Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Расчет теплопотерь пвх окон. Расчеты теплопотерь Теплопотери окна с двойным стеклопакетом


Первый шаг в организации отопления частного дома — расчет теплопотерь. Цель этого расчета — выяснить, сколько тепла уходит наружу сквозь стены, полы, кровлю и окна (общее название — ограждающие конструкции) при самых суровых морозах в данной местности. Зная, как рассчитать теплопотери по правилам, можно получить довольно точный результат и приступить к подбору источника тепла по мощности.

Базовые формулы

Чтобы получить более-менее точный результат, необходимо выполнять вычисления по всем правилам, упрощенная методика (100 Вт теплоты на 1 м² площади) здесь не подойдет. Общие потери теплоты зданием в холодное время года складываются из 2 частей:

  • теплопотерь через ограждающие конструкции;
  • потерь энергии, идущей на нагрев вентиляционного воздуха.

Базовая формула для подсчета расхода тепловой энергии через наружные ограждения выглядит следующим образом:

Q = 1/R х (t в — t н) х S х (1+ ∑β). Здесь:

Термическое сопротивление стен либо кровли здания определяется исходя из свойств материала, из которого они сделаны, и толщины конструкции. Для этого используется формула R = δ / λ, где:

  • λ — справочное значение теплопроводности материала стены, Вт/(м°С);
  • δ — толщина слоя из этого материала, м.

Если стена возведена из 2 материалов (например, кирпич с утеплителем из минваты), то термическое сопротивление рассчитывается для каждого из них, а результаты суммируются. Уличная температура выбирается как по нормативным документам, так и по личным наблюдениям, внутренняя — по необходимости. Добавочные теплопотери — это коэффициенты, определенные нормами:

  1. Когда стена либо часть кровли повернута на север, северо-восток или северо-запад, то β = 0,1.
  2. Если конструкция обращена на юго-восток или запад, β = 0,05.
  3. β = 0, когда наружное ограждение выходит на южную или юго-западную сторону.

Порядок выполнения вычислений

Чтобы учесть все тепло, уходящее из дома, необходимо сделать расчет теплопотерь помещения, причем каждого по отдельности. Для этого производятся замеры всех ограждений, соседствующих с окружающей средой: стен, окон, крыши, пола и дверей.



Важный момент: обмеры следует выполнять по внешней стороне, захватывая углы строения, иначе расчет теплопотерь дома даст заниженный расход тепла.

Окна и двери измеряются по проему, который они заполняют.

По результатам замеров рассчитывается площадь каждой конструкции и подставляется в первую формулу (S, м²). Туда же вставляется значение R, полученное делением толщины ограждения на коэффициент теплопроводности строительного материала. В случае с новыми окнами из металлопластика величину R вам подскажет представитель фирмы-установщика.

В качестве примера стоит провести расчет теплопотерь через ограждающие стены из кирпича толщиной 25 см, площадью 5 м² при температуре окружающей среды -25°С. Предполагается, что внутри температура составит +20°С, а плоскость конструкции обращена к северу (β = 0,1). Сначала нужно взять из справочной литературы коэффициент теплопроводности кирпича (λ), он равен 0,44 Вт/(м°С). Затем по второй формуле вычисляется сопротивление передаче тепла кирпичной стены 0,25 м:

R = 0,25 / 0.44 = 0,57 м²°С / Вт

Чтобы определить теплопотери помещения с этой стенкой, все исходные данные надо подставить в первую формулу:

Q = 1 / 0,57 х (20 — (-25)) х 5 х (1 + 0,1) = 434 Вт = 4.3 кВт

Если в комнате имеется окно, то после вычисления его площади следует таким же образом определить теплопотери сквозь светопрозрачный проем. Такие же действия повторяются относительно полов, кровли и входной двери. В конце все результаты суммируются, после чего можно переходить к следующему помещению.

Учет тепла на подогрев воздуха

Выполняя расчет теплопотерь здания, важно учесть количество тепловой энергии, расходуемой системой отопления на подогрев вентиляционного воздуха. Доля этой энергии достигает 30% от общих потерь, поэтому игнорировать ее недопустимо. Рассчитать вентиляционные теплопотери дома можно через теплоемкость воздуха с помощью популярной формулы из курса физики:

Q возд = cm (t в — t н). В ней:

  • Q возд — тепло, расходуемое системой отопления на прогрев приточного воздуха, Вт;
  • t в и t н — то же, что в первой формуле, °С;
  • m — массовый расход воздуха, попадающего в дом снаружи, кг;
  • с — теплоемкость воздушной смеси, равна 0.28 Вт / (кг °С).

