Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Защитное действие стержневых и тросовых молниеотводов. Применение тросовой молниезащиты. Метод фиктивной сферы

Молниеприемник непосредственно воспринимает прямой удар молнии. Поэтому он должен надежно противостоять механическим и тепловым воздействиям тока и высокотемпературного канала молнии. Несущая конструкция несет на себе молниеприемник и токоотвод, объединяет все элементы молниеотвода в единую, жесткую, механически прочную конструкцию. В электроустановках молниеотводы устанавливаются вблизи токоведущих частей, находящихся под рабочим напряжением. Падение молниеотвода на токоведущие элементы электроустановки вызывает тяжелую аварию. Поэтому несущая конструкция молниеотвода должна иметь высокую механическую прочность, которая исключила бы в эксплуатации случаи падения молниеотвода на оборудование электростанций и подстанций. Молниеотвод должен иметь надёжную связь с землёй с сопротивлением 5-25 Ом растеканию импульсного тока. Защитное свойство стержневых молниеотводов заключается в том, что они ориентируют на себя лидер формирующегося грозового разряда. Разряд происходит обязательно в вершину молниеотвода, если он формируется в некоторой области, расположенной над молниеотводом. Эта область имеет вид расширяющегося вверх конуса и называется зоной 100%-го поражения.

Опытными данными установлено, что высота ориентировки молнии H зависит от высоты молниеотвода h. Для молниеотводов высотой до 30 метров:

а для молниеотводов высотой более 30 метров H=600 м.

где - активная часть молниеотвода, соответствующая его превышению над высотой защищаемого объекта:

Рисунок 1.1 Зона защиты одиночного стержневого молниеотвода: 1 - граница зоны защиты; 2 - сечение зоны защиты на уровне.

Для расчёта радиуса защиты в любой точке защитной зоны, в том числе и на уровне высоты защищаемого объекта, используется формула:

где - поправочный коэффициент, равный 1 для молниеотводов высотой меньше 30 метров и равный для более высоких молниеотводов.

Зоны защиты протяженных объектов в которых используется несколько молниеотводов, целесообразно, чтобы зоны их 100%-го поражения смыкались над объектом или даже перекрывали друг друга, исключая вертикальный прорыв молнии на объект защиты Расстояние (S) между осями молниеотводов должно быть равно или меньше величины, определяемой из зависимости:

Зона защиты двух и четырёх стержневых молниеотводов в плане на уровне высоты защищаемого объекта имеет очертания, приведённые на рисунке 1.3, а, б.

Наименьшая ширина зоны защиты, показанный на чертеже радиус защиты определяется так же, как и для одиночного молниеотвода, а определяется по специальным кривым. На рисунке 1.2 показаны конструкции стержневых молниеотводов. Если у молниеотводах высотой до 30 метров, расположенных на расстоянии, наименьшая ширина зоны защиты равна нулю.

Рисунок 1.2 Конструкции стержневых молниеотводов на железобетонных опорах: а -из вибрированного бетона; б - центрифугированного бетона

Рисунок 1.3 Стержневые молниеотводы на металлических опорах: а - тросовый молниеотвод (несущая конструкция); б - стержневой молниеотвод (несущая конструкция)

На рисунке 1.3 показаны конструкции стержневых молниеотводов на металлических опорах. Радиусы защиты определяются в этом случае так же, как и для одиночных молниеотводов. Размер определяется по кривым для каждой пары молниеотводов. Диагональ четырёхугольника или диаметр окружности, проходящей через вершины треугольника, образованного тремя молниеотводами, по условиям защищённости всей площади должны удовлетворять зависимости:

Для молниеотводов высотой меньше 30 м:

Для молниеотводов высотой более 30 м:

Отдельно стоящие стержневые молниеотводы с металлическими опорами устанавливаются на железобетонных фундаментах. Токоотводамп для таких молниеотводов служат несущие конструкции. На металлических и железобетонных конструкциях ОРУ, как правило, устанавливаются молниеотводы с металлическими несущими частями. Конструкция их крепления определяется особенностями той конструкции ОРУ, к которой крепится стержневой молниеотвод. Обычно конструкция молниеотводов, устанавливаемых на конструкциях ОРУ, представляет собой стальную трубу, нередко состоящую из труб нескольких диаметров. Молниеотводы высотой более 5 м в основании имеют решетчатую конструкцию из угловой стали. Потенциал на молниеотводе в момент разряда определяется зависимостью:

где - импульсное сопротивление заземления молниеотвода 5-25 Ом;

Ток молнии в хорошо заземлённом объекте.

Потенциал на молниеотводе определяется:

где - крутизна фронта волны тока;

  • - точка молниеотвода на высоте объекта;
  • - удельная индуктивность молниеотвода.

Для расчёта минимального допустимого приближения объекта к молниеотводу можно исходить из зависимости:

где - допустимая импульсная напряжённость электрического поля в воздухе, принимаемая 500 кВ/м.

Руководящие указания по защите от перенапряжений рекомендуют расстояние до молниеотвода принимать равным:

Эта зависимость справедлива при токе молнии, равным 150 кА, крутизне тока 32 кА/мксек и индуктивности молниеотвода 1,5 мкГн/м. Независимо от результатов расчёта, расстояние между объектом и молниеотводом должно быть не менее 6 метров.

