Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Соединение потребителей электроэнергии в треугольник. Соединение обмоток генератора и потребителей электрической энергии треугольником


Если фазные обмотки генератора или потребителя соединить так, чтобы были соединены в одну общую точку, а начала обмоток присоединены к линейным проводам, то такое соединение называется соединением звездой и обозначается условным знаком Y. На рис. 1 обмотки генератора и потребителя соединены звездой. Точки, в которых соединены концы фазных обмоток генератора или потребителя, называются соответственно нулевыми точками генератора (0) и потребителя (0’). Обе точки 0 и 0’ соединены проводом, который называется нулевым, или нейтральным проводом. Остальные три провода трехфазной системы, идущие от генератора к потребителю, называются линейными проводами. Таким образом, генератор соединен с потребителем четырьмя проводами. Поэтому эта система называется четырехпроводной системой трехфазного тока.

Рис. 1. Соединение звездой

Сравнивая несвязанную и четырехпроводную системы трехфазного тока, видим, что в первом случае роль обратного провода выполняют три провода системы, а во втором – один нулевой провод. По нулевому проводу протекает ток, равный геометрической сумме токов:

IA, IB и IC, т. е. Ī0= ĪA + ĪB + ĪC .

Напряжения, измеренные между началами фаз генератора (или потребителя) и нулевой точкой (или нулевым проводом), называются фазными напряжениями и обозначаются UA, UB и UC, или в общем виде Uф. Часто задаются величины э.д.с. фазных обмоток генератора. Они обозначаются ЕA, ЕB и ЕC, или Еф. Если пренебречь сопротивлениями обмоток генератора, то можно записать:

ЕA= UA, ЕВ= UВ, ЕC= UС.

Напряжения, измеренные между началами двух фаз: А и В, В и С, С и А – генератора или потребителя, называются линейными напряжениями и обозначаются UАВ, UВС, UСА, или в общем виде Uл. На рис. 1 стрелки показывают выбранное положительное направление тока, которое в линейных проводах принято от генератора к потребителю, а в нулевом проводе – от потребителя к генератору.

Если присоединить зажимы вольтметра к точкам А и В, то он покажет линейное напряжение UАВ. Так как положительные направления фазных напряжений UA, UB и UC выбраны от начал фазных обмоток к их концам, то вектор линейного напряжения UАВ будет равен геометрической разности векторов фазных напряжений UA и UB:

ŪAВ=ŪA- ŪВ.

Аналогично можно записать:

ŪВС=ŪВ- ŪС;


ŪСА=ŪС- ŪА.

Иначе можно сказать, что мгновенное значение линейного напряжения равно разности мгновенных значений соответствующих фазных напряжений. На рис. 2 вычитание векторов заменено сложением векторов:

UA и - UB; UВ и - UС; UС и - UА.

Из векторной диаграммы видно, что векторы линейных напряжений составляют замкнутый треугольник.

Рис. 2. Фазные и линейные напряжения при соединении звездой

Зависимость между линейным и фазным напряжениями:

UBС=2UBcos30o, так как cos30o=√3/2, то UBС=√3UB,
или в общем виде Uл=√3Uф.

Следовательно, при соединении звездой линейное напряжение в √3 раз больше фазного напряжения.
Ток, протекающий по фазной обмотке генератора или потребителя, называется фазным током и обозначается в общем виде Iф. Ток, протекающий по линейному проводу, называется линейным током и обозначается в общем виде Iл. На рис. 1 видно, что при соединении звездой линейный ток равен фазному току, т. е.

Iл=Iф .

Рассмотрим случай, когда нагрузка в фазах потребителя одинакова как по величине, так и по характеру. Такая нагрузка называется равномерной, или симметричной. Это условие выражается равенством.

z1= z2= z3.

Нагрузка не будет равномерной, если, например, z1= r1=0,5ом; z2=ωL2=0,5ом и z3=1/ωC3=0,5ом , так как здесь выполнено лишь одно условие – равенство сопротивлений фаз потребителя по величине, в то время как характер сопротивлений различен (r1 - активное сопротивление, ωL2 - индуктивное сопротивление, 1/ωC3 - емкостное сопротивление) .