Здесь все величины известны, кроме массового расхода воздуха при вентиляции помещений. Чтобы не усложнять себе задачу, стоит согласиться с условием, что воздушная среда обновляется во всем доме 1 раз в час. Тогда объемный расход воздуха нетрудно посчитать путем сложения объемов всех помещений, а затем нужно перевести его в массовый через плотность. Поскольку плотность воздушной смеси меняется в зависимости от его температуры, нужно взять подходящее значение из таблицы:


m = 500 х 1,422 = 711 кг/ч

Подогрев такой массы воздуха на 45°С потребует такого количества теплоты:

Q возд = 0.28 х 711 х 45 = 8957 Вт, что примерно равно 9 кВт.

По окончании расчетов результаты тепловых потерь сквозь наружные ограждения суммируются с вентиляционными теплопотерями, что дает общую тепловую нагрузку на систему отопления здания.

Представленные методики вычислений можно упростить, если формулы ввести в программу Excel в виде таблиц с данными, это существенно ускорит проведение расчета.

Давайте на простом примере разберем вариант расчета теплопотерь дома через окна и входную дверь дома, для утепление которого может использоваться эковата экстра . Для расчета возьмем два окна по разным стенам дома размером 100х120 см (1х1,2 м), еще одно окно меньшего размера который составляет 60х120 см (0,6х1,2 м).

Для расчета теплопотерь дома через входную дверь возьмем следующие параметры двери 80х120х5 см (ширина двери - 0,8 м, высота двери - 2 м, толщина дверного полотна - 0,05 м). структура дверного полотна - массив сосны. Дверь со стороны улицы защищена от прямого воздействия атмосферных явлений неотапливаемой террасой, поэтому по правилам расчета теплопотерь необходимо применять понижающий коэффициент равный показателю 0,7.

Расчет теплопотерь через окна

Для начала проведения расчетов теплопотерь дома через окна необходимо вычислить общую площадь всех ранее оговоренных окон. Расчет проведем по формуле:

S окон = 1 ∙ 1,2 ∙ 2 + 0,6 ∙ 1,2 = 3,12 м2

Теперь для продолжения расчета теплопотерь дома через окна узнаем их характеристики. Для примера возьмем следующие технические показатели:

  • Окна сделаны из трехкамерного профиля ПВХ
  • Окна имеют двухкамерный стеклопакет (4-16-4-16-4, где 4 это толщина стекла, 16 это расстояние между стеклами стеклопакетов каждого окна).

Теперь можно приступить к дальнейшим расчета и узнать тепловое сопротивление установленных окон. Тепловое сопротивление двухкамерного стеклопакета и трехкамерного профиля такой конструкции окон:

  • R ст-а = 0,4 м² ∙ °С / Вт - тепловое сопротивление стеклопакета
  • R профиля = 0,6 м² ∙ °С / Вт - тепловое сопротивление трехкамерного профиля

Большую часть окна - 90%,занимает стеклопакет и 10% - профиль ПВХ. Тепловое сопротивление окна рассчитываем по формуле:

R окна = (R ст-а ∙ 90 + R профиля ∙ 10) / 100 = 0,42 м² ∙ °С / Вт.

Имея данные о площади окон и их тепловое сопротивление, выполняем расчет теплопотерь через окна:

Q окон = S ∙ dT ∙ / R = 3,1 м² ∙ 52 градуса / 0,42 м² ∙ °С / Вт = 383,8 Вт (0,38 кВт), это мы с вами получаем теплопотери дома через окна, теперь рассчитаем теплопотери дома через входную дверь.

Комфорт – штука капризная. Приходят минусовые температуры, сразу становится зябко, и безудержно тянет к домашнему обустройству. Начинается «глобальное утепление». И здесь есть одно «но» — даже просчитав теплопотери дома и смонтировав обогрев «согласно плану», можно остаться лицом к лицу с быстро уходящим теплом. Процессом визуально не заметным, зато отлично чувствующимся через шерстяные носки и большие счета за отопление. Остается вопрос – куда «драгоценное» тепло ушло?