Тросовый молниеотвод. Значения коэффициентов k и z берутся в зависимости от допускаемой вероятности прорыва молнии в зону защиты. Вероятность прорыва молнии в зону защиты равна отношению числа разрядов молнии в защищаемое сооружение к общему числу разрядов молнии в молниеотвод и защищаемое сооружение. Если допускается вероятность прорыва молнии в зону защиты 0,01, то коэффициент 1, а при допускаемой вероятности 0,001, т. е. защитные зоны тросовых молниеотводов несколько меньше защитных зон стержневых молниеотводов. Форма зоны защиты двух параллельных тросовых молниеотводов высотой до 30 м. Внешние границы зоны защиты каждого троса определяются так же, как и для одиночного тросового молниеотвода. В зависимости от конструкции опор, могут быть применены один или два троса, наглухо присоединённые к металлической опоре или к заземляющим металлическим спускам деревянных опор. Для предохранения троса от пережога током молнии и контроля заземления опоры крепления троса производится с помощью одного подвесного изолятора, шунтированного искровым промежутком. Эффективность тросовой защиты тем выше, чем меньше угол, образованный вертикалью, проходящей через трос, и линией, соединяющей трос с крайним из проводов. Этот угол называют защитным углом, принимая его величину в пределах

Зона защиты двух тросовых молниеотводов высотой более 30 м. Метод построения зоны защиты для этого случая такой же, как и для тросовых молниеотводов высотой до 30 м, но на расстоянии от вершины зона усекается так же, как у одиночных тросовых молниеотводов. Ширина защитной зоны, исключающей прямое поражение проводов на уровне высоты их подвеса, определяется зависимостью:

Эта зависимость справедлива для высоты подвеса троса 30 м и ниже.

Защитное действие молниеотвода основано на "свойстве молнии с большей вероятностью поражать более высокие и хорошо заземленные предметы по сравнению с расположенными рядом объектами меньшей высоты. Поэтому на молниеотвод, возвышающийся над защищаемым объектом, возлагается функция перехвата молний, которые в отсутствие молниеотвода поразили бы объект. Количественно защитное действие молниеотвода определяется через вероятность прорыва - отношение числа ударов молнии в защищенный объект (числа прорывов) к общему числу ударов в молниеотвод и объект.

Согласно принятой расчетной модели невозможно создать идеальную защиту от прямых ударов молнии, полностью исключающую прорывы на защищаемый объект. Однако на практике осуществимо взаимное расположение объекта и молниеотвода, обеспечивающее низкую вероятность прорыва, например 0,1 и 0,01, что соответствует уменьшению числа поражений объекта примерно в 10 и 100 раз по сравнению с объектом, где отсутствует молниеотвод. Для большинства современных объектов при таких уровнях защиты обеспечивается малое количество прорывов за весь срок их службы.

Рис. 11.22. Устройство молниеотвода.

Опоры воздушных ЛС защищают от разрушений при прямых ударах молнии стержневыми молниеотводами, которые устанавливают на вводных, кабельных, контрольных, разрезных, переходных опорах, а также на опорах, заменяемых вследствие повреждения грозовыми разрядами. Для молниеотвода ис­пользуют стальную линейную проволоку диаметром 4 ... 5 мм, нижний конец которой отводится. Этот отвод называют заземлителем. Длина отвода проволоки заземлителя (рис. 11.22) зависит от характера грунта и может быть равна 1 ... 12 м. Глубина залегания заземлителя равна 0,10 м. Чем больше удельное сопротивление грунта, тем больше должна быть длина отвода заземлителя. На промежуточных и угловых опорах обычно не делают отвода, а доводят проволоки до комля столба.

Опоры, на которых установлены искровые или газонаполненные разрядники, также защищаются молниеотводами. По условиям техники безопасности на опорах, имеющих пересечение или сближение с ВВЛ, на высоте 30 см от земли на молниеотводе делается разрыв, создающий искровой промежуток длиной 50 мм.



Эффективность молниеотвода тем больше, чем выше он рас­положен. Зона защитного действия молниеотвода определяется примерно по формуле S=πh2, где h - высота молниеотвода.

Грозозащи́тный трос - заземлённый протяжённый молниеотвод, натянутый вдоль воздушной линии электропередачи над проводами.

В зависимости от расположения, количества проводов на опорах ВЛ, сопротивления грунта, класса напряжения ВЛ, необходимой степени грозозащиты монтируют один или несколько тросов. Высота подвеса грозозащитных тросов определяется в зависимости от угла защиты, то есть угла между вертикалью, проходящей через трос, и линией, соединяющей трос с крайним проводом, который может изменяться в широких пределах и даже быть отрицательным.

На ВЛ напряжением до 20 кВ грозозащитные тросы обычно не применяются. ВЛ 110-220 кВ на деревянных опорах и ВЛ 35 кВ (независимо от материала опор) чаще всего защищают тросом только подходы к подстанциям. Линии 110 кВ и выше на металлических и железобетонных опорах защищают тросом на всём протяжении.

В качестве грозозащитных тросов применяются стальные канаты или иногда - сталеалюминиевые провода со стальным сердечником увеличенного сечения. Стальные канаты условно обозначают буквой С и цифрами, указывающими площадь их сечения (например, С-35).

Рис. 21.Определение на модели зоны защиты стержневого молниеотвода

Рис. 22. Зона 100%-ного поражения стержневого молниеотвода

Рис. 23. Зона защиты одиночного стержневого молниеотвода высотой до 60 м :
А - высота молниеотвода; hx - высота точки на границе защищаемой зоны: h& -h-hx - активная высота молниеотвода

Эта зона получила название зоны 100%-ного поражения стержневого молниеотвода. Во-вторых, вокруг молниеотвода высотой h имеется зона, не поражаемая разрядами. Эта зона защищается молниеотводом h. Минимальное расстояние от вертикали ВС, равное г0=3,5/г, и является радиусом зоны защиты молниеотвода на уровне земли.
Радиус зоны защиты на любой высоте молниеотводом h определяется также опытами в лаборатории с помощью стержня высотой hx (см. рис. 21), имитирующего защищаемый объект и находящегося в одной плоскости с электродом А и молниеотводом h. Они перемещаются относительно друг друга. При различных их расположениях производится определенное количество разрядов.
Затем находится максимальное расстояние гх между стержнем высотой hx и молниеотводом высотой h, при котором стержень не поражается разрядом. Это расстояние гх является радиусом зоны защиты молниеотвода на высоте hx.
Определенная таким образом зона защиты молниеотвода высотой h представляет собой «шатер» (рис. 23), радиус гх, м, которого «Руководящие указания по расчету зон защиты стержневых и тросовых молниеотводов» для молниеотводов высотой до 60 м рекомендуют рассчитывать
по формуле

