирола должна быть по­рядка 200–230 °С. Массу продавливают через фильеры путем экст­рузии и в горячем или холодном состоянии разрезают на гранулы. Путем повторной экструзии блочный полистирол окрашивают и ис­пользуют для дальнейшей переработки в изделия.


Таблица 3 –Зависимость некоторых свойств стирола от температуры

Продукты, получающиеся в результате суспензионной и эмуль­сионной полимеризации, представляют собой шарообразные частицы, различающиеся размером. Суспензионный полистирол крупнее – средний размер частиц – 4×5 мм. Эмульсионный продукт – «би­сер» – имеет средний размер частиц
1–10 мкм .

Таблица 4 – Основные физические свойства полистирола

Плотность при 20 °C, г/см 3

1,04–1, 965 (аморфного)

1,12 (кристаллического)

Удельная теплоемкость при 20 °C, кДж/(кг×К) 1,258 (20 °C) 1,84 (100 °C)
Термический коэффициент объемного расширения при 25 °C, 1/°C

(1,7–2,1) ×10 -4 при Т<Т ст

(5,1–6,0) ×10 -4 при Т>Т ст

Коэффициент теплопроводности, Вт/(м×К) 0,1165 (50 °C) 0,1276 (100 °C)
H сгорания, кДж/моль – 434×10 -3
H растворения, кДж/моль – 3,59
H плавления кристаллов, кДж/моль 8,373
Вязкость расплава, Па×с при 217 °C

– 2,65 ×10 -4 при Т<Т ст

– 6,05×10 -4 при Т>Т ст

Коэффициент преломления n D (в блоке) 1,59–1,60
Коэффициент Пуассона 0,325
Диэлектрическая проницаемость 2,49–2,55

3 .2. Химические свойства

Химические свойства стирола обусловлены высокой реакционной способностью боковой винильной группы. Фенильное ядро затрагивается в процессе термической полимеризации на стадии инициирования. При окислении стирола на воздухе происходит образование полимера, формальдегида и бензальдегида.

Полистирол относится к группе весьма инертных пластмасс. Он стоек к действию щелочей и галогеноводородных кислот. Нестоек к действию концентрированной азотной кислоты и ледяной уксусной кислоты.

Термическая деструкция полистирола с заметной скоростью протекает при температурах выше 200 °С. Основным продуктом разложения является мономерный стирол. Полистирол горюч. Для того чтобы понизить опасность возгорания, в него добавляют фосфорсодержащие соединения. Широкое использование полистирола в быту,строительстве, пищевой индустрии диктует необходимость максимального снижения содержания в нем остаточного мономера. По действующим нормам пищевой полистирол должен содержать менее 0,3% мономера .


4. Получение полистирола

Основным методом производства стирола в технике до сих пор является каталитическое дегидрирование этилбензола при высоких температурах. Этилбензол, в свою очередь, получают каталитическимжидкофазным алкилированием бензола этиленом на безводном AlCl 3 в мягких условиях. Выход полупродукта и мономера в обоих процессах близок к 90 % от теории. Наибольшую сложность вызывает очистка конечного, продукта от этилбензола и побочных веществ (бензола, толуола и др.), которая производится многосту­пенчатой ректификацией смеси .

Исследования, проводящиеся крупнейшими фирмами-произво­дителями стирола, позволяют постепенно совершенствовать техно­логию его производства. Применяются три типа реакторов дегидрирования – адиабатические с неподвижным слоем катализатора, трубчатые изотермические и секционные.

