Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Самодельная альтернативная энергия своими руками. Альтернативная энергия для дома – основные варианты использования современных источников энергии. Обзор лучших идей и схем для Вас! Проектирование домов с альтернативными источниками энергии

Запасы углеводородов на нашей планете не бесконечны, поэтому стремительно набирает популярность альтернативная энергетика, работающая на возобновляемых источниках энергии. Дома оборудуются солнечными панелями и ветряками. Растёт доля выработанной солнечными и ветровыми электростанциями энергии. В 2010 году она была равна 5%. Это заставляет задуматься о постройке небольшой электростанции у себя дома.

Как выбрать источник энергии

Существует множество вариантов получения альтернативного электричества, популярных и не очень. Некоторые из них не подходят для наших широт, а некоторые представляют опасность.

Тепловой насос, перекачивающий тепло из почвы в дом по принципу холодильника, подойдёт лишь для жителей геотермальных районов. Попытка построить его у себя на участке обойдётся жителю Подмосковья в вымороженный на двухметровую глубину верхний слой почвы. От замерзания пострадает корневая система деревьев и кустарников, которые впоследствии заболеют или погибнут.

Биогаз подходит для добычи на крупных предприятиях, где не возникает проблем с топливом для биореакторов. В частном хозяйстве выгоды от биогаза мало, среднестатистическое подсобное хозяйство не сможет производить нужное количество топлива. Его придётся завозить, что приведёт к постоянным расходам на доставку. Не стоит забывать, что производство биогаза взрывоопасно и требует контроля за оборудованием, который в домашних условиях трудно осуществить.

Есть более подходящие альтернативные источники энергии для частного дома. К ним относятся:

  • Солнечная энергия.
  • Энергия ветра.
  • Энергия потока воды.
  • Древесный газ, получаемый при термическом разложении древесины без доступа воздуха.

В отличие от биогаза, они подходят для эксплуатации в частных домах и безопасны при правильном использовании.

Но не у всех на участке течёт ручей или имеется доступ к большим объёмам древесины, поэтому будет разумнее рассмотреть возобновляемые источники энергии, которые доступны везде. К ним относятся солнечный свет и ветер.

Для преобразования альтернативной энергии есть готовые решения своими руками. Они позволяют максимально эффективно превращать её в электричество и подходят для реализации в частном доме.

Электростанция на солнечных батареях

Резервные источники питания на основе солнечных батарей хорошо подойдут для тех мест, где имеются постоянные перебои с электроснабжением. Из-за высокой стоимости их использование нецелесообразно там, где нет проблем с электричеством. Установленная для экономии солнечная электростанция окупит себя лишь через 8−10 лет. За это время свинцовые аккумуляторы придут в негодность, и их замена повлечёт за собой дополнительные расходы. Средства, потраченные на замену аккумуляторов, увеличат стоимость электростанции и отодвинут сроки окупаемости ещё на 3−5 лет.

Необходимые компоненты и сборка

Солнечная панель собирается из фотоэлектрических элементов, которые различаются формой и размерами.

Солнечные элементы выращиваются из кремния и делятся на два вида: монокристаллические (mono-Si) и поликристаллические (poly-Si).

Монокристаллические элементы обладают 20% КПД и сроком службы до 30 лет. Для их нормальной работы нужен солнечный свет, попадающий на батареи под прямым углом. При рассеянном свете мощность таких элементов снижается в три раза и даже малейшее затенение одного элемента выводит из режима генерации всю цепочку.

Поэтому СЭС (солнечным электростанциям), построенным на mono-Si элементах, нужны системы, следящие за положением солнца и поворачивающие панели вслед за ним. Нельзя допускать загрязнения панелей, для этого они оборудуются автоматической системой очистки. На небольших СЭС солнечные батареи моются вручную.

Электростанции на mono-Si панелях подойдут для регионов с большим количеством солнечных дней в году. При пасмурной погоде их эффективность близка к нулю.

Поликристаллические элементы имеют свои преимущества и недостатки. К преимуществам можно отнести небольшую стоимость и эффективную работу при рассеянном свете.

Недостатков у них больше:

  • Более низкий КПД - 12%.
  • Меньший срок службы - до 25 лет.
  • Усиленная деградация при температурах выше 55 °C.

Солнечные poly-Si батареи устанавливаются в местности с преобладанием пасмурных дней. Способность преобразовывать рассеянный свет позволяет монтировать их без систем автоповорота. Кроме того, их не нужно часто мыть. Из-за своей дешевизны и неприхотливости поликристаллические фотоэлементы широко применяются в самодельных СЭС.

Сборку собственной солнечной электростанции лучше начать с подбора компонентов. От них будет напрямую зависеть её мощность. Для изготовления классической СЭС понадобятся:

  1. Фотоэлектрические элементы.
  2. Шина для соединения элементов.
  3. Лист стекла или прозрачного пластика.
  4. Алюминиевый профиль.
  5. Эпоксидная смола с отвердителем.
  6. Провода сечением 4 мм².
  7. Настенный щиток.
  8. Контроллер солнечной батареи.
  9. Инвертор 12−220 В.
  10. Предохранители.
  11. Клеммники для предохранителей.
  12. Диоды Шоттки.
  13. Свинцово-кислотный аккумулятор ёмкостью не менее 150 Ач.
  14. Клеммы для аккумулятора.