Защитное действие молниеотвода основано на том, что молния поражает наиболее высокие и хорошо заземленные металлические сооружения. Следовательно, сооружение не будет поражено молнией, если оно находится в зоне защиты молниеотвода. Зона защиты молниеотвода - часть пространства, примыкающая к молниеотводу, которая обеспечивает защиту сооружения от прямых ударов молнии с достаточной степенью надежности (99%)

Быстрые изменения тока молнии порождают электромагнитную индукцию - наведение потенциалов в незамкнутых металлических контурах, создающее опасность искрения в местах сближения этих контуров. Это называется вторичным проявлением молнии.

Возможен также занос наведенных молнией высоких электрических потенциалов в защищаемое здание по внешним металлическим сооружениям и коммуникациям.

Защита от электростатической индукции достигается путем присоединения металлических корпусов электрооборудования к защитному заземлению или к специальному заземлителю.

Для защиты от заноса высоких потенциалов подземные металлические коммуникации при вводе в защищаемый объект присоединяют к заземлителям защиты от электростатической индукции или электрооборудования.

Молниеотводы состоят из несущей части (опоры), молниеприемника, токоотвода и заземлителя. Существует два типа молниеотводов: стержневой и тросовый. Они могут быть отдельно стоящие, изолированные и не изолированные от защищаемого здания или сооружения (рис. 86, а-в).

молниеотвод: стержневой одиночныймолниеотвод: стержневой двойноймолниеотвод: антенный

Рис. 86. Виды молниеотводов и их защитные зоны:

а - стержневой одиночный; б - стержневой двойной; в - антенный; 1 - молниеприемник; 2 - токоотвод, 3 - заземление

Стержневые молниеотводы представляют собой один, два или больше вертикальных стержней, устанавливаемых на защищаемом сооружении или вблизи него. Тросовые молниеотводы - один или два горизонтальных троса, каждый закрепленный на двух опорах, по которым прокладывают токоотвод, присоединенный к отдельному заземлителю; опоры тросового молниеотвода устанавливают на защищаемом объекте или вблизи него. В качестве молниеприемников используют круглые стальные стержни, трубы, стальной оцинкованный трос и др. Токоотводы выполняют из стали любой марки и профиля сечением не менее 35 мм2. Все части молниеприемников и токоотводов соединяют сваркой.

Заземлители бывают поверхностные, углубленные и комбинированные, изготовленные из стали различного сечения или труб. Поверхностные заземлители (полосовые, горизонтальные) укладывают на глубине 1 м и более от поверхности земли в виде одного или нескольких лучей длиной до 30 м. Углубленные заземлители (стержневые вертикальные) длиной 2-3 м забивают в грунт на глубину 0,7-0,8 м (от верхнего конца заземлителя до поверхности земли).

Сопротивление заземлителя для каждого отдельно стоящего молниеотвода не должно превышать для молниезащиты зданий и сооружений I и II категорий - 10 Ом и III категории - 20 Ом.

4. Заземлители устройство.