Естественные теплопотери хорошо прячутся за несущие конструкции или «добротно» сделанное утепление, где прорех по умолчанию не должно быть. Но так ли это? Давайте рассмотрим вопрос тепловых утечек для разных элементов конструкции.

Холодные места на стенах

До 30% от всех теплопотерь дома приходится на стены. В современном строительстве они представляют собой многослойные конструкции из разных по теплопроводности материалов. Расчеты для каждой стены можно проводить индивидуально, но есть общие для всех погрешности, через которые из помещения уходит тепло, а снаружи в дом поступает холод.

Место, где изоляционные свойства ослаблены, называется — «мостик холода». Для стен это:

  • Кладочные швы

Оптимальный шов кладки – 3мм. Достигается он чаще клеевыми составами мелкой текстуры. Когда объем раствора между блоками увеличивается – растет теплопроводность всей стены. Причем температура шва кладки может быть на 2-4 градуса холоднее основного материала (кирпича, блока и т.п.).

Кладочные швы как «термомост»

  • Бетонные перемычки над проемами.

Один из высоких коэффициентов теплопроводности среди строительных материалов (1,28 — 1,61 Вт/ (м*К)) у железобетона. Это делает его источником теплопотерь. Вопрос полностью не решают и ячеистые или пенобетонные перемычки. Разница температур железобетонной балки и основной стены часто близится к 10 градусам.

Изолировать перемычку от холода можно сплошным наружным утеплением. А внутри дома — собрав короб из ГК под карниз. Так создается дополнительная воздушная прослойка для тепла.

  • Монтажные отверстия и крепежные элементы.

Подключение кондиционера, ТВ-антенны оставляет прорехи в общем утеплении. Сквозной металлический крепеж и проходное отверстие необходимо плотно заделать утеплителем.

А по возможности, не выводить металлические крепления наружу, зафиксировав их внутри стены.

Дефекты с теплопотерями есть и у утепленных стен

Монтаж поврежденного материала (со сколами, сдавливанием и т.п.) оставляет уязвимые области для утечек тепла. Это хорошо видно при обследовании дома тепловизором. Яркие пятна показывают бреши в наружном утеплении.


При эксплуатации важно следить за общим состоянием утепления. Ошибка в выборе клея (не специального для теплоизоляции, а плиточного) может выдать трещины в конструкции уже через 2 года. Да и основные утеплительные материалы так же имеют свои минусы. Например:

  • Минвата – не гниет, и не интересна грызунам, но очень чувствительна к влаге. Поэтому срок ее добротной службы в наружном утеплении около 10 лет — затем появляются повреждения.
  • Пенопласт – имеет хорошие изоляционные свойства, но легко поддается грызунам, и не устойчив к силовому воздействию и ультрафиолету. Слой утепления после монтажа требует скорой защиты (в виде конструкции или слоя штукатурки).

В работе с обоими материалами важно соблюсти четкую подгонку замков утеплительных плит и перекрестное расположение листов.

  • Пенополиуретан – создает бесшовное утепление, удобен для неровных и изогнутых поверхностей, но уязвим для механических повреждений, и разрушается под УФ-лучами. Покрывать его желательно штукатурной смесью — крепление каркасов сквозь слой утеплителя нарушает общую изоляцию.

Опыт! Потери тепла могут нарастать во время эксплуатации, ведь у всех материалов есть свои нюансы. Лучше периодически оценивать состояние утепления и повреждения устранять сразу. Трещина на поверхности – это «скоростная» дорога к разрушениям утеплителя внутри.

Теплопотери фундамента

Бетон – преобладающий материал в строительстве фундаментов. Его высокая теплопроводность и прямой контакт с грунтом дают до 20% теплопотерь по всему периметру здания. Фундамент особенно сильно проводит тепло из подвального помещения и неправильно смонтированного теплого пола на первом этаже.