Схема подключения компонентов СЭС:

Начинать нужно со сборки солнечной панели. Отрежьте от шины кусочки по 7 см длиной и припаяйте их к минусовым контактам фотоэлемента, расположенным на лицевой стороне. Повторите это действие с каждым фотоэлементом.

Полученные «полуфабрикаты» нужно соединить последовательно, припаивая минусовой вывод одного элемента к плюсовому следующего. Количество фотоэлементов в цепи (модуле) должно быть таким, чтобы на её выводах возникало напряжение 14,5 В. При использовании полувольтовых элементов, их понадобится 29 штук. Чтобы при затемнении одного элемента в цепи не возникал обратный ток, нужно в разрыв минусовой шины каждого фотоэлемента впаять по диоду Шоттки.

Из одного модуля можно сделать солнечную батарею, но её мощность будет минимальной. Поэтому солнечные панели собираются из нескольких параллельно подключённых модулей.

Обезжирьте стекло и аккуратно приклейте к нему собранные модули. В качестве клея используйте эпоксидную смолу, она при застывании не мутнеет и не препятствует попаданию света на фотоэлементы. Не используйте другие клеи, даже если они кажутся хорошими.

После схватывания эпоксидки установите стекло в раму из алюминиевого профиля, заранее просверлив в ней отверстие для проводов. Припаяйте выводы модулей к проводам и просуньте их наружу. Для герметичности залейте всю конструкцию эпоксидкой.

Застывшая эпоксидная смола приклеит стекло к раме и защитит фотоэлементы от влаги и пыли.

Особенности установки на доме

Собранную солнечную панель можно установить на крыше, но лучшим вариантом будет её установка на южную стену дома. Установленная на ней панель будет находиться под солнечными лучами почти весь световой день.

Повесьте щиток на стену и закрепите в щитке контроллер, инвертор и клеммники со вставленными в них предохранителями. Заведите в щиток провода и подключите их согласно схеме. Помните, что при зарядке из аккумулятора выделяются ядовитые газы, поэтому его нужно размещать в хорошо проветриваемом помещении.

При запитывании внутридомового освещения от инвертора часть энергии теряется при преобразовании . Чтобы не приходилось зря тратить запасы из автономного источника энергии, дома установите систему освещения, работающую от 12 вольт.

Солнечные коллекторы для нагрева

Говоря о СЭС, преобразующих свет в электричество, нельзя не упомянуть о другой разновидности солнечных панелей.

Солнечные коллекторы применяются в системах отопления и горячего водоснабжения и бывают:

  • Воздушные.
  • Трубчатые.
  • Вакуумные.
  • Плоские.

Внутри воздушных коллекторов находятся покрытые светопоглощающим составом пластины. Они нагреваются солнцем и отдают тепло циркулирующему по коллектору воздуху, которым отапливают жилище.

Для увеличения площади рабочей поверхности в воздушных коллекторах используют гофрированные пластины.

В корпусе трубчатых коллекторов расположены стеклянные трубки, окрашенные изнутри чёрной краской. Солнечный свет, попадая на краску, нагревает её. Затем тепло передаётся бегущей по трубкам воде.

Вакуумные коллекторы представляют собой разновидность трубчатых. В ней окрашенные трубки вставлены в прозрачные, обладающие большим диаметром. Между ними находится вакуум, уменьшающий потери тепла из внутренней трубки.

Самыми простыми и дешёвыми из всех являются плоские коллекторы. Они состоят из пластины, под которой находятся трубки с циркулирующей водой, закрытые снизу слоем теплоизоляционного материала. КПД у плоских коллекторов - самый низкий.

Схема подключения к системе водоснабжения:

Воздух из коллектора поступает в дом напрямую, а вода сначала поступает в бойлеры, где подогревается ТЭНами до нужной температуры. Из бойлера горячая вода подаётся на кухню и в ванную, также она используется для отопления.

Как сделать ветрогенератор

Солнечные электростанции не работают ночью и в пасмурную погоду, а электричество требуется всегда. Поэтому, проектируя альтернативную энергетику для дома своими руками, нужно предусмотреть в ней генератор, не зависящий от солнца.

Для использования в качестве второго источника энергии отлично подойдёт ветрогенератор. Его можно собрать даже из б/у запчастей, что существенно сэкономит ваши средства.

Список того, что понадобится для сборки ветряка:

  1. Генератор с магнитным возбуждением от грузовика или трактора.
  2. Труба с наружным диаметром 60 мм и длиной 7 метров.
  3. Полтора метра трубы с внутренним диаметром 60 мм.
  4. Стальной трос.
  5. Скобы и колышки для крепления троса.
  6. Провода, сечением 4 мм².
  7. Повышающий редуктор 1 к 50.
  8. ПВХ труба, диаметром 200 мм.
  9. Диск от циркулярной пилы.
  10. Два разъёма EC-5.
  11. Кусок стального листа, толщиной 1 мм.
  12. Лист алюминия, толщиной 0,5 мм.
  13. Подшипник под внутренний диаметр мачты.
  14. Муфта для соединения валов генератора и редуктора.
  15. Труба под внутренний диаметр подшипника, длина - 60 см.