Понятие о сопротивлении заземляющего устройства опоры BЛ току молнии. Заземляющим устройством называется конструкция из электропроводящих материалов, которая служит для отвода тока в землю. Ее основными конструктивными элементами являются заземлители и заземляющие проводники. Заземлителем называется проводник (электрод) или совокупность металлических соединенных между собой проводников (электродов), находящихся в соприкосновении с землей. Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем. Основная функция, которую выполняет заземляющее устройство опоры BЛ, - отвод в землю тока молнии, т. е. уменьшение возможности (вероятности) обратных перекрытий при ударе молнии в опору и грозозащитный трос. В отличие от обычных перекрытий, вызванных увлажнением или загрязнением изоляции, ток молнии создает на опоре электрический потенциал, намного больший потенциала фазного провода, и, таким образом, перекрытие происходит в обратном направлении. Чем меньше сопротивление заземляющего устройства, тем меньше возможность обратного перекрытия. Сопротивлением заземляющего устройства называется отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю. Сопротивление заземляющего устройства - не единственный параметр, влияющий на вероятность обратных перекрытий. Существенное влияние также оказывают: длина гирлянды изоляторов; высота грозозащитного троса и фазного провода; расстояние между тросом и проводом и др. С увеличением длины гирлянды, например, возрастает электрическая прочность соответствующего воздушного промежутка и тем самым уменьшается вероятность обратного перекрытия. Так должно происходить с увеличением класса напряжения линии. Однако для линий более высокого напряжения увеличивается и высота опор, что приводит к росту числа ударов молнии в опоры и в грозозащитный трос. Возрастает также индуктивность опоры, которая увеличивает вероятность обратных перекрытий. Ток молнии при ударе в опору растекается по грозозащитному тросу. Ток в тросе индуктирует токи в проводе и опоре, что приводит в конечном счете к увеличению напряжения, приложенного к изоляционному промежутку провод - опора. Таким образом, вероятность обратного перекрытия при ударе молнии в опору - сложная функциональная величина, зависящая от ряда параметров. Если все параметры, кроме сопротивления заземляющего устройства, считать постоянными, т. е. задаться определенным типом опоры, то можно рассчитать кривую вероятности обратных перекрытий. Ниже приводиться исходные данные для расчета вероятности обратных перекрытий при ударе молнии в промежуточную опору типа П220-2Т: Максимальное рабочее напряжение, кВ 252 50%-ное разрядное напряжение положительной полярности: импульсная прочность воздушного промежутка, соответствующая строительной высоте гирлянды изоляторов, кВ 1248 Высота троса на опоре, м 42 Высота верхнего провода, м 33 Средняя длина пролета, 400 Радиус троса, 0,007 Радиус провода, м 0,012 Расстояние между тросом и верхним проводом по горизонтали, 3 Расстояние между тросами, м 1 Стрела провеса троса, 13 Стрела провеса провода, м 15 Эквивалентный радиус опоры, м 3,2 По этим данным выполнены расчеты зависимости вероятности обратного перекрытия от значения сопротивления заземляющего устройства. Эта зависимость показана на рис. 1. Из рисунка видно, что до сопротивления R = 300 Ом кривая поднимается довольно круто, затем плавно возрастает до R = 1000 Ом. В дальнейшем вероятность обратных перекрытий медленно приближается к уровню 0,3, не превышая этого значения. Численное значение вероятности 0,3 означает, что примерно из 10 ударов молнии в трех случаях будет наблюдаться обратное перекрытие. Для других типов опор этот предельный уровень может быть другим, важно лишь подчеркнуть: если в силу особенностей грунта (песок, скала) сопротивление заземляющего устройства оказывается достаточно большим, например 5000Ом, то снижение сопротивления до 1000 Ом уже не имеет смысла. Таким образом, вероятность обратных перекрытий и связанное с ней число грозовых отключений зависят от сопротивления заземляющего устройства опоры. Эта зависимость проявляется в большей степени при небольших сопротивлениях заземления опоры: от единиц до сотен Ом. Заземляющее устройство опоры линии электропередачи представляет собой электрическую цепь с распределенными параметрами: сопротивлением и индуктивностью металла, проводимостью и емкостью грунта. Если на вход такой цепи подать синусоидальное напряжение (или ток) достаточно большой частоты, то на различных расстояниях от источника отношение напряжения к силе тока, т. е. сопротивление в данной точке, будет различным. Рис. 1. Зависимость вероятности обратных перекрытий от сопротивления заземляющего устройства опоры Еще более сложный вид зависимости между напряжением и током наблюдается при воздействии на заземлитель импульса тока молнии. Импульс характеризуется двумя параметрами: наибольшим значением (амплитудой) тока и временем нарастания тока (длительностью фронта). При малых амплитудах в грунте не происходит искрообразования. Однако большие токи молнии ведут к электрическому пробою грунта, который в области, прилегающей к заземлителю, приобретает нулевое электрическое сопротивление: заземлитель как бы увеличивается в размерах. Для полного анализа процессов в заземляющем устройстве при воздействии тока молнии необходим учет таких факторов, как длина заземлителя, удельное сопротивление грунта, амплитуда и длительность фронта импульса тока молнии, момент наблюдения. Все эти факторы учитываются импульсными коэффициентами, которые обозначают аи. Сопротивление естественных и искусственных заземлителей. Естественными заземлителями называются находящиеся в соприкосновении с землей электропроводящие части коммуникаций, зданий и сооружений производственного или иного назначения, используемые для заземления. Искусственным заземлителем называется заземлитель, специально выполняемый для заземления. Рис. 2. Железобетонный подножник (с) и его расчетная модель (б) Стальная арматура фундаментов металлических опор и заглубленной части железобетонных опор во многих случаях достаточно хорошо выполняет функцию отвода в землю токов молний, т. е. играет роль естественного заземлителя. Связано это с тем, что бетон как проводник электрического тока представляет собой пористое тело, состоящее из большого числа тонких каналов, наполненных влагой и создающих, таким образом, путь для электрического тока. При определенных силе тока и времени его протекания влага испаряется, в бетоне возникают электрические искры и дуги, которые могут разрушить материал и пережечь арматуру, что в конечном счете приводит к снижению механической прочности железобетонной конструкции. В связи с этим стержни арматуры, используемые для заземления, проверяют на термическую стойкость при протекании токов короткого замыкания. Следует также иметь в виду, что в среде с существенной агрессивностью к бетону использование железобетонных фундаментов в качестве заземлителей не всегда возможно. В сетях с изолированной нейтралью режим длительного замыкания является опасным для железобетонных фундаментов, и сооружение искусственных заземлителей необходимо для разгрузки естественных элементов заземляющего устройства и предохранения их от разрушения стекающим током Ниже приводится установленная в результате исследований допустимая плотность электрического тока для арматуры железобетонных конструкций в зависимости от вида тока и времени воздействия, А/м2: Длительный постоянный ток 0,06 Длительный переменный ток 10 Кратковременный переменный ток (до 3 с) 10000 Ток молнии 100000 Искусственные заземлители сооружают, как правило, в грунтах с удельным сопротивлением более 500 Ом - м. Это обусловлено тем, что естественные заземлители опор BЛ35 - 330 кВ имеют в таких грунтах сопротивления больше нормируемых. В линиях высших классов напряжения с мощными фундаментами искусственные заземлители не снижают заметно сопротивлений заземляющего устройства. Искусственные заземлители, как правило, выполняются в виде двух-четырех расходящихся от опоры горизонтальных лучей, прокладываемых на глубине 0,5 м, а в пахоте - 1 м. В случае установки опор в скальных грунтах допускается прокладка лучевых заземлителей непосредственно под разборным слоем над скальными породами. При отсутствии этого слоя (толщиной не менее 0,1 м) рекомендуется прокладка заземлителей по поверхности скалы с заливкой их цементным раствором. Для уменьшения коррозионного воздействия со стороны грунта искусственные заземлители должны быть круглого сечения диаметром 12-16 мм.
Рис. 3. Расположение естественных а - башенная промежуточная опора 35-330 кВ; б - П-образная с оттяжками промежуточная опора 330- 750 кВ Указанные сопротивления заземляющих устройств относятся и к опорам без тросов и других устройств грозозащиты, но с установленными на этих опорах силовыми или измерительными трансформаторами, разъединителями, предохранителями или другими аппаратами для ВЛ напряжением 110 кВ и выше. Железобетонные и металлические опоры напряжением 110 кВ и выше без тросов и других устройств грозозащиты также заземляются, если это необходимо для обеспечения надежной работы релейной защиты и автоматики. Сопротивления заземляющих устройств таких опор определяются при проектировании ВЛ. Железобетонные и металлические опоры напряжением 3 - 35 кВ, не имеющие устройств грозозащиты и другого установленного оборудования, должны быть заземлены, причем в ненаселенной местности для ВЛ 3 - 20 кВ допускается сопротивление заземляющего устройства: 30 Ом при р менее 100 Ом - м и 0,3 р - при р более 100 Ом - м. Заземляющие устройства опор, на которых установлено электрооборудование. должны соответствовать следующим требованиям. В сетях напряжением менее 1 кВ с глухозаземленной нейтралью сопротивление заземляющего устройства должно быть 2, 4, 8 Ом при линейных напряжениях 660,380,220 В трехфазного или 380,220,127 однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений нулевого провода. При этом сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более 25, 30, 60 Ом для линейных напряжений 660, 380, 220 В трехфазного или 380,220,127 В однофазного тока. В сетях напряжением выше 1 кВ с изолированной нейтралью заземляемое оборудование, установленное на опоре ВЛ, подсоединяется к замкнутому горизонтальному заземлителю (контуру), проложенному на глубине не менее 0,5 м. Если сопротивление заземляющего устройства выше 10 Ом, то следует дополнительно проложить горизонтальные заземлители на расстоянии 0,8 - 1 м от фундамента опоры. При р > > 500 Ом-м допускается повысить значение сопротивления в 0,002 р раз, но не более чем в 10 раз. Измерения сопротивлений заземляющих устройств опор ВЛ следует проводить при токе промышленной частоты. На ВЛ напряжением ниже 1кВ измерения производятся на всех опорах с заземлителями грозозащиты и повторными заземлителями нулевого провода. На ВЛ напряжением выше 1 кВ измерения сопротивлений заземляющих устройств производятся на опорах с разрядниками и защитными промежутками и с электрооборудованием, а на опорах ВЛ 110 кВ и выше - с грозозащитными тросами при обнаружении следов перекрытий изоляторов электрической дугой. На остальных железобетонных и металлических опорах измерения производятся выборочно у 2% общего числа опор с заземлителями: в населенной местности, на участках с агрессивными и оползневыми грунтами и в плохопроводящих грунтах.