Потери тепла увеличивает и лишняя влага, не отведенная от дома. Она разрушает фундамент, создавая лазейки для холода. К влажности чувствительны и многие теплоизоляционные материалы. Например, минвата, которая часто переходит на фундамент с общего утепления. Она легко повреждается влагой, и поэтому требует плотного защитного каркаса. Керамзит так же теряет свои теплоизоляционные свойства на постоянно влажном грунте. Его структура создает воздушную подушку и хорошо компенсирует давление грунтов при замерзании, но постоянное присутствие влаги сводит к минимуму полезные свойства керамзита в утеплении. Именно поэтому создание рабочего дренажа – обязательное условие долгой жизни фундамента и сохранения тепла.

Сюда же по важности можно отнести и гидроизоляционную защиту основания, а так же многослойную отмостку, шириной не меньше метра. При столбчатом фундаменте или пучинистом грунте отмостка по периметру утепляется, что бы защитить от промерзания грунт у основания дома. Утепляется отмостка керамзитом, листами пенополистирола или пенопласта.

Листовые материалы для утепления фундамента лучше выбирать с пазовым соединением, и его обрабатывать специальным силиконовым составом. Герметичность замков перекрывает доступ холоду и гарантирует сплошную защиту фундамента. В этом вопросе бесшовное напыление пенополиуретана имеет бесспорное преимущество. Вдобавок, материал эластичный и не трещит при пучении грунта.

Для всех видов фундаментов можно использовать разработанные схемы утепления. Исключением может быть фундамент на сваях, за счет своей конструкции. Здесь при обработке ростверка важно учитывать пучинистость грунта и выбрать технологию, не разрушающую сваи. Это сложный расчет. Практика же показывает, что дом на сваях защищает от холода грамотно утепленный пол первого этажа.

Внимание! Если в доме есть подвал, и он часто затопляется, то с утеплением фундамента это необходимо учесть. Так как утеплитель/изолятор в данном случае будет закупоривать влагу в фундаменте, и его разрушать. Соответственно – тепло будет теряться еще больше. Первым необходимо решить вопрос с затоплением.

Уязвымые места пола

Неизолированное перекрытие отдает весомую часть тепла фундаменту и стенам. Это особенно заметно при неправильном монтаже теплого пола – нагревательный элемент быстрее остывает, увеличивая затраты на обогрев помещения.


Чтобы тепло от пола уходило в комнату, а не на улицу, нужно проследить, что бы монтаж шел по всем правилам. Основные из которых:

  • Защита. На стены по всему периметру помещения крепится демпферная лента (либо фольгированные полистирольные листы шириной до 20 см и толщиной в 1 см). Перед этим обязательно устраняются щели, и поверхность стены выравнивается. Лента фиксируется максимально плотно к стене, изолируя теплопередачу. Когда нет воздушных «карманов» — нет утечек тепла.
  • Отступ. От наружной стены до нагревающего контура должно быть не меньше 10 см. Если теплый пол монтируется ближе к стене, то он начинает обогревать улицу.
  • Толщина. Характеристики необходимого экрана и утеплителя под теплый пол рассчитывается индивидуально, но к полученным цифрам лучше прибавить 10-15% запаса.
  • Отделка. Стяжка поверх пола не должна содержать керамзит (он изолирует тепло в бетоне). Оптимальная толщина стяжки 3-7 см. Присутствие пластификатора в смеси бетона улучшает теплопроводность, а значит и отдачу тепла в помещение.

Серьезное утепление актуально для любого пола, и не обязательно с подогревом. Плохая теплоизоляция превращает пол в большой «радиатор» для грунта. Стоит ли его отапливать зимой?!

Важно! Холодные полы и сырость появляются в доме при не рабочей или не сделанной вентиляции подпольного пространства (не организованы продухи). Ни одна система отопления не компенсирует такой недочет.

Места примыкания строительных конструкций

Соединения нарушают целостные свойства материалов. Поэтому углы, стыки и примыкания настолько уязвимы для холода и влаги. Места соединения бетонных панелей отсыревают первыми, там же проявляются грибок и плесень. Разница температур угла комнаты (место стыковки конструкций) и основной стены может колебаться от 5-6 градусов, до минусовых температур и конденсата внутри угла.


Подсказка! На местах таких соединений мастера рекомендуют делать снаружи увеличенный слой изоляции.