Поиски новых путей синтеза стирола, по-видимому, не являются совершенно безнадежными. Так, опубликовано сообщение о пуске в Испании установки производства стирола мощностью 79,4 тыс. т/год, работающей по следующей схеме: этилбензол в мягких условиях окисляется в гидроперекись этилбензола, которая затем взаимодействует с пропиленом в присутствии нафтената молибдена, образуя метилфенилкарбинол и окись пропилена. Метилфенилкарбинол выделяют и дегидратируют в стирол. Таким образом, установка производит стирол, и окись пропилена (50 % от выпуска стирола). Хотя запатентовано много других способов получения стирола, включая прямой пиролиз нефти, проблема выделения продукта из смеси компонентов с близкой температурой кипения до сих пор остается неодолимым препятствием для промышленного внедрения. Правда, и в этом; направлении возможны принципиально новые решения, например, японская фирма «Тогау» сообщила о разработке высокоэффективного процесса экстрактивной ректификации стирола из фракций, образующихся при пиролизе бензина в этилен и содер­жащих обычно до 30–35 % стирола, около 52 % ксилола и его изо­меров, а также этилбензол и другие компоненты. Конкретные детали процесса неизвестны, но авторы утверждают, что при производстве мощностью 20 тыс. т/год себестоимость стирола, получаемого в этом процессе, будет на 30–40 % ниже обычной .

Товарный стирол обычно содержит 99,6–99,7 % основного продукта и в большинстве случаев используется для проведения полимеризации без какой-либо предварительной очистки. В лабораторных условиях, когда к воспроизводимости результатов предъявляют высокие требования, стирол очищают вакуум-перегонкой.Стирол весьма плохо растворяет воду (таблица 5), так что специальной очистки от нее при радикальной полимеризации обычно не требуется. Для проведения ионной полимеризации стирол осушают, используя слабо­щелочные осушающие реагенты – окись кальция, силикагель, сер­нокислый или хлористый кальций .

Ярко выраженная склонность стирола к спонтанной (термической) полимеризации, протекающей по радикальному механизму, часто заставляет


Таблица 5 – растворимость воды в стироле и стирола в воде

применять при его хранении ингибиторы типа гидрохинона (илиn - mpem - бутилпирокатехина). Ингибиторы препятствуют также окислению стирола на воздухе и накоплению в нем перекисей, однако они эффективны при температурах ниже 100 °С .

Полимеризация стирола. Процесс состоит из трех стадий. Вначале в некоторых из многих молекул, содержащихся в реакционном сосуде, благодаря повышенной температуре и присутствию катализатора расщепляются двойные связи. Иными словами, эти молекулы активируются (первая стадия полимеризации). Затем активные частицы активируют следующие молекулы стирола, соединяются с ними, образуя цепь (следующая стадия).

Рост цепи прекращается, если соединяются две растущие цепи или если к растущей цепи присоединяется другой остаток, например фрагмент катализатора. Эта стадия называется обрывом цепи.


5. Структура полистирола

Первичные ламели имеют значительную поверхностную энергию, поэтому происходит их агрегация, приводящая к образованию монокресталов - более сложных надмолекулярных образований. При кристаллизации из расплава или концентрированного раствора полимера наиболее общего типа вторичного кристаллического образования является сферолит (рисунок 3), имеющий кольцевую или сферическую форму и достигающую гигантских размеров до 1см. В радикальных или сферических сферолитах каркас формируется из ленточных, кристаллических образований направленных от центра к периферии .

Рисунок 3 – Надмолекулярная структура полимеров: г) сферолитная лента (изотактический полистирол)

Полученные обычным способом поливинилхлорид, поливинилфторид и поли­стирол обладают гораздо меньшей степенью кристалличности и име­ют более низкие температуры плавления; у этих полимеров физиче­ские свойства сильно зависят от стереохимической конфигурации. Полистирол, полученный методом свободнорадикальной полимери­зации в растворе, является атактическим. Этот термин означает, что если ориентировать углеродные атомы полимерной цепи, придав ей, правильную зигзагообразную форму, то фенильные боковые группы окажутся распределенными случайным образом по одну и по другую сторону вдоль цепи (как это показано на рисунке 4). При полимери­зации стирола в присутствии катализатора Циглера образуется изотактический полистирол, отличающийся от атактиче-ского полимера тем, что в его цепях все фенильные группы расположены по одну или по другую сторону цепи. Свойства атактическо­го и изотактического полимеров различаются весьма существенно. Атактический полимер можно формовать при значительно более низких температурах, и он растворим в большинстве растворителей намного лучше изотактического. Существует много других типов стереорегулярных полимеров, один из которых назван синдиотакти ческим; в цепях этого полимера боковые группы расположены по­переменно то по одну, то по другую сторону цепи, как это показано на рисунке 4 .