Защитное действие молниеотвода, основано на свойстве молнии с большей вероятностью поражать, более высокие и хорошо заземленные предметы, по сравнению с расположенными рядом объектами меньшей высоты. Поэтому на молниеотвод, возвышающийся над защищаемым объектом, возлагается функция перехвата молний, которые в отсутствие молниеотвода поразили бы объект. Количественно защитное действие молниеотвода определяется через вероятность прорыва - отношение числа ударов в защищенный объект (числа прорывов) к общему числу ударов в молниеотвод и объект.

Невозможно создать идеальную защиту от прямых ударов молнии, полностью исключающую прорывы на защищаемый объект. Однако на практике осуществимо взаимное расположение объекта и молниеотвода, обеспечивающее низкую вероятность прорыва, например 0,1 и 0,01, что соответствует уменьшению числа поражений объекта примерно в 10 и 100 раз по сравнению с незащищенным объектом. Для большинства современных объектов при таких уровнях защиты обеспечивается малое количество прорывов за весь срок их службы.

Подход к нормированию заземлителей молниезащиты

Одним из эффективных способов ограничения грозовых перенапряжений в цепи молниеотводов, а также на металлических конструкциях и оборудовании объекта является обеспечение низких сопротивлений заземлителей. Поэтому при выборе молниезащиты нормированию подлежит сопротивление заземлителя или другие его характеристики, связанные с сопротивлением.

Для наружных установок максимально допустимое импульсное сопротивление заземлителей было принято равным 50 Ом.

В настоящее время распространенными и рекомендуемыми конструкциями заземлителей являются железобетонные фундаменты. К ним предъявляется дополнительное требование - исключение механических разрушений бетона при растекании через фундамент токов молнии. Железобетонные конструкции выдерживают большие плотности растекающихся по арматуре токов молнии, что связано с кратковременностью этого растекания. Единичные железобетонные фундаменты (сваи длиной не менее 5 или подножники длиной не менее 2 м) способны без разрушения выдерживать токи молнии до 100 кА. Для фундаментов больших размеров с соответственно большей поверхностью арматуры опасная для разрушения бетона плотность тока маловероятна при любых возможных токах молнии.

Нормирование параметров заземлителей по их типовым конструкциям имеет ряд достоинств: оно соответствует принятой в строительной практике унификации железобетонных фундаментов с учетом их повсеместного использования в качестве естественных заземлителей; при выборе молниезащиты не требуется выполнять расчеты импульсных сопротивлений заземлителей, что сокращает объем проектных работ.



Общие положения по устройству молниезащиты

Устройства молниезащиты (молниеотводы) должны включать в себя молниеприемники, непосредственно воспринимающие удар молнии, токоотводы и заземлители.

Стержневые молниеприемники должны быть изготовлены из стали (круглой, полосовой, угловой, трубчатой) любой марки сечением не менее 200 мм 2 , длиной не менее 500 мм и укреплены на опоре или непосредственно на самом защищаемом здании или сооружении.

Тросовые молниеприемники должны быть изготовлены из стальных многопроволочных канатов сечением не менее 50 мм 2 .