Все эти материалы продаются в строительном и в автомагазине. Новые редукторы с генератором стоят дорого, поэтому их лучше купить на барахолке.

Изготовление ветроколеса для дома

Главным элементом любого ветряка являются лопасти, поэтому их нужно изготовить первыми.

Чтобы определиться с размерами, используйте таблицу.

Ветроколесо по мощности в идеале должно совпадать с генератором, но из-за чрезмерно больших размеров получающегося колеса это не всегда возможно. Поэтому чаще всего мощность лопастей значительно ниже таковой у генератора. В этом нет ничего страшного.

Разрежьте ПВХ трубу на отрезки, равные длине лопастей. Распилите их пополам по продольной оси. Перерисуйте на половинки трубы разметку и по ней вырежьте лопасти. Отпилите от заготовок треугольники. Из стального листа вырежьте крепления для лопастей и просверлите в них дырки. Возьмите диск от циркулярной пилы, насверлите в нём отверстий и болтами прикрутите лопасти к диску.

Сборка, установка и подключение

Выройте яму и забетонируйте в ней трубу с внутренним диаметром 60 мм. Возьмите семиметровую трубу и, отступив 1 метр от края, установите на неё скобы. Вварите в тот же край трубы подшипник, используя аргонную сварку.

Согните из стального листа раму и снизу приварите к ней трубу, которая влезает в подшипник. Закрепите на раме редуктор с генератором, соединив их валы. Установите снизу рамы и на верхушке мачты 2 ограничителя в виде штырей. Они не дадут раме поворачиваться больше, чем на 360 градусов. Сделайте флюгер из алюминиевого листа и закрепите его на задней части рамы. В основании мачты просверлите отверстие для провода.

Подключите к генератору провод и протяните его сквозь раму и мачту. Оденьте на вал редуктора ветроколесо и закрепите его на нём. Вставьте раму в подшипник и покрутите её. Она должна легко вращаться.

Ветряк в сборе выглядит примерно так:

  1. Лопасти.
  2. Диск от циркулярки.
  3. Редуктор.
  4. Соединительная муфта.
  5. Генератор.
  6. Флюгер.
  7. Крепление флюгера.
  8. Подшипник.
  9. Ограничители.
  10. Мачта.
  11. Провод.

Вбейте в землю колышки так, чтобы расстояние от мачты до каждого из них было одинаковым. Привяжите тросы ко скобам на мачте. Для установки мачты нужно вызывать автокран. Не пытайтесь установить ветрогенератор самостоятельно! В лучшем случае вы разобьёте ветряк, в худшем - пострадаете сами. После поднятия мачты автокраном, направьте её основание в забетонированную ранее трубу и дождитесь, пока кран опустит её в трубу.

Трос нужно привязывать к колышку в натянутом состоянии. Причём все тросы должны быть привязаны так, чтобы мачта стояла строго вертикально, без перекосов.

Подключать ветрогенератор нужно к зарядному устройству через разъём ЕС-5. Сама зарядка устанавливается в щитке с оборудованием СЭС и подключается напрямую к аккумулятору.

Чтобы не лишиться бытовой техники, во время грозы всегда отключайте ветряк от зарядного устройства.

Сборка электростанции закончена. Теперь вы не останетесь без электричества, даже если вам отключат свет на длительное время. При этом не придётся тратить деньги на топливо для генератора и время на его доставку. Все будет работать автоматически и не потребует вашего вмешательства.

Альтернативная энергия - это энергия, источник которой отличается от тех, что мы привыкли использовать (уголь, газ, ядерное топливо, нефть и т.п.); чаще используется в контексте ограниченности ископаемых источников топлива и наличия у таковых выбросов вредных парниковых газов в атмосферу. Альтернативная энергия - относительно новая отрасль (поскольку не было необходимости искать что-то менее эффективное, но более чистое, чем уголь, например) не находит широкого числа сторонников, но переход к ней неизбежен. Когда мы найдем способы добычи большого количества электроэнергии (скорее, ее хранения), использования водорода и других элементов, эффективной солнечной или термоядерной энергии на замену привычным источникам, мир изменится до неузнаваемости.

Стоимость производства энергии из так называемых возобновляемых источников, например, ветра и солнечного света с каждым годом медленно, но верно снижается. Однако один из недостатков такого производства по-прежнему остается нерешенным – что делать с избытком произведенной энергии, как ее хранить? Допустим, при ветреной погоде ветряки производят достаточное количество энергии для питания электросетей. Но стоит ветру остановиться – энергии нет. Различные компании по всему миру пытаются решить эту проблему. Например, компания


Зачем каждый месяц платить энергокомпаниям за электричество, если можно самостоятельно обеспечивать себя энергией? Все больше людей в мире понимает эту истину. И потому сегодня мы расскажем про 8 необычных источников альтернативной энергии для дома, офиса и отдыха .