Рисунок 4 – Конфигурации атактического, изотактического и синдиотактического полистирола


6. Способы отверждения, температура стеклования

Температура стеклования (Т ст) соответствует температуре, при которой возникает подвижность сегментов полимерных цепей.

В таблице 6 приведены значения температур стеклования полистирола. Эти данные показывают влияние скорости нагревания от Т ст.

Таблица 6 – Температура стеклования полистирола

Форму изделия из термопласта получают в результате развития в полимере пластической или высокоэластичной деформации под действием давления при нагреве полимера. При переработке реактопластов формирование изделия обеспечивают путем сочетания физических процессов формирования с химическими реакциями отверждения полимеров. При этом свойства изделий определяют скорость и полнота отверждения. Неполное использование при отверждении реакционных способностей полимера обусловливает нестабильность свойств изделия из реактопластов во времени и протекание деструкционных процессов в готовых изделиях. Низкая вязкость реактопластов при формировании приводит к снижению неравномерности свойств, увеличению скорости релаксации напряжений и меньшему влиянию деструкции при переработке на качество готовых изделий из реактопластов.

В зависимости от способа переработки отверждение совмещается с формованием изделия (при прессовании), происходит после оформления изделия в полости формы (литьевое прессование и литье под давлением реактопластов) или при термической обработке сформованной заготовки (при формовании крупногабаритных изделий, например, листов гетинакса, стеклотекстолита и др.). Полное отверждение реактопластов требует в некоторых случаях нескольких часов. Для увеличения съема продукции с оборудования окончательное отверждение может производиться вне формующей оснастки, так как устойчивость формы приобретается задолго до завершения этого процесса. По этой же причине изделие извлекают из формы без охлаждения.

При переработке полимеров (особенно термопластов) происходит ориентация макромолекул в направлении течения материала. Наряду с различием в ориентации на разных участках неоднородных по сечению и длине изделий возникает структурная неоднородность и развиваются внутренние напряжения.

Наличие температурных перепадов по сечению и длине детали ведет к еще большей структурной неоднородности и появлению дополнительных напряжений, связанных с различием скоростей охлаждения, кристаллизации, релаксации, и различной степенью отверждения.

Неоднородность свойств материала (по указанным причинам) не всегда допустима и часто приводит к браку (по нестабильности физических свойств, размеров, короблению, растрескиванию). Снижение неоднородности молекулярной структуры и внутренних напряжений удается достигнуть термической обработкой готового изделия. Однако более эффективно использование методов направленного регулирования структур в процессах переработки. Для этих целей в полимер вводят добавки, оказывающие влияние на процессы образования надмолекулярных структур и способствующие получению материалов с желаемой структурой .


7. Применение в промышленности

Существуют 2 основных вида полистирола полистирол общего назначения (GPPS), ударопрочный полистирол (HIPS)

Прозрачный полистирол (GPPS - General Purpose PolyStyrene) -неударопрочный материал. Используется в основном для внутреннего остекления, служит экономичной альтернативой оргстеклу.

HIPS (High Impact Polystyrene) обладает повышенной ударопрочностью, благодаря добавкам из бутадиенового или других специальных каучуков, которые обладают ударной вязкостью до 60-70 кДж/м 2 . Его область применения довольна широка – наружная реклама, торговое оборудование, детали холодильников и так далие.