При симметричной нагрузке:

IА=UА/zА; IВ=UВ/zВ; IС=UС/zС; IА=IВ=IС.

Фазные коэффициенты мощности вследствие равенства сопротивлений и одинаковости их характера будут одинаковы:

cosφ1=rА/zА; cosφ2=rB/zB; cosφ3=rC/zC; cosφ1=cosφ2=cosφ3.

В нулевом проводе должна протекать геометрическая сумма токов всех трех фаз. Если посмотреть на кривые изменения токов при симметричной нагрузке трехфазной системы, то увидим, что максимальные значения для всех трех синусоид тока одинаковы. Поскольку при симметричной нагрузке сумма мгновенных значений токов трехфазной системы равна нулю, следовательно, ток в нулевом проводе будет равен нулю.
Отбрасывая нулевой провод в четырехпроводной системе, переходим к трехпроводной системе трехфазного тока. Если имеется симметричная нагрузка, как, например, трехфазного тока, трехфазные печи, трехфазные трансформаторы и т. п., то к такой нагрузке подводятся только три провода. Потребители, включенные звездой с несимметричной нагрузкой фаз, нуждаются в нулевом проводе.
При симметричной нагрузке фазные напряжения отдельных фаз равны между собой. При несимметричной нагрузке трехфазной системы симметрия токов и напряжений нарушается. Однако в четырехпроводных цепях часто пренебрегают незначительной несимметрией фазных напряжений. В этих случаях между линейными и фазными напряжениями существует зависимость:

Uл=√3Uф.

Кроме соединения звездой, генераторы, трансформаторы, двигатели и другие потребители трехфазного тока могут включаться треугольником. Если объединить попарно провода несвязанной шестипроводной системы и соединить фазы, как показано на рисунке 1, получим трехфазную трехпроводную систему, соединенную треугольником.


Рис. 1. Несвязанная трехфазная схема.


Рис. 2. Связанная трехфазная схема, соединенная треугольником .

Соединение треугольником выполняется таким образом (рис. 2), чтобы конец фазы А был соединен с началом фазы В, конец фазы В соединен с началом фазы С и конец фазы С соединен с началом фазы А. К местам соединения фаз присоединяют линейные провода. Если обмотки генератора соединены треугольником, то линейное напряжение создает каждая линейная обмотка. У потребителя, соединенного треугольником, линейное напряжение подключается к зажимам фазного сопротивления. Следовательно, при соединении треугольником фазное напряжение равно линейному: Uл=Uф.
Определим зависимость между фазными и линейными токами при соединении треугольником, если нагрузка фаз будет одинакова по величине и характеру. Составляем уравнения токов по первому закону Кирхгофа для трех узловых точек А1, B1 и C1 потребителя:

ĪA+ ĪСА= ĪАВ;
ĪВ+ ĪАВ= ĪВС;
ĪС+ ĪВС= ĪСА;

откуда

ĪA= ĪАВ-ĪСА;
ĪВ= ĪВС-ĪАВ;
ĪС= ĪСА-ĪВС.

Отсюда видно, что линейные токи равны геометрической разности фазных токов. При симметричной нагрузке фазные токи одинаковы по величине и сдвинуты один относительно другого на 120o. Производя вычитание векторов фазных токов согласно полученным уравнениям, получаем линейные токи. Зависимость между фазными и линейными токами при соединении в треугольник:

Iл=2Iфcos30o=2Iф√3/2=√3Iф .

Следовательно, при симметричной нагрузке, соединенной треугольником, линейный ток в √3 раз больше фазного тока.
У двигателей и у других потребителей трехфазного тока в большинстве случаев наружу выводят все . Обычно к трехфазной машине крепится доска из изоляционного материала (клеммная доска), на которую и выводят все шесть концов.
Если у нас есть двигатель, на паспорте которого написано 127/220 в, значит, этот двигатель можно использовать на два напряжения 127 и 220 в.
Если линейное напряжение сети равно 127 в, то обмотки двигателя необходимо включить треугольником. Тогда на обмотку каждой фазы двигателя будет подано напряжение 127 в. При напряжении 220 в обмотки двигателя нужно включить звездой, тогда обмотка каждой фазы также будет под напряжением 127 в.