Солнечные панели в окнах

В наше время самым распространенным в быту альтернативным источником энергии являются солнечные панели. Традиционно их устанавливают на крышах частных домов или во дворах. Но с недавних пор стало возможным размещать эти элементы прямо в окнах, что позволяет использовать такие батареи даже владельцам обычных квартир в многоэтажных домах.



При этом уже появились решения, позволяющие создавать солнечные панели с высоким уровнем прозрачности. Именно такие энергетические элементы и следует устанавливать в окнах жилых помещений.



К примеру, прозрачные солнечные панели разработали специалисты из Мичиганского Государственного Университета. Эти элементы пропускают 99 процентов проходящего через них света, но имеют при этом коэффициент полезного действия в 7%.

Компания Uprise создала необычную ветряную турбину высокой мощности, которую можно использовать как в быту, так и в промышленных масштабах. Этот ветряк располагается в прицепе, который может передвигать за собой внедорожник или дом на колесах.



В сложенном состоянии с турбиной Uprise можно ездить по дорогам общего пользования. Но в развернутом состоянии она превращается в полноценный ветряк высотой пятнадцать метров и мощностью 50 кВт.



Uprise можно использовать во время путешествий в доме на колесах, для обеспечения энергией отдаленных объектов или обычных частных жилых домов. Установив эту турбину у себя во дворе, ее владелец может даже продавать излишки электричества соседям.



Makani Power – это проект одноименной компании, перешедшей недавно в подчинение полусекретной лаборатории инноваций . Идея данной технологии одновременно проста и гениальна. Речь идет о небольшом воздушном змее, который может летать на высоте до одного километра и вырабатывать электричество.



Летательный аппарат Makani Power оснащен встроенными ветряными турбинами, которые будут активно работать на высоте, где скорость ветра значительно больше, чем на уровне земли. Полученная энергия в данном случае передается по шнуру, соединяющем воздушного змея с базовой станцией.



Энергия будет также вырабатываться от движений самого летательного аппарата Makani Power. Дергая под силой ветра трос, этот воздушный змей заставит крутиться динамо-машину, встроенную в базовую станцию.



При помощи Makani Power можно обеспечить энергией как частные дома, так и отдаленные объекты, куда нецелесообразно проводить традиционную линию электропередач.

Современные солнечные батареи все еще имеют весьма низкий коэффициент полезного действия. А потому для получения от них высоких производственных показателей приходится застилать панелями достаточно большие пространства. Но технология с названием Betaray позволяет увеличить КПД примерно в три раза.



Betaray – это небольшая по размерам установка, которую можно расположить во дворе частного дома или на крыше многоэтажки. В ее основе лежит прозрачная стеклянная сфера диаметром чуть меньше одного метра. Она аккумулирует солнечный свет и фокусирует его на достаточно небольшую фотоэлектрическую панель. Максимальный КПД данной технологии имеет потрясающе высокий показать в 35 процентов.



При этом сама установка Betaray является динамической. Она автоматически подстраивается под положение Солнца на небе, чтобы в любой момент работать на максимуме возможностей. И даже ночью эта батарея вырабатывает электричество, преобразуя свет от Луны, звезды и уличного освещения.



Датско-исландский художник Олафур Элиассон дал старт необычному проекту с названием Little Sun, который объединяет в себе творческое начало, технологии и социальные обязательства успешных людей перед обездоленными. Речь идет о небольшом устройстве в виде цветка подсолнуха, которые в течение дня наполняется энергией от солнечного света, чтобы вечерами нести освещение в самые темные уголки планеты.



Каждый желающий может пожертвовать деньги на то, чтобы солнечный светильник Little Sun появился в жизни какой-нибудь семьи из Страны Третьего Мира. Лампы Little Sun позволяют детям из трущоб и отдаленных деревень отдавать вечера под учебу или чтение, без которых невозможен успех в современном обществе.



Светильники Little Sun можно также приобрести и для себя, сделав их частью собственной жизни. Эти устройства можно использовать при выезде на природу или для создания потрясающей вечерней атмосферы на открытых площадках.



Многие скептики посмеиваются над спортсменами, утверждая, что затрачиваемые ими во время выполнения упражнений силы вполне можно использовать для выработки электричества. Создатели пошли на поводу у такого мнения и создали первый в мире набор уличных тренажеров, каждый из которых является маленькой электростанцией.



Первая спортивная площадка Green Heart появилась в ноябре 2014 года в Лондоне. Электричество, которое вырабатывают на ней любители физических упражнений, можно использовать для зарядки мобильных устройств: смартфонов или планшетных компьютеров.



Излишки энергии площадка Green Heart отправляет в локальные электросети.

Парадоксально, но заставить вырабатывать «зеленую» энергию можно даже детей. Ведь они никогда не прочь что-нибудь вытворить, как-нибудь поиграть и развлечь себя. А потому голландские инженеры создали необычные качели с названием Giraffe Street Lamp, которые используют детскую непоседливость в процессе производства электричества.