Полистирол общего назначения (GPPS)

Материал используется в основном для внутреннего остекления, служит экономичной альтернативой оргстеклу.

Основные преимущества: влагоустойчивы, долговечны легкость в обработке, обладают великолепной оптической прозрачностью – 94 %, имеют хорошую гладкую поверхность, имеют низкую плотность, устойчивы к химическим воздействиям, обладают высокой жесткостью.

Экструдированный полистирол изготовляется в виде прозрачных, молочных, дымчатых, цветных листов. Изготавливаются антибликовые и декоративные листы с разнообразной фактурой. По специальному заказу листы полистирола могут производиться без УФ – стабилизации. Такие листы можно использовать в контакте с пищевыми продуктами, поскольку они отвечают всем действующим правилам использования материала в контакте с продуктами питания.

Прозрачный полистирол – хрупкий, ломкий и неударопрочный. В связи с этим возникают осложнения при хранении и транспортировке изделий из него. Помимо этого, для достижения необходимого светорассеивания приходится использовать листы с рифленой поверхностью, что зачастую не соответствует современному дизайну. Существенным недостатком ПС является и его низкая устойчивость к воздействию УФ-излучения. Однако полистирол является очень экономичным материалом.

Типичное применение: декоративные перегородки и ширмы защитное покрытие изображений остекление душевых кабин ценники подставки производство светильников все виды остекления внутри помещения и др.

Полистирол ударопрочный ( HIPS )

Ударопрочный полистирол высококачественный листовой материал, производится для процессов термо – или вакуумного формования. HIPS используется в производстве наружной рекламы, деталей холодильников, сантехники, игрушек, пищевой упаковки и тому подобное. Поверхность материала может быть глянцевой, матовой, гладкой или тисненой, с зеркальной поверхностью, различных цветов. Возможно изготовление листов методом соэкструзии. Это позволяет соединить два слоя различных цветов или добавить верхний слой с глянцевой поверхностью.

Ударопрочный полистирол обладает определенной эластичностью и тем самым расширяет возможность его использования при изготовлении светотехнических изделий сложной конфигурации с глубокой вытяжкой. Коэффициент светопропускания (35–38 %) и белизна полностью соответствуют существующим в России стандартам на светотехнические изделия.

Основные преимущества: повышенная ударопрочность слабая чувствительность к надрезам легкость морозостойкость до –40°С влагостойкость отличная формуемость легкость в обработке химическая стойкость к кислотам и щелочам

В своем «родном» состоянии полистирол представляет собой довольно хрупкий материал, непригодный для многих задач. Поэтому в производстве в исходное сырье добавляют специальные добавки, повышающие ударную прочность и гибкость, и таким образом получают ударопрочный полистирол. Одной из разновидностей ударопрочного полистирола является фреоностойкий полистирол, применяемый в производстве холодильного оборудования. Структура поверхности: матовая с обеих сторон или с одной стороны глянцевая (верхний глянцевый слой получают путем соэкструзии с полистиролом обшего назначения), тисненная. При необходимости лист с одной стороны обрабатывается коронным разрядом, на лист наносится защитная термоформуемая пленка. При наружном применении добавляется УФ-стабилизатор, обеспечивающий защиту от пожелтения под воздействием УФ-излучения.

Полистирол светотехнический является одной из разновидностей ударопрочного полистирола, полностью заменяет акриловое стекло при изготовлении конструкций с внутренней подсветкой. В отличие от оргстекла имеет только одну глянцевую поверхность. Высокая популярность светотехнического полистирола обуславливается большей ударной прочностью (по сравнению с акрилом), легкостью обработки, стойкостью к окружающей среде и меньшей стоимостью.

Ударопрочный полистирол является более экономичным вариантом по сравнению с оргстеклом из-за низкой плотности, а так же возможностью применения более тонких (2-3 мм) листов благодаря повышенной ударопрочности по сравнению с оргстеклом (3-5 мм), что обеспечивает экономию в 2 раза, из расчета на 1 кв. м. светорассеивателя .