Тепло часто уходит через межэтажное перекрытие, когда плита укладывается на всю толщину стены и ее края выходят на улицу. Здесь увеличиваются теплопотери как первого, так и второго этажа. Формируются сквозняки. Опять же, если на втором этаже есть теплый пол — наружное утепление должно быть на это рассчитано.

Утечки тепла через вентиляцию

Тепло из помещения выводится по обустроенным вентиляционным каналам, обеспечивающим здоровый воздухообмен. Вентиляция, работающая «наоборот», затягивает холод с улицы. Происходит это, когда в помещении создается дефицит воздуха. Например, когда включенный вентилятор в вытяжке забирает слишком много воздуха из помещения, за счет чего он начинает затягиваться с улицы через другие вытяжные каналы (без фильтров и обогрева).

Вопросы, как не выводить большое количество тепла наружу, и как не впускать холодный воздух в дом, давно имеют свои профессиональные решения:

  1. В вентиляционную систему устанавливаются рекуператоры. Они возвращают до 90% тепла в дом.
  2. Обустраиваются приточные клапаны. Они «подготавливают» уличный воздух перед помещением – его очищают и согревают. Клапаны идут с ручной регулировкой или автоматической, которая ориентируется на разницу температур снаружи и внутри помещения.

Комфорт стоит хорошей вентиляции. При нормальном воздухообмене не образуется плесень, и создается здоровый микроклимат для обитания. Именно поэтому хорошо утепленный дом с комбинацией изолирующих материалов обязательно должен иметь рабочую вентиляцию.

Итог! Для уменьшения теплопотерь через вентиляционные каналы необходимо устранить ошибки перераспределения воздуха в помещении. В добротно работающей вентиляции только теплый воздух покидает дом, часть тепла из которого можно вернуть обратно.

Теплопотери через окна и двери

Через дверные и оконные проемы дом теряет до 25% тепла. Слабые места для дверей это — прохудившийся уплотнитель, который можно легко переклеить на новый и сбившаяся внутри теплоизоляция. Заменить ее можно, сняв кожух.

Уязвимые места для деревянных и пластиковых дверей похожи на «мостики холода» в аналогичных конструкциях окон. Поэтому общий процесс на их примере и рассмотрим.

Что выдает «оконную» потерю тепла:

  • Явные щели и сквозняки (в раме, вокруг подоконника, на стыке откоса и окна). Плохое прилегание створок.
  • Отсыревшие и покрытые плесенью внутренние откосы. Если пена и штукатурка со временем отстали от стены, то влага снаружи подбирается ближе к окну.
  • Холодная поверхность стекла. Для сравнения – энергосберегающее стекло (при -25° снаружи, а внутри комнаты +20°) имеет температуру в 10-14 градусов. И, естественно, не промерзает.

Створки могут неплотно прилегать, когда окно не отрегулировано, и резинки по периметру износились. Положение створок можно настроить самостоятельно, равно, как и поменять уплотнитель. Полную его замену лучше проводить раз в 2-3 года, и желательно на уплотнитель «родного» производства. Посезонная чистка и смазка резинок сохраняет их эластичность при перепадах температур. Тогда уплотнитель долго не пропускает холод.

Щели в самой раме (актуально для деревянных окон) заполняются силиконовым герметиком, лучше прозрачным. Когда он попадает на стекло – не так заметно.

Стыки откосов и профиля окна так же заделываются герметиком или жидким пластиком. В сложной ситуации, можно использовать самоклеящийся пенополиэтилен – «утепляющий» скотч для окон.

Важно! Стоит проследить, что бы в отделке наружных откосов утеплитель (пенопласт и т.п.) полностью закрывал шов монтажной пены и расстояние до середины рамы окна.

Современные способы уменьшить теплопотери через стекло:

  • Использование PVI-пленок. Они отражают волновое излучение и на 35-40% уменьшают потерю тепла. Пленки можно наклеить на стеклопакет уже установленный, если нет желания его менять. Важно не перепутать стороны стекла и полярность пленки.
  • Установка стекла с низкоэмиссионными характеристиками: k- и i-стекла. Стеклопакеты с k-стеклами пропускают энергию коротких волн светового излучения в помещение, аккумулируя в нем тело. Длинноволновое излучение комнату уже не покидает. В итоге, стекло на внутренней поверхности имеет температуру в два раза выше, чем у обычных стекол. i-стекло удерживает тепловую энергию в доме за счет отражения до 90% тепла обратно в помещение.
  • Использование стекол с серебряным напылением, которые в 2х камерных стеклопакетах сберегают на 40% больше тепла (в сравнении с обычными стеклами).
  • Выбор стеклопакетов с увеличенным количеством стекол и расстоянием между ними.