Качели Giraffe Street Lamp вырабатывают энергию в то время, когда ими пользуются по прямому назначению. Раскачиваясь в сиденье, дети или взрослые стимулируют работу динамо-машины, встроенной в данную конструкцию.

Конечно, полученного электричества не хватит для полноценного функционирования частного жилого дома. Зато накопленной за день игр энергии вполне достаточно для работы не очень мощного уличного фонаря в течение пары часов после наступления сумерек.

Мобильный оператор Vodafone осознает, что его прибыли становятся больше, когда телефоны клиентов работают круглосуточно, а сами их владельцы не беспокоятся о том, где найти розетку для зарядки аккумуляторов своего гаджета. А потому эта компания спонсировала разработку необычной технологии с названием Power Pocket.

Устройства на основе технологии Power Pocket должны находиться как можно ближее к телу человека, чтобы использовать его тепло для производства электроэнергии для бытовых нужд.



На данный момент, на основе технологии Power Pocket создано два практичных товара: шорты и спальный мешок. Впервые они были опробованы во время музыкального фестиваля Isle of Wight Festival в 2013 году. Опыт оказался удачным, одной ночи человека в таком спальном мешке оказалось достаточно, чтобы зарядить аккумулятор смартфона примерно на 50 процентов.


В данном обзоре мы рассказали лишь про те альтернативные источники энергии, которые можно использовать в бытовых нуждах: дома, в офисе или во время отдыха. Но есть еще немало неординарных современных «зеленых» технологий, разработанных для использования в промышленных масштабах. Про них можно прочитать в обзоре .

Многие полагают, что дешевое отопление частного дома возможно только на магистральном газе. Подумаем, что делать, если его нет, и подведение не планируется, и какой может быть альтренативная энергия для дома.

  • Как работает ветрогенератор.
  • Как установить солнечный коллектор.
  • Как обустроить тепловой насос.
  • Как выбрать инвертор.

Сегодня, когда цены на энергоносители стремительно растут вверх, а стоимость подключения к трубе с «голубым топливом» неоправданно высока, всё большее число домовладельцев отказывается от традиционных энергоресурсов и обращает свой взор на альтернативные источники энергии для дома.

Опираясь на знания экспертов и опыт участников сайт мы расскажем вам, чем можно заменить газ; как ветер, солнце и тепло земли становятся альтернативой электричеству из проводов - используя их, можно осветить и обогреть загородный дом.

Альтернативный источник электроэнергии: ловец ветра

Именно так можно назвать ветрогенератор. Люди с давних пор используют силу ветра в качестве источника альтернативной энергии.

Пройдя долгий путь, знакомые всем ветряные мельницы превратились в современные ветроэнергетические установки способные вырабатывать электроэнергию.

По какому принципу работает ветрогенератор

Всё довольно просто. Поток ветра вращает лопасти ветроколеса, заставляя таким образом вращаться вал электрогенератора.

Генератор в свою очередь вырабатывает электрический ток.

Следует помнить, что генератор выдает непостоянное напряжение с различной частотой. На случай отсутствия ветра в комплект ветроэнергетической системы входит блок аккумуляторных батарей, куда и поступает выработанная генератором электроэнергия.

Среди индивидуальных домовладельцев наиболее широкое распространение получили ветроэнергетические установки мощностью до 10 кВт. Имеются три основных типа конструкции ветродвигателей:

  • Малолопастные. Чаще всего имеют три лопасти. Отличаются высоким КПД и простотой конструкции. Недостатки: из-за малой площади лопастей, начальный запуск двигателя требует скорости ветра не менее 5-5 м/с. Также пользователи отмечают высокий уровень шума.
  • Многолопастные. На ветровое колесо монтируется от 18 до 24 выгнутые лопасти. Начинают работать при скорости ветра в 2-4 м/с. Отличаются низким уровнем шума, но и более низким КПД, чем малолопастные ветродвигатели. Недостатки: усложненность конструкции, которая мешает установить ветрогенератор своими руками, и возникающий при их работе гироскопический эффект.
  • Роторные ветродвигатели – имеют вертикально расположенные лопасти, которые двигаются не по прямой, а по кругу. Достоинства: стабильная работа при постоянном ветре, низкий уровень шума. Существенный недостаток подобной конструкции ветродвигателя низкий КПД, не более 18 %.

Посмотрим, как же сделать ветроэнергетическую установку эффективной в наших условиях.

Интересен личный опыт участника сайт Александра Капустина (ник на форуме Бывалый 1406 )

– Размещать ветрогенератор следует на площадке, где для ветров существует как можно меньше помех. Энергия ветра – это кубическая функция скорости ветра. Это означает, что незначительные изменения скорости ветра вызывают существенные изменения выходной мощности. В целях безопасности ставить ветряк желательно дальше от жилых построек. О высоте мачты – ставим как можно выше.

В условиях поселков под Москвой можно рекомендовать высоту мачты не менее 15 метров. А при самостоятельном расчёте системы альтернативного энергоснабжения частного дома сначала необходимо выяснить, какое количество энергии требуется от системы. Для этого придётся определить пиковую мгновенную мощность, а также рассчитать две величины ожидаемого суточного энергопотребления - его максимальное и среднее значения.