Катушки, кассеты и бобины для магнитофонной ленты, цоколи радиоламп, облицовочные плиты, шкалы приборов, скобы и хомуты для крепления кабелей, аккумуляторные банки, ручки инструментов и приборов, пленки, абажуры, детали клемм, футляры, принадлежности для бритья, игрушки, посуда, плитки для отделки мебели, пудреницы, крышки для банок и бутылок, коробки, детали электрических выключателей, авторучки – этот перечень изделий из полистирола можно было бы продолжать еще долго. Применение полистирола очень разнообразно - от пленки в конденсаторах толщиной 0,02 мм до толстых плит из пенополистирола, используемых в качестве изоляционного материала в холодильной технике .


Заключение

Изучение полимеров, их физических, химических свойств, а так же взаимодействие различных полимеров друг с другом, приводит к появлению новых соединений, которые соответствовали бы нужным свойствам. Например, можно создавать ударопрочные соединения, или соединения сочетающие несколько нужных свойств, например ударопрочность, морозостойкость, стойкость к воздействию солнечных лучей.

Так изучение полистирола одного из известных полимеров привело к его повсеместному использованию. Мы порой даже не задумываемся из чего сделан тот, или иной предмет окружающий нас. Все чаще натуральные материалы, например дерево, заменяется пластмассам, который гораздо дешевле, и износа стойкий.

Можно сделать один большой вывод: нужно изучать новые материалы, во-первых, натуральных материалов осталось не так уж и много, во-вторых, изучая полимеры можно создавать соединения которые в разы превосходят натуральные, а в третьих, полимеры стали использоваться в промышленности относительно недавно и есть возможность открывать что-то новое.


Список литературы

1. Арзамасом Б.Н. Материаловедение – Москва: Машиностроение, 1986. – 456 с.

2. Беккер Х. Органикум: Пер. с нем. – 2-й том. – М.: Мир, 1992 – 474 с.

3. Малкин А.Я.Полистирол. Физ. хим. основы получения и переработки. – М.: Химия, 1975 – 263 с.

4. Пол Д., Ньюмен С., Полимерные смеси: Пер с англ./под редакцией Д.Пола, С.Ньюмена. 1-й том, – М.: Мир, 1981 – 541 с.

5. Дж.Робертс, М.Касерио. Основы органической химии. том 2-й. – М.: Мир, 1978 – 345 с.

6. Лекционный материал по органической химии.

7. Turkavkaz [Электронный ресурс] / Полимер – Спектр; В. Симонов; ред. А. Маркин; Майкоп.: Адыгейский государственный университет, 2005. Режим доступа: http://www.poli.turkavkaz.ru, свободный. Туркавказ, Turkavkaz.

8. Alhimik [Электронный ресурс] / Кунсткамера, Химия для любознательных. Основы химии и занимательные опыты; Гроссе Э., Вайсмантель X.; ред. L.Alikberova; М.: МИТХТ им. М.В. Ломоносова, 2006 ­.­Режим доступа: http://www.alhimik.ru, свободный. Алхимик, Alhimik.

9. Mixport [Электронный ресурс] / Рефераты, Химия, Полимеры; А. Лебедев; ред. И. Водонов; М.: Российский химико-технологический университет (РХТУ) им. Д.И.Менделеева, 2008. Режим доступа: http://www.mixport.ru, свободный. Микспорт, Mixport.

Из различной пластмассы на сегодняшний день изготавливают большое количество игрушек, строительных материалов и пр. Самым популярным видом пластика считается полистирол. Он обладает высокими техническими характеристиками. Поэтому такой материал широко используется в быту и промышленной сфере.

Что такое полистирол

Полистирол представляет собой твердый бесцветный материал. Он относится к группе синтетических полимеров. Изготавливают полистирол из стирола или фентилэтилена путем полимеризации. Одним из конечных продуктов переработки природного газа и нефти является полистирол.