Токоотводы, соединяющие молниеприемники всех видов с заземлителями, следует выполнять из стали. Их размеры должны быть не менее приведенных ниже:

Снаружи здания На воздухе В земле

Диаметр круглых токоотводов и перемычек, мм 8 -

Диаметр круглых вертикальных (горизонтальных) электродов, мм - 16(14)

Сечение (толщина) прямоугольных токоотводов, мм 2 (мм) 50(4) 160(4)

Молниеприемная сетка должна быть выполнена из оцинкованный стальных проводников диаметром не менее 8 мм, уложена на неметаллическую кровлю здания сверху или под несгораемые или трудно сгораемые утеплитель или гидроизоляцию. Размер ячеек сетки должен быть не более 6x6 м. Сетка в узлах должна быть соединена сваркой.

В зданиях с покрытиями по металлическим фермам или балкам молниеприемную сетку на кровле не укладывают. В этом случае несущие конструкции покрытия должны быть связаны токоотводами из стальных стержней марки А1 диаметром 12 мм. Все металлические детали, расположенные на кровле (трубы, вентиляционные устройства, водосточные воронки и т.п.) должны быть соединены с молниеприемной сеткой молниеотводами. На неметаллических возвышающихся частях зданий следует дополнительно уложить металлическую сетку и соединить ее при помощи сварки с молниеприемной сеткой на кровле.



При прокладке молниеприемной сетки и установке молниеотводов следует использовать на защищаемом объекте всюду, где это возможно, в качестве токоотводов металлические конструкции зданий и сооружений (колонны, фермы, рамы, пожарные лестницы и т.п., а также арматуру железобетонных конструкций) при условии обеспечения непрерывной электрической связи в соединениях конструкций и арматуры с молниеприёмниками и заземлителями, выполняемых, как правило, сваркой

В качестве заземлителей молниезащитыдопускается использовать все рекомендуемые ПУЭ заземлители электроустановок, за исключением нулевых проводов воздушных линий электропередачи напряжением до 1 кВ.

Железобетонные фундаменты зданий, сооружений, наружных установок, опор молниеотводов следует, как правило, использовать в качестве заземлителей молниезащиты при условии обеспечения непрерывной электрической связи по их арматуре и присоединения ее к закладным деталям с помощью сварки.

Битумные и битумно-латексные покрытия не являются препятствием для такого использования фундаментов. В средне- и сильноагрессивных грунтах, где защита железобетона от коррозии выполняется эпоксидными и другими полимерными покрытиями, а также при влажности грунта менее 3% использовать фундаменты в качестве заземлителей не допускается.

Искусственные заземлители следует располагать под асфальтовым покрытием или в редко посещаемых местах (на газонах, в удалении на 5 м и более от грунтовых проезжих и пешеходных дорог и т.п.).

Выравнивание потенциалов внутри зданий и сооружений шириной более 100 м должны происходит за счет непрерывной электрической связи между несущими внутрицеховыми конструкциями и железобетонными фундаментами, если последние могут быть использованы в качестве заземлителей. В противном случае должна быть обеспечена прокладка внутри здания в земле на глубине не менее 0,5 м протяженных горизонтальных электродов сечением не менее 100 мм 2 . Электроды следует прокладывать не реже, чем через 60 м по ширине здания и присоединять по его торцам с двух сторон к наружному контуру заземления.

На часто посещаемых открытых площадках с повышенной опасностью поражения молнией (вблизи монументов, телебашен и подобных сооружений высотой более 100 м) выравнивание потенциала выполняется присоединением тоководов или арматуры сооружения к его железобетонному фундаменту не реже чем через 25 м по периметру основания сооружения.

При невозможности использования железобетонных фундаментов в качестве заземлителей под асфальтовым покрытием площадки на глубине не менее 0,5 м через каждые 25 м должны быть проложены радиально расходящиеся горизонтальные электроды сечением не менее 100 мм 2 и длиной 2-3 м, присоединенные к заземлителям защиты сооружения от прямых ударов молнии.

При возведении в грозовой период высоких зданий и сооружений на них в ходе строительства, начиная с высоты 20 м, необходимо предусматривать следующие временные мероприятия по молниезащите. На верхней отметке строящегося объекта должны быть закреплены молниеприемники, которые через металлические конструкции или свободно спускающиеся вдоль стен токоотводы следует присоединять к заземлителям, указанным в пп. 3.7 и 3.8 РД. В зону защиты типа Б молниеотводов должны входить все наружные площадки, где в ходе строительства могут находиться люди. Соединения элементов молниезащиты могут быть сварными или болтовыми. По мере увеличения высоты строящегося объекта молниеприемники следует переносить выше.

Устройства и мероприятия по молниезащите, отвечающие требованиям настоящих норм, должны быть заложены в проект и график строительства или реконструкции здания таким образом, чтобы выполнение молниезащиты происходило одновременно с основными строительно-монтажными работами.

Устройства молниезащиты зданий и сооружений должны быть приняты и введены в эксплуатацию к началу отделочных работ, а при наличии взрывоопасных зон - до начала комплексного опробования технологического оборудования.

При этом оформляется и передается заказчику скорректированная При строительстве и монтаже проектная документация по устройству молниезащиты (чертежи и пояснительная записка) и акты приемки устройств молниезащиты, в том числе акты на скрытые работы по присоединению заземлителей к токоотводам и токоотводов к молниеприемникам, за исключением случаев использования стального каркаса здания в качестве токоотводов и молниеприемников, а также результаты замеров сопротивлений току промышленной частоты заземлителей отдельно стоящих молниеотводов.

Проверка состояния устройств молниезащиты должна производиться для зданий и сооружений I и II категорий 1 раз в год перед началом грозового сезона, для зданий и сооружений Ш категории - не реже 1 раза в 3 года.

Проверке подлежат целость и защищенность от коррозии Доступных обзору частей молниеприемников и токоотводов и контактов между ними, а также значение сопротивления току промышленной частоту заземлителей отдельно стоящих молниеотводов. Это значение не должно превышать результаты соответствующих замеров на стадии приемки более чем в 5 раз. В противном случае следует проводить ревизию заземлителя.