Следует помнить, что в наших климатических условиях ветряки могут работать на полную мощность примерно 20–30% дней в году, поэтому ветрогенератор следует рассматривать как дополнительную, резервную систему электроснабжения по выработке электроэнергии для питания бытовых электроприборов.

Ловцы солнца

Как можно использовать энергию солнца: первое, что приходит в голову – солнечная батарея.

Уже никого не удивить фотоэлементами, размещенными на крыше коттеджа.

Но речь в нашем материале пойдёт не о них, а об устройстве способном преобразовывать солнечную энергию в тепло пригодное ля отопления или горячего водоснабжения дома.

Солнечные коллекторы

За ответом на вопрос, что такое солнечный коллектор, обратимся за разъяснениями к заместителю технического директора компании «АкваБур» Евгению Касаткину.

– В основу гелиосистемы или, проще говоря, солнечного коллектора заложен принцип получения тепла от солнечного излучения и дальнейшей передачей накопленной энергии в систему ГВС или отопления.

Существуют два вида солнечных коллекторов:

  • Вакуумный солнечный коллектор. Съем потенциала в данной системе производиться с помощью вакуумных трубок. Вакуумная трубка – это колба с двойным стеклом с выкаченным из неё воздухом. С внутренней стороны колба покрыта отражающим материалом, который впускает солнечное излучение, но не выпускает наружу. А во внутренней части системы, находятся трубки со стержнем, в котором находиться теплоноситель. Вакуумная прослойка даёт возможность сохранить около 95% улавливаемой тепловой энергии.
  • Плоский солнечный коллектор. Съем потенциала в данной системе основан на поглощении солнечного излучения абсорбирующей пластиной, после чего энергия, в виде накопленного тепла передаётся жидкому носителю. Обратная сторона солнечного коллектора покрывается теплоизоляцией.

Какую систему выбрать с учётом работы в наших условиях

По мнению руководителя направления отдела развития компании «Виссманн» Михаила Мурашко:

При пасмурной погоде, смоге и рассеянном излучении наиболее эффективно работают трубчатые вакуумные коллекторы. А плоские солнечные коллекторы, более оптимальны для использования в районах с высокой солнечной инсоляцией.

Евгений Касаткин:

– В зимний период и в северных районах солнечный коллектор может использоваться как дополнительная система, подключённая к системе отопления или ГВС. Но наилучшие показатели мы получим летом, когда система при правильной её установке и монтаже, может полностью удовлетворить вашу потребность в горячей воде, без использования косвенных систем нагрева воды.

Установка солнечного коллектора позволит вам получить практически бесплатное тепло. Если системе необходима принудительная циркуляция теплоносителя, то электричество потребуется лишь для работы насоса. А в солнечный день, гелиосистема может нагреть воду до температуры 50-70 С.

Тепловые насосы

Как гласит закон сохранения энергии: «Энергия не может возникнуть из ничего и не может просто так исчезнуть, она может только переходить из одной формы в другую».

В земле, воздухе и воде содержится большое количество низкопотенциальной тепловой энергии которую можно использовать для отопления дома. Остаётся только собрать эту рассеянную тепловую энергию и «запустить» её в систему теплоснабжения дома. Для этого применяется специальное устройство – тепловой насос.

В чем заключается эта технология, объясняет директор компании «SagaTherm » Александр Сагалович:

– Тепловой насос – это холодильная машина.В обычных условиях тепловая энергия передается от более нагретого тела к менее нагретому. Тепловой насос может забирать тепловую энергию у менее нагретого тела и передавать его более нагретому, нагревая его еще сильнее.

Тепловой насос способен отбирать тепловую энергию из следующих источников – воздуха, воды и земли. В наших условиях наиболее целесообразно построить систему тепловых насосов, базирующуюся на отборе тепла земли и воды.

Для перекачивания 4 кВт тепловой энергии нам понадобится примерно 1 кВт электроэнергии. Но электроэнергия тоже никуда просто так не пропадет, она превратится в тепловую энергию, т.к. компрессор в процессе работы также нагревается. Итого – затратив 1 кВт электроэнергии, мы получаем 5 кВт тепла.

Какую выгоду даёт установка этого устройства

Евгений Касаткин:

Выгоду от использования тепловых насосов лучше всего демонстрирует следующая таблица.


Теперь мы знаем, как работает тепловой насос. Рассмотрим, какие бывают типы систем.

Выбор конструкции будет зависеть от наличия на вашем участке дополнительных свободных площадей или водоёма.

А именно:

  • Вертикальная система. Применяется, если на участке нет места для закладки контура труб или отсутствуют незамерзающие зимой водоёмы. Для монтажа теплового насоса бурятся от 3 до 5 скважин, глубиной от 50 до 150 метров.
  • Горизонтальная система. Менее затратна, чем вертикальная система, т.к. отпадает необходимость в бурении дорогих скважин. Контур труб закладывается на небольшой глубине, обычно около 1.5 метров, но требуется довольно приличная площадь участка.
  • Водная система. Если возле участка, не далее чем 100 метров, есть незамерзающий в зимнее время водоём, то закладка контура труб в нём будет наиболее разумным выбором.