Как применяется полистирол

Изготавливается полимер в виде прозрачных гранул. Они обладают цилиндрической формой. Большое количество пластика основывается на основе полистирола. Так как полимер имеет простое строение, небольшую стоимость и большой выбор. Из полистирола изготавливают различные материалы, предметы, которые необходимы в повседневной жизни. Например, игрушки, одноразовая посуда, упаковки и т.д. Все предметы не несут вреда для нашего здоровья.

Для изготовления теплоизоляционных материалов используют полистирол. Поэтому он широко применяется в строительстве. На его основе изготавливают плиты, несъемные опалуби, сэндвич-панели и многое другое. Еще изготавливают из полистирола декоративную плитку и потолочные карнизы.

Помимо строительства полистирол используют в медицинских нуждах. Из него изготавливают одноразовые инструменты и части системы переливания крови.

Для подготовки и очистки сточных вод применяют вспененный полистирол.

В пищевой промышленности тоже используется полистирол. Из него изготавливают упаковочные материалы.

А для производства электроники и бытовой техники используют ударопрочный полистирол.

Виды полистирола

Полистирол можно разделить по технологии производства. Рассмотрим самые популярные виды данного материала:

Свойства полимера

Полистирол представляет собой термопластическую пластмассу, которая изготавливается в виде плит. Она может быть с гладкой поверхностью или иметь штампованные рисунки. Полимер бывает прозрачный и белый. Прозрачный полимер может стать хорошей заменой оргстеклу, а белый - пластику ПВХ. Такой материал очень популярен благодаря своей высокой ударопрочности, простоте в обработке и гибкостью.

Одним из достоинств такого материала является низкая стоимость. Полистирол легко формуется, обрабатывается и препятствует потери тепла. Он с легкостью может заменить стекло, так как прост в обработке и имеет прозрачный цвет.

Благодаря высоким химическим и физическим свойствам такой материал применяется для наружных и внутренних частей помещений. Прозрачный полимер можно использовать для остекления зданий, так как он хорошо пропускает свет. Но стоит учитывать, что такой материал боится воздействия прямых солнечных лучей. Так как через какое-то время полистирол начинает желтеть, снижаются его характеристики и затем он разрушается. Такой материал давно используется для изготовления пенопласта и других материалов. Происходит это при помощи нагревания материала и преобразователя. При изготовлении получается вспученный полистирол. А после того как материал остывает он превращается во вспененную застывшую массу. Она обладает жесткой структурой с плотными ячейками, которые заполняются на 98% воздухом. В получившемся материале содержится всего 2% полимера.

Благодаря низкой теплопроводности материала он отлично подходит для строительства. Полистирол широко применяется для утепления пола, кровли, потолков и стен. Такой утеплитель легко устанавливать и резать обычным строительным ножом. Вес такого материала небольшой. Те, кто уже покупал полистирол,отзываются только о его положительных сторонах. Они отмечают, что полистирол противостоит гниению, грибку, проявляет стойкость к агрессивной среде и воздействию микроорганизмов. Но, как и у любого материала можно выделить некоторые недостатки:

  1. Пожароопасность;
  2. Экологически небезопасный материал;
  3. Небольшой срок службы.

Физические свойства полистирола

Рассмотрим физические свойства полистирола:

  • Теплоемкость составляет 35х103Дж/кг*К;
  • Плотность материала составляет от 1050 до 1080 кг/м3;
  • Усадка от 0,4 до 0,8%;Насыпная плотность гранул составляет от 550 до 560 кг/м3;
  • Нижнее значение рабочей температуры равняется -40оС, а верхнее - 75оС;
  • Диэлектрическая проницаемость равняется от 2,49 до 2,6;
  • Электрическая прочность составляет частоту 50 Гц;
  • Электрическое сопротивление равняется 1016 Ом.