В зависимости от конкретных условий возможны различные варианты (или их комбинации) молниезащиты. Проще всего оборудовать системой молниезащиты дома с металлической кровлей. Для этого достаточно подвести к двум противоположным скатам крыши токоотвод и соединить их с заземлителями (например, водопроводной трубой). В качестве токоотводов можно использовать водосточные трубы, занулив их в случае необходимости с помощью вертикального или горизонтального заземлителя.

Строение с не металлической кровлей можно оборудовать тросовой системой молниезащиты в виде натянутой вдоль конька крыши стальной проволоки диаметром 5-6 мм с молниеприемниками, расположенными выше самой высокой точки строения или его элементов. Проволоку с зазором 250 мм от конька крыши натягивают между деревянными стойками, установленными на фронтонах, если она расположена выше других элементов строения (например, дымоходной трубы), то в этом случае ее можно считать молниеприемником.

Тросовая система молниезащиты:

а - общий вид; б - крепление "вилки" на трубе; в - правильное расположение тросового молниеприемника; 1 - стержневой молниеприемник; 2 - тросовый молниеприемник; 3 - стойки;

4 - отмостка; 5 - заземлитель; 6 - зона увлажнения; 7 - пешеходная дорожка; 8 – токоотвод

Сначала разберемся в сути понятия. Молниеотвод обозначает одно и тоже, что Грозозащита или Молниезащита и отличается от Громоотвода , которым называют чаще только молниеприемную часть системы защиты зданий и сооружений. То есть молниеотвод - это «молниеприемник + токоотвод + заземление», или внешняя составляющая системы. Если посмотреть на схему любой комплексной молниезащиты, будь то частный дом или здание промышленного, офисно-административного назначения, то это ее часть, которая предназначена именно для защиты от прямых ударов молнии.

Конструкции (виды) молниеотводов

Всего существует 3-и базовые схемы: стержневой (рисунки а, б), тросовый (в) и молниеотвод в виде молниеприемной сетки (или сетчатый) (г). Комбинированная схема предполагает сочетание базовых вариантов.

По количеству одинаковых молниеприемных частей - одиночный, двойной и т.д.

По характеру и месту установки стержневые делятся на молниеприемные стержни, сборные стержневые, которые могут устанавливаться на фланцах, кронштейнах, специальных опорах или быть отдельно стоящими. Молниеприемные мачты как правило имеют телескопическую конструкцию и метод установки на или в грунт.

Тросовый - это трос, натянутый между опорами. Контур может быть любым, в том числе замкнутым. К нему по сути относится и самый простой и дешевый вариант молниеотвода для частного дома или дачи, когда вместо троса на небольшом расстоянии от конька кровли натягивают проводник радиусом 8-10 мм (алюминиевый, стальной или медный в зависимости от материала и цвета кровли) на расстоянии не менее 20 мм от самого конька, выводят его концы за крайние точки на расстояние примерно 30 мм и загибают немного вверх.


Молниеприемная сетка используется на плоских или крышах с незначительным уклоном.

Итак, как мы сказали, система внешней молниезащиты может быть изолирована от сооружения (отдельно стоящие молниеотводы - стержневые или тросовые, а также соседние сооружения, выполняющие роль естественных молниеотводов), или может быть установлена на защищаемом здании и даже быть его частью.

Расчет молниеотвода

Выбор молниеотводов рекомендуют производить при помощи специальных компьютерных программ, способных на основании габаритов зданий, планов кровли и конструктивных элементов на ней вычислять вероятности прорыва молнии и зоны защиты. Вот почему надежнее обращаться в специализированные организации, которые быстро выдадут Вам различные варианты и конфигурации молниеотводов.

Хотя, если конфигурация защищаемого объекта позволяет обойтись простейшими молниеотводами (одиночным стержневым, одиночным тросовым, двойным стержневым, двойным тросовым, замкнутым тросовым), размеры их можно определить самостоятельно, пользуясь заданными в Инструкциях СО 153-343.21.122-2003 и РД 34.21.122-87 зонами защиты.

Объект считается защищенным, если он целиком попадет в зону защиты молниеприемного устройства, которой присвоен требуемый уровень надежности.

Зона защиты одиночного стержневого молниеприемника (согласно СО 153-34.21.122-2003)

Стандартной зоной защиты в этом случае является круговой конус с вершиной, которая совпадает с вертикальной осью молниеотвода. Размеры зоны в этом случае определены 2-мя параметрами: высотой конуса h 0 и радиусом его основания r 0 .

В таблице ниже указаны их значения в зависимости от требуемой надежности защиты для молниеотводов высотой до 150 м от уровня земли. Для больших высот необходимо применение специальных программ и методик расчета.

Для других типов и комбинаций молниеотводов вариации расчета зон защиты смотрите в главе 3.3.2 СО 153-343.21.122-2003 и Приложении 3 РД 34.21.122-87.

Теперь, чтобы определить попадает ли ваш объект Х в зону защиты рассчитываем радиус горизонтального сечения r x на высоте h x и откладываем его от оси молниеприемника до крайней точки объекта.

Правила определения зон защиты для объектов высотой до 60 м (согласно МЭК 1024-1-1)

В Инструкции СО есть методика проектирования молниеотводов для обычных сооружений по стандарту МЭК 1024-1-1, которая может быть принята только, если расчеты по ней получаются более «жесткие», чем требования указанной Инструкции.

По ней могут быть применены следующие 3-и способа для разных случаев:

  • метод защитного угла для простых по форме или маленьких частей больших сооружений
  • метод фиктивной сферы для сооружений сложной формы
  • защитная сетка в общем случае и в особенности для защиты поверхностей

В таблице для разных категорий (уровней) молниезащиты (подробнее о категориях или классах здесь) приведены соответствующие значения параметров каждого из методов (радиус фиктивной сферы, предельно допустимые угол защиты и шаг ячейки сетки).