Потребители соединяются треугольником, если их рабочее напряжение равно линейному напряжению. Существуют два вида изображений на схемах: потребители расположены под углом 120˚ или параллельно друг другу.

При соединении в треугольник линейные напряжения равны фазному напряжению U л = U ф . Токи в фазах: I 12 = U 12 /R 12 , I 23 = U 23 /R 23 , I 31 = U 31 /R 31 .

Векторные диаграммы при соединении треугольником можно тоже рисовать по-разному. Можно рисовать векторы, исходящими из одной начальной точки, а можно векторы напряжений изобразить треугольником (рис.130). При симметричной нагрузке векторы фазовых токов равны, и векторная диаграмма симметрична. Если нагрузка не симметрична, то этого не будет.

В трёхфазной сети с напряжением 400В объединены в треугольник потребители с разным сопротивлением нагрузки.


Найдём фазовые и линейные токи в этой цепи.

Фазовые токи:

I 12 = U 12 /R 12 = 4A;

I 23 = U 23 /R 23 = 8A;

I 31 = U 31 /R 31 = 2A.

Линейные токи можно найти из векторной диаграммы, учитывая следующие соотношения: I 1 + I 31 = I 12 , I 2 + I 12 = I 23 , I 3 + I 23 = I 31 . Здесь в масштабе построены вычисленные фазовые токи и геометрическим сложением определены линейные токи.

Особый случай несимметричной нагрузки получается при обрыве одного из проводов. Посмотрим, что получится при обрыве L1.


Схема в этом случае приобретёт следующий вид:

R 23 будет работать в нормальном режиме: I 23 = U 23 /R 23 . Потребители R 12 и R 31 будут подсоединены неправильно и их ток: I 12 = I 31 = U 23 /(R 12 + R 31). Линейный ток I 2 будет равен геометрической сумме токов I 23 и I 12 .

49) Понятие о нелинейных цепях переменного тока. Цепи с нелинейными активными элементами

Цепь называют нелинейной , если хотя бы один из её элементов обладает нелинейной характеристикой.

Активные нелинейные сопротивления характеризуются вольтамперной характеристикой

(рис. 4.1).


Характеристики элементов могут быть симметричными и несимметричными. Они располагаются в первом и в третьем квадрантах. У нелинейных элементов их сопротивление зависит от напряжения r(u) или от тока, r(i).

Примером активного нелинейного сопротивления является полупроводниковый диод.

Его вольтамперная характеристика (ВАХ) несимметрична (рис. 4.2) и содержит рабочие (сплошная линия) и нерабочие зоны (штриховая линия). На электрических схемах диод изображается, как показано на рис. 4.3. Он относится к неуправляемым элементам.

Примером управляемого активного нелинейного сопротивления является транзистор (рис. 4.4). Током базы (Б) изменяют сопротивление между эмиттером (Э) и коллектором (К).

Другим примером управляемого активного нелинейного сопротивления является тиристор (рис. 4.5).

В нем с помощью управляющего электрода (УЭ) можно только уменьшить сопротивление между анодом и катодом R ak , а увеличить его нельзя. Это не полностью управляемое активное сопротивление.

Существуют и запираемые тиристоры (рис. 4.6). Запираемый тиристор (может увеличивать и уменьшать R ak).



Нелинейные индуктивные элементы характеризуются вебер-амперной характеристикой (рис. 4.7).

Потокосцепление связано с током следующей зависимостью: y = Li. Эта формула и определяет вебер-амперную характеристику (ВбАХ). Если индуктивность L = сonst, то характеристика – прямая (рис. 4.7, а, сплошная линия), но если в ее основе есть ферромагнетик, то это неуправляемая нелинейная индуктивность (рис. 4.7, б).