Отличие полистирола от пенопласта

Пенопласт является разновидностью вспененного полистирола. Гранулы материала обрабатывают паром, поэтому промежутки между молекулами увеличиваются. При распухании гранул полистирола они склеиваются между собой, и образуется пенопласт.

При разогреве гранулированного полистирола, который имеет пенообразующий наполнитель, полученную пену выдавливают в форму и таким образом получается экструдированный пенополистирол. Пенопласт и пенополистирол ни чем не отличается кроме техники изготовления.

Полистирол — это термопластическая пластмасса в форме плит с гладкой поверхностью или со штампованным рисунком, изготавливаемая методом экструзии. Полистирол нашел широкое практическое применение, начиная от безопасного застекления до оформления интерьера жилых помещений. Популярность полистирола и разновидность его применения — это следствие очень хороших технических свойств и низкой цены.

Белый полистирол — это экономичная альтернатива пластику ПВХ, а прозрачный — оргстеклу. Популярность материала вызвана высокой ударопрочностью, легкостью обработки и гибкостью. Он прекрасно формуется и обрабатывается. Также полистирол препятствует потере тепла, устойчив к различным химическим веществам, но неустойчив к перепадам температур и влажности. Главное его достоинство — это более низкая, чем у других пластиков стоимость.

1. Свойства и общие характеристики

Идеальный заменитель стекла. Великолепная прозрачность и легкость в использовании. Сырье представляет собой полимер с прекрасными физическими и химическими свойствами, в результате чего получается продукт удобный для использования как внутри, так и снаружи помещения. К тому же полистирол значительно дешевле чем оргстекло.

Гладкий прозрачный полистирол служит альтернативой стеклу, там, где требуется внутреннее остекление помещений. Прозрачный полистирол прекрасно пропускает свет, но воздействие прямых солнечных лучей может вызвать пожелтение, помутнение, снижение прочностных характеристик.

В прозрачном и полупрозрачном (различных оттенков) виде идеально подходит для внутреннего остекления, прекрасно подходит для изготовления декоративных перегородок, душевых кабин, а также для изготовления торгового и выставочного оборудования, может использоваться для изготовления рассеивателей света, а также может применяться для изготовления вывесок. Допускается контакт прозрачного полистирола с пищевыми продуктами.

Фактурный полистирол (колотый лед, пинспот, призма) и цветной полистирол часто используется для изготовления витражей, перегородок, подвесных потолков, светильников, в том числе встроенных. Фактурный полистирол хорошо рассеивает свет, который, отражаясь от многочисленных граней на поверхности, искрится.

Антибликовый полистирол — с односторонней обработкой поверхности, препятствует отражению источников света, предотвращает нежелательные тени, сохраняет натуральные цвета картины.

Во избежание повреждения поверхности листы покрывается защитной пленкой с двух сторон.

Основные преимущества полистирола, по сравнению с силикатным стеклом, в том, что он уменьшает потерю тепла, увеличивают теплоизоляцию, препятствует сквознякам и конденсации влаги, сокращает расходы на обогрев, химически инертен. Белый полистирол отлично формуется, равномерно распределяя толщину стенок готового изделия. В отличие от ПВХ он имеет более жесткую прочную структуру.

2. Основные технические характеристики полистирола

Характеристики Стандарт Ед. изм.
1. Общие:
удельный вес D 1505 г/см³ 1,05
твердость по Роквеллу D-785 M scale 76
2. Оптические:
светопроницаемость 5036 % 93,7
коэффициент преломления 53491 1,59
3. Мехнические:
модуль гибкости 53452 МПа 3200
устойчивость на изгиб 53452 МПа 100
модуль растяжения 53455 МПа 3100
устойчивость на растяжение 53455 МПа 50
устойчивость на удлинение 53455 % 3
4. Термические:
температура размягчения по Вика 53460 °С >98
температура отклонения 53461 °С 86/98
тепловой объем D-2766 Дж/г К 1,8
коэффициент линейного расширения 53752 К-1 х 10-5 8
теплопроводность 52612 Вт/ м К 0,17
температура разложения °С >280
максимальная рабочая температура °С 80
температура формовки °С 130 — 170
5. Ударные:
ударная вязкость при испытании с надрезом (Изод) ISO 180 кДж/м² 10
ударная вязкость при испытании с надрезом (Харп) 53453 кДж/м² 14