Метод угла защиты для кровельных надстроек

Величина угла выбирается по графику на диаграмме для соответствующей высоты молниеотвода, которая отсчитывается от защищаемой поверхности, и класса молниезащиты здания.

Зона защиты, как уже было сказано выше, - это круговой конус с вершиной в верхней точке стержня молниепремника.

Метод фиктивной сферы

Применяется, когда сложно определить размеры зоны защиты для отдельных конструкций или частей здания по методу защитного угла. Ее границей является воображаемая поверхность, которую очерчивает сфера выбранного радиуса r (см. таблицу выше), если бы ее прокатили по вершине сооружения, обходя молниеотводы. Соответственно объект считается защищенным, если эта поверхность не имеет с ним общих точек пересечения или касания.

Молниеприемная сетка

Это проводник, уложенный сверху на кровлю с выбранным в зависимости от класса молниезащиты здания шагом ячейки. При этом все металлические элементы на крыше (зенитные фонари, вентиляционные шахты, воздухозаборники, трубы и т.п.) обязательно должны быть соединены с сеткой. Иначе для них необходимо смонтировать дополнительные молниеприемники. Более подробно о конструктивных особенностях и вариантах монтажа можно прочитать в материале «Молниезащита на плоской кровле» .

Шаг ячейки по российским нормам выбирают исходя из категории молниезащиты здания (может быть меньше, но никак не больше).

Молниеприемная сетка монтируется с соблюдением ряда условий:

  • проводники прокладывают наикратчайшими путями
  • при ударе молнии у тока для отвода к заземлению должна быть возможность выбора хотя бы 2-х разных путей
  • при наличии конька и наклоне кровли более, чем 1 к 10, проводник нужно обязательно проложить по нему
  • никакие части и элементы, выполненные из металла, не должны выступать за внешний контур сетки
  • обязателен внешний контур сетки из проводника, смонтированный по краю периметра крыши, а край крыши должен выступать за габариты здания

Материалы и сечения проводников молниеотвода

В качестве материалов, используемых для производства молниеприемного оборудования и токоотводов используются оцинкованная и нержавеющая сталь, медь и алюминий. К ним предъявляются требования коррозионной стойкости и механической прочности, если используется защитное покрытие, то оно должно иметь хорошую адгезию с основным материалом.

В таблице указаны требования к профилю проводников и стержней по минимальной площади сечения и диаметра (согласно ГОСТ 62561.2-2014)

Монтаж молниеотвода для частного дома и промышленного здания

Рассмотрим какие же элементы монтажа включают в себя обычно система внешней молниезащиты. На рисунках ниже показаны примеры молниеотвода частного дома и промышленного здания.

Соответсвующими номерами здесь обозначены следующие изделия и их наименования:

Круглые и плоские проводники, тросы

Компоненты молниезащиты на плоских кровлях, перемычки и компенсаторы

Компоненты молниезащиты на скатных кровлях, кровельные держатели проводника

Компоненты молниезащиты на металлических кровлях, кровельные держатели проводника

Токоотводы, держатели токоотводов

Стержни земляного ввода, соединительные проводники, смотровые колодцы, держатели проводников

Клеммы для водосточных желобов, клеммы, соединительные компоненты

Молниеприемники, компоненты

Изолированная молниезащита

Монтаж можно разделить на три этапа: устройство молниеприемной части внешней молниезащитной системы (молниеприемники и их элементы крепления), прокладка токоотводов (кровельная и фасадная часть здания) и земляные работы по устройству заземления. Как правило у всех компаний стоимость работ составляет некоторый процент от цены материалов.

Компания МЗК-Электро предлагает отличные цены на молниеотводы и комплектующие. Ассортимент изделий на нашем складе составляет более 1.500 позиций, закупка осуществляется напрямую по дилерским контрактам у прямых производителей, что предполагает обязательную сертификацию и гарантию. Все изделия имеют необходимые сертификаты качества и гарантию. Мы также занимаемся проектированием и монтажом любых систем молниезащиты зданий и сооружений, как для частных домовладельцев, так и промышленных предприятий. Познакомиться с нашими ценами можно в соответствующем разделе .

Расчет стоимости

Выберете размер... 10х15 15х15 20х15 20х20 20х30 30х30 30х40

Выберете размер... 10 12 14 16 18 20 22

Наши объекты

    АО "Мосводоканал", Физкультурно-оздоровительный комплекс дома отдыха «Пялово»

    Адрес объекта: Московская область, Мытищинский район, дер. Пруссы, д. 25

    Вид работ: Проектирование и монтаж системы внешней молниезащиты.

    Состав молниезащиты: По плоской кровле защищаемого сооружения уложена молниеприемная сетка. Две дымоходные трубы защищены посредством установки на них молниеприемных стержней длиной 2000 мм и диаметром 16 мм. В качестве молниеприемного проводника использована сталь горячего цинкования диаметром 8 мм (сечение 50 кв.мм в соответствии с РД 34.21.122-87). Токоотводы проложены за водосточными трубами на хомутах с зажимными клеммами. Для токоотводов использован проводник из стали горячего цинкования диаметром 8 мм.

    ГТЭС Терешково

    Адрес объекта: г. Москва. Боровское ш., коммунальная зона «Терешково».

    Вид работ: монтаж системы внешней молниезащиты (молниеприемная часть и токоотводы).

    Комплектующие: производства фирмы OBO Bettermann.

    Исполнение: Общее количество проводника из стали горячего цинкования для 13 сооружений в составе объекта составило 21.5000 метров. По кровлям прокладывается молниеприемная сетка с шагом ячейки 5х5 м, по углам зданий монтируются по 2 токоотвода. В качестве элементов крепления использованы стеновые держатели, промежуточные соединители, держатели для плоской кровли с бетоном, скоростные соединительные клеммы.

Похожие публикации