Полезно! Уменьшают теплопотери через стекло — организованные воздушные завесы над окнами (можно в виде теплых плинтусов) или защитные роллеты на ночь. Особенно актуально при панорамном остеклении и сильных минусовых температурах.

Причины утечки тепла в системе отопления

Теплопотери касаются и отопления, где утечки тепла чаще происходят по двум причинам.


  • Не все радиаторы полностью прогреваются.

Соблюдение нехитрых правил уменьшает теплопотери и не дает системе отопления работать «в холостую»:

  1. За каждым радиатором стоит установить отражающий экран.
  2. Перед запуском отопления, раз в сезон, необходимо стравить воздух с системы и просмотреть, все ли радиаторы полностью прогреваются. Засоряться система отопления может за счет скопившего воздуха или мусора (отслоений, некачественной воды). Раз в 2-3 года систему необходимо полностью промывать.

Заметка! При новом заполнении в воду лучше добавить антикоррозийные ингибиторы. Это поддержит металлические элементы системы.

Теплопотери через крышу

Тепло изначально стремится к верхней части дома, что делает крышу одним из самых уязвимых элементов. На нее приходится до 25% всех теплопотерь.

Холодное чердачное помещение или жилая мансарда утепляются одинаково плотно. Основные теплопотери идут на стыках материалов, не важно, утепление это или элементы конструкции. Так, часто упускаемым мостиком холода является граница стен с переходом в крышу. Этот участок желательно обрабатывать вместе с мауэрлатом.


Основное утепление тоже имеет свои нюансы, связанные больше с использованными материалами. Например:

  1. Утепление минватой нужно беречь от влаги и желательно менять каждые 10 – 15 лет. Со временем она слеживается и начинает пропускать тепло.
  2. Эковата, имеющая отличные свойства «дышащего» утеплителя, не должна находиться вблизи горячих источников – при нагревании она тлеет, оставляя прорехи в утеплении.
  3. При использовании пенополиуретана, необходимо обустроить вентиляцию. Материал паронепроницаем, а лишнюю влагу под крышей лучше не скапливать — повреждаются другие материалы, и в утеплении появляется брешь.
  4. Плиты в многослойной теплоизоляции должны укладываться в шахматном порядке и обязательно вплотную прилегать к элементам.

Практика! В верхних конструкциях любая брешь может отводить много дорогого тепла. Здесь важно поставить акцент на плотном и непрерывном утеплении.

Заключение

Места теплопотерь полезно знать не только для того, что бы обустроить дом и жить в комфортных условиях, но и что бы не переплачивать за отопление. Грамотное утепление на практике окупается за 5 лет. Срок долгий. Но ведь и дом мы не на два года строим.

Видеоматериалы по теме

Одним из направлений работы по сохранению тепловой энергии в домах, являются исследования проблем, связанных с потерями тепла через окна. Потери тепла через окна можно разделить на две группы: трансмиссионные и вентиляционные.

Трансмиссионные потери через стекло примерно в четыре-шесть раз выше, чем через стены. Вентиляционные потери могут также достигать достаточно больших значений, если окна недостаточно уплотнены. Эти проблемы решаются при использовании оконных конструкций со стеклопакетами.

Теплозащита стеклопакетов

Теплозащитные свойства стеклопакетов, заполненных инертными газами, увеличиваются на 12-13 процентов. Трехслойное остекление имеет значительную тепловую эффективность, которая основана на снижении теплопотерь за счет теплопроводности и конвективных (по 15 %). Но более 70 % теплоты расходуется через стекло за счет излучения.