Особенности эксплуатации тепловых насосов

Как и любая инженерная система, отопление и горячее водоснабжение на базе теплового насоса требует очень вдумчивого подхода.

Александр Сагалович:

– Вертикальная и горизонтальная системы обустройства грунтового теплообменника одинаково эффективны. Горизонтальный теплообменник занимает много места, но значительно дешевле вертикального.

Бурение скважин обойдётся дороже, но зато можно сэкономить место на участке.

Для многих это единственное решение, т.к. участок не позволяет разместить горизонтальный теплообменник.

При обустройстве горизонтального грунтового теплообменника понадобится примерно 5 соток земли на каждые 10 кВт мощности. После завершения работ, эту землю можно использовать без ограничений, единственное, на ней нельзя будет строить капитальные строения. Одним из способов использования тепловых насосов в качестве отопительного контура, может стать монтаж системы водяного тёплого пола.

Инвертор – как часть системы источника альтернативной энергии

Как уже говорилось выше, выработанное источником альтернативной энергии электричество накапливается в аккумуляторах. Но что делать дальше с этой энергией, ведь аккумуляторные батареи выдают постоянный ток, непригодный для подключения бытовых электроприборов? На помощь приходит преобразователь тока – инвертор. При помощи данного прибора постоянный ток преобразовывается в переменный.

Об особенностях использования инверторов для создания систем автономного и бесперебойного электропитания, рассказывает главный инженер компании «СибКонтакт» Сергей Лесков :

– Инверторы встраиваются в различные системы по производству альтернативной энергии содержащие аккумулятор, тем самым обеспечивая весь дом электроэнергией с напряжением 220В и частотой 50 Гц. Инверторы с синусоидальной формой выходного напряжения являются обязательной частью установки автономного электропитания, так как к ним можно подключить любое, даже самое чувствительное оборудование.

При создании системы автономного и бесперебойного электропитания инверторы имеют ряд преимуществ по сравнению с дизель и бензогенераторами:

  • Эти элементы системы работают в автономном режиме и не требуют присутствия человека;
  • В режиме холостого хода потребляют минимум электроэнергии;
  • Не требуют специальной вытяжной вентиляции помещения;
  • Не требуют звукоизоляции помещения.

Таким образом, выбор эффективного источника альтернативной энергии для загородного дома, заключается в комплексном подходе к решению множества достаточно сложных задач, требующих знаний, опыта и умелых рук.

В условиях, когда цены на энергоносители постоянно повышаются, собственники частных домов чаще задумываются об альтернативных источниках энергии. Некоторые домовладельцы вовсе не имеют возможности подключения к магистрали из-за высокой стоимости монтажных работ. Инженеры, а вместе с ними и народные умельцы, обратили внимание на то, что даёт человечеству сама природа и создали ряд устройств, которые можно сделать своими руками для возобновления энергоресурсов. Видео продемонстрирует лучшие наработки в действии.

Биогаз – это экологически чистый вид топлива. Используют его аналогично природному газу. Технология производства основана на жизнедеятельности анаэробных бактерий. Отходы помещают в ёмкость, в процессе разложения биологических материалов выделяются газы: метан и сероводород с примесью углекислоты.

Данную технологию активно используют в Китае и на животноводческих фермах Америки. Чтобы в домашних условиях получать биогаз непрерывно, нужно иметь фермерское хозяйство или доступ к бесплатному источнику навоза.


Генератор из биоотходов

Для сооружения такой установки понадобится герметичная ёмкость с вмонтированным шнеком для перемешивания, патрубок для отвода газа, горловина для загрузки отходов и штуцер для выгрузки отработанных отходов. Конструкция должна быть идеально герметичной. Если газ не будет отбираться постоянно, то понадобится установить предохранительный клапан для сброса избыточного давления, чтобы у ёмкости не сорвало «крышу». Порядок действий следующий.

  1. Выбираем место для обустройства ёмкости. Размер подберите исходя из количества имеющихся отходов. Для эффективной работы целесообразно её заполнение на две трети. Резервуар может быть металлическим или из армированного бетона. Большое количество биогаза не удастся получить из маленькой ёмкости. Из тонны отходов выйдет 100 кубов газа.
  2. Чтобы ускорить процесс работы бактерий, потребуется подогрев содержимого. Его можно осуществить несколькими путями: под ёмкость поместить змеевик, подключенный к системе отопления или установить ТЭНы.
  3. Анаэробные микроорганизмы находятся в самом сырье, при определённой температуре они становятся активными. Автоматическое устройство в водонагревательных котлах включит обогрев при поступлении новой партии и отключит, когда отходы прогреются до заданной температуры.
    Полученный газ можно преобразовать в электричество через газовый электрогенератор.

Совет. Отработанные отходы используются в качестве компостного удобрения для садовых грядок.

Энергия из ветра

Наши предки давно научились применять энергию ветра для своих нужд. В принципе, с тех пор конструкция почти не изменилась. Только жернова сменил привод генератора, преобразующий энергию вращающихся лопастей в электричество.