3. Применение :

— изготовление вывесок
— изготовление рекламных щитов, штендеров
— изготовление указателей и информационных табличек
— изготовление декорации объемных букв, может служить задней стенкой объемных букв
— изготовление внутреннего остекления помещений
— замена оконных стекол
— отделка внутренняя и наружная
— производство торгового и выставочного оборудования, перегородок
— изготовление душевых кабин
— в оранжереях и теплицах
— изготовление электротехники: защитные экраны для цифровых табло, рассеиватели светильников, декоративные элементы розеток и выключателей
— создание трехмерных объектов методом термоформовки.

4. Обработка материала

1. Обработка края
2. Термоформовка
3. Сварка
4. Склеивание
5. Печать
6. Лакирование
7. Металлизация
8. Флокирование
9. Горячее тиснение
10. Фрезерование
11. Вакуумная формовка

Полистирол достаточно легкий. Обладает хорошими электроизоляционными свойствами, характеризуется небольшими диэлектрическими потерями. Максимальная рекомендуемая температура применения 70 о С. Полистирол можно без труда обрабатывать инструментами и станками для обработки дерева и металла.

1. Обработка края
Для обработки краев используют рубанок, грубый напильник, рашпиль, шабер. Инструмент должен быть хорошо заточен.

2. Термоформовка
Полистирол является идеальным материалом для этого вида обработки и предоставляет огромные возможности для создания трехмерных форм. Объемные буквы, барельефы, сложные объемные фигуры и многое другое может быть выполнено с помощью термо- или вакуумформовки. Простейший инструмент для термообработки — промышленный фен.

Температура обработки: 130-150 о С.
В экстремальных случаях: до 200 о С.

Температура формовки:
— для технических деталей до 75 о С
— для упаковки без нагревания величина усадки: прибл. 0,5%

Коэффициент вытяжки:
— при отрицательной матрице -1:1,25
— при позитивной матрице — 1:2
— время нагрева: в зависимости от источника нагревания. При толщине материала более 2 мм необходимо нагревание с двух сторон.

3. Сварка
Рекомендуется газосварка (горячий воздух) при температуре 260-330 oС, сварка нагревательным элементом (температура 180-260 oС, время нагрева 20-60сек), и особенно ультразвуковая сварка (амплитуда колебаний 35 мм, облучение ультразвуком проводится менее 1 сек).

4. Склеивание
Детали из полистирола легко склеиваются друг с другом и с другими материалами, образуя долговечные и надежные соединения. Очень хорошо подходят для этой цели контактные клеи, водорастворимый клей, клей из неопрена, а также растворяющие или цианакрилатные клеи.

5. Печать
На поверхность полистирола легко наносится и долго держится печать, нанесенная офсетным или трафаретным способом. При этом не требуется предварительной обработки поверхности. При офсетной печати используются краски для « невпитывающих поверхностей». При шелкографической печати в случае применения растворителей следует обратить внимание на рекомендации производителей красок.

6. Лакирование
Поверхность пластика хорошо покрывается совместимыми лаками.

7. Металлизация
Металлизацию полистирола с образованием зеркальной поверхности можно провести при помощи высоковакуумной технологии после соответствующей обработки поверхности.

8. Флокирование
Полистирол хорошо подвергается флокированию (электростатическому нанесению волокон).

9. Горячее тиснение
Производят фольгой для тиснения, которая подходит для термопластиков и имеется в продаже.

10. Фрезерование

11. Вакуумная формовка

Похожие публикации