Снижение лучевой составляющей теплопотерь происходит благодаря нанесению на стекло теплоотражающего покрытия. Сопротивление теплопередаче двухкамерного стеклопакета составляет Rост=0,61 м2 0С/Вт, а однокамерного с нанесением теплоотражающего покрытия Rост=0,65 м2 0С/Вт. Отсюда вывод, что выгоднее применять не третье стекло, а покрытие, которое отражает тепло, поскольку применение третьего стекла приводит к перерасходу материала на оконную конструкцию, уменьшению светопропускающих свойств за счет третьего стекла, а также увеличению веса окна.

Стекло с отражающим покрытием

Теплоотражающие покрытия на стекле характеризуются низким уровнем черноты ε в инфракрасном интервале длин волн 2,5 - 25 мкм. Стекло с таким покрытием на 5 % меньше пропускает света и обратно отражает в помещение до 90 процентов тепла, что происходит за счет излучения. В летнее время такое покрытие отражает инфракрасные лучи на улицу, тем самым не допускается перегрев помещения.

Современная конструкция рамы

Оконная рама занимает 15-35 % площади окна, поэтому теплотехнические параметры оконного профиля также должны отвечать требованиям энергосбережения. Рамы изготавливают из многокамерного профиля из различных материалов: поливинилхлорида (ПВХ), дерева или металла (алюминия). Высокие теплоизоляционные свойства обеспечивают 3-х камерные профили, с двумя контурами внешнего уплотнения: один - по внешнему периметру рамы, второй - по внешнему периметру створки (в помещении).

Таким образом, современные конструкции стеклопакетов (двухкамерных или однокамерных со специальным покрытием) обеспечивают необходимые теплоизоляционные свойства. Основные проблемы при использовании таких оконных конструкций возникают при монтаже их в железобетоне или кирпичных ограждающих конструкциях.

Зависимость теплопотерь от правильного монтажа

Теплотехнические свойства, даже самой лучшей оконной конструкции, могут быть потеряны при неправильном ее монтаже. К теплотехническим характеристикам монтажных швов (в месте сопряжения оконной и строительной конструкции) предъявляются следующие требования - высокое сопротивление теплопередаче, звукоизоляции, влажного переноса, фильтрации воздуха, механическая прочность и возможность компенсировать тепловые деформации оконной конструкции.

При этом механические нагрузки в зоне сопряжения должны компенсироваться свойствами шва. В результате множества проведенных исследований на сегодняшний день разработаны оптимальные параметры монтажных швов (геометрические, теплофизические и массообменные), которые обусловливают эффективность применения современных оконных конструкций.

В программе энергосбережения при строительстве и эксплуатации зданий светопрозрачным ограждениям отводится важная роль, поскольку современный уровень их теплозащиты не уступает теплозащите ограждающих (стеновых) конструкций зданий (до 40 % всех потерь здания).

Теплопотери через окно происходят по нескольким каналам: потери через оконный блок и переплеты (мостики холода, неплотности), потери за счет теплопроводности воздуха и конвективных потоков между стеклами, а также теплопотери посредством теплового излучения.

В настоящее время в России применяются следующие основные способы повышения энергоэффективности светопрозрачных конструкций:

Переход от одно- и двухкамерных стеклопакетов к трех- и более камерным;
- применение термопленки (теплопоглащающее остекление);
- наполнения стеклопакетов инертными газами.

В современных светопрозрачных конструкциях теплозащитных окон используются одно- или двухкамерные стеклопакеты, а для выполнения оконных створок и коробок - деревянные, алюминиевые, стеклопластиковые, пластмассовые (ПВХ) профили или их комбинации. При изготовлении стеклопакетов с применением флоат-стекла окна обеспечивают расчетное приведенное сопротивление теплопередаче не более 0,56 м 2 ∙ºС/Вт и более.

Другим способом повышения энергоэффективности светопрозрачных конструкций является теплопоглощающее остекление. Теплопропускная способность остекления зависит от угла падения солнечных лучей и толщины стекла. Теплоотражающие стекла покрывают металлическими или полимерными пленками. Коэффициент теплопропускания таких стекол составляет 0,2÷0,6.

Еще одним энергоэффективным способом является способ с наполнением стеклопакетов инертными газами. При этом уменьшаются конвекционные токи внутри стеклопакета, что приводит к снижению потерь тепла.

Для того чтобы добавить описание энергосберегающей технологии в Каталог, заполните опросник и вышлите его на c пометкой «в Каталог» .

Похожие публикации