Нелинейная индуктивность, зависящая от тока, может быть изображена на схемах в виде (рис. 4.8). Нелинейная индуктивность может быть управляемой (рис. 4.9). Постоянным током управления I у можно изменять рабочий ток i р. Характеристика такой индуктивности при изменении I у смещается (рис. 4.10).

С помощью нелинейных элементов в электрических цепях осуществляется ряд преобразований электромагнитной энергии. Основные из них: выпрямление переменного напряжения или тока; инвертирование постоянного напряжения или тока; усиление напряжений и токов; регулирование постоянных и переменных напряжений и токов; стабилизация напряжений и токов; преобразование частоты; модуляции и так далее.

50) Соотношение между фазными и линейными напряжениями и токами

Обмотки трехфазного генератора могут быть соединены и другим способом: если конец первой обмотки соединить с началом второй, конец второй обмотки - с началом третьей и конец третьей - с началом первой, получим соединение треугольником (рис6).

Рассматривая рис.6, мы видим, что обмотки генератора образуют замкнутую последовательную цепь. На первый взгляд создается впечатление, что они замкнуты накоротко, однако фактически короткого замыкания нет, так как сумма э. д. с, действующих в этом замкнутом контуре, в любой момент времени равна нулю, что показано на векторной диаграмме (рис.6). Другое дело, если при соединении спутать концы одной из обмоток (рис.7), тогда фаза соответствующего фазного напряжения опрокинется на 180°и результирующее напряжение, действующее внутри треугольника обмоток, будет равно удвоенной величине фазного напряжения:

векторная сумма Uф1 + Uф3 = Uф2

И общее напряжение U= Uф1+ Uф2+ Uф3=2Uф2


Линейные провода при соединении треугольником отводятся от точек соединения обмоток. Очевидно, что напряжение между линейными проводами в этом случае равно напряжению фазы, включенной между этими проводами. Таким образом, если обмотки генератора соединены треугольником, линейное напряжение равно фазному, т. е.

Рассмотрим теперь зависимость между линейными и фазными токами. Если нагрузка равномерна (т. е. если комплексы сопротивлений, включенных на стороне потребителя в каждую из фаз, равны), то фазные токи в каждой из фаз генератора будут равны по величине и сдвинуты относительно друг друга на 120°. На рис.8 показаны обмотки трехфазного генератора, соединенные треугольником, и векторная диаграмма напряжений и токов для данного случая. Примем за положительное направление тока в обмотке направление против часовой стрелки, а за положительное направление тока в линии- направление от генератора к потребителю


Напишем в комплексной форме уравнения первого закона Кирхгофа для узлов I, II и III:

Iл1=Iф1-Iф3; (7)

Iл2=Iф2-Iф1; (8)

Iл3=Iф3-Iф1, (9)

т. е. линейный ток равен геометрической разности токов двух фаз, сходящихся в точке включения данного линейного провода. Произведем вычитание комплексов токов на векторной диаграмме. Фазные токи, как мы уже условились, взяты равной величины и сдвинуты от своих фазных напряжений на одинаковые, углы (φ). Техника вычитания не отличается от рассмотренной нами при определении величины линейного напряжения для системы с соединением обмоток генератора звездой. Для того чтобы не усложнять рисунок, мы показали на нем только определение линейного тока Iл1
Из построения очевидно, что величина , т. е. при соединении обмоток генератора треугольником величина линейного, тока больше величины фазного тока в раз.
Необходимо подчеркнуть, что эта зависимость имеет место только при равномерной нагрузке фаз. При неравномерной нагрузке необходимо находить линейные токи в каждом отдельном случае по уравнениям (7), (8) и (9) графически или аналитически (пользуясь символическим методом).
Из сравнения двух способов соединения обмоток генераторов следует, что при соединении звездой увеличивается напряжение между проводами линии передачи, но (при одинаковой нагрузке) уменьшаются линейные токи. При соединении обмоток треугольником не может быть проложен нулевой провод между генератором и потребителем, что создает значительные неудобства при неравномерной нагрузке фаз. Поэтому в распределительных сетях низкого напряжения вторичные обмотки силовых трансформаторов, как правило, соединяются звездой.

Похожие публикации