Для изготовления генератора понадобятся следующие детали:

  • генератор. Некоторые используют мотор от стиральной машинки, слегка преобразовав ротор;
  • мультипликатор;
  • аккумулятор и контроллер его заряда;
  • преобразователь напряжения.

Ветрогенератор

Существует множество схем самодельных ветрогенераторов. Все они комплектуются по одному принципу.

  1. Собирается рама.
  2. Устанавливается поворотный узел. За ним монтируются лопасти и генератор.
  3. Монтируют боковую лопату с пружинной стяжкой.
  4. Генератор с пропеллером крепится на станину, затем её устанавливают на раму.
  5. Подсоединяют и соединяют с поворотным узлом.
  6. Устанавливают токосъёмник. Соединяют его с генератором. Провода подводят к батарее.

Совет. От диаметра пропеллера будет зависеть число лопастей, а также количество генерируемого электричества.

Тепловой насос

Чтобы получить энергию из земных глубин, потребуется соорудить достаточно сложное устройство, которое позволит получать альтернативную энергию из грунтовых вод, самого грунта или из воздуха. Чаще всего такие устройства применяют для обогрева помещений. По сути, агрегат представляет собой большую холодильную камеру, которая при охлаждении окружающей среды преобразует энергию и отдаёт в виде тепла с высоким потенциалом. Составляющие системы:

  1. Наружный и внутренний контур с фреоном.
  2. Испаритель.
  3. Компрессор.
  4. Конденсатор.

Схема работы теплового насоса

Коллектор можно установить вертикально, если площадь участка не позволяет установить горизонтальный. Бурят несколько глубоких скважин и опускают в них контур. Горизонтально его располагают в грунт на глубину полтора метра. Если дом расположен на берегу водоёма, теплообменник прокладывают в воде.
Компрессор можно взять от кондиционера. Конденсатор изготавливается из 120 л бака. В ёмкость вставляется медный змеевик, по нему будет циркулировать фреон, и вода из отопительной системы начнёт прогреваться.

Испаритель изготавливается из пластиковой бочки объёмом более 130 литров. В этот бак вставляется ещё один змеевик, его совмещение с предыдущим будет осуществляться через компрессор. Патрубок испарителя делают из обрезка канализационной трубы. Посредством патрубка регулируется поступление воды из водохранилища.

Испаритель опускается в водоём. Вода, обтекая его, побуждает испарение фреона. Газ поднимается в конденсатор и отдаёт тепло воде, которая окружает змеевик. Теплоноситель циркулирует в системе отопления, обогревая помещение.

Совет. Температура воды водоёма не имеет значения, важно лишь её постоянное наличие.

Энергия солнца — в электричество

Солнечные панели впервые начали делать для космических кораблей. В основе устройства лежит способность фотонов создавать электрический ток. Вариаций конструкции солнечных батарей великое множество и каждый год они совершенствуются. Самостоятельно изготовить солнечную батарею можно двумя способами:

Способ №1. Купить готовые фотоэлементы, собрать из них цепь и накрыть конструкцию прозрачным материалом. Работать нужно предельно осторожно, все элементы очень хрупкие. Каждый фотоэлемент имеет маркировку в вольт-амперах. Посчитать нужное количество элементов для сбора батареи необходимой мощности не составит большой сложности. Последовательность работы такая:

  • для изготовления корпуса понадобится лист фанеры. По периметру прибиваются деревянные рейки;
  • в листе фанеры сверлятся отверстия для вентиляции;
  • внутрь помещается лист ДВП со спаянной цепью фотоэлементов;
  • проверяется работоспособность;
  • на рейки прикручивается оргстекло.

Солнечные батареи

Способ №2 требует знаний электротехники. Электрическая цепь собирается из диодов Д223Б. Спаивают их по рядам последовательно. Помещают в корпус, накрытый прозрачным материалом.

Фотоэлементы бывают двух видов:

  1. Монокристаллические пластины обладают КПД 13% и прослужат четверть века. Безупречно работают только в солнечную погоду.
  2. Поликристаллические имеют КПД ниже, их срок службы всего 10 лет, но мощность не падает при облачности. Панель площадью 10 кв. м. способна произвести 1КВт энергии. При размещении на крыше стоит учитывать общий вес конструкции.

Готовые батареи размещают на самой солнечной стороне. Панель необходимо оснастить возможностью регулировки наклона угла по отношению к Солнцу. Вертикальное положение устанавливают во время снегопадов, чтобы батарея не вышла из строя.

Солнечную панель можно использовать с аккумулятором или без него. Днём потреблять энергию солнечной батареи, а ночью — аккумулятора. Либо днём пользоваться солнечной энергией, а ночью — от центральной сети электроснабжения.

Самодельная гидроэлектростанция

При наличии на участке ручья или водоёма с плотиной дополнительным источником альтернативной электроэнергии станет самодельная гидроэлектростанция. В основе устройства лежит водяное колесо, а мощность будет зависеть от скорости течения воды. Материалы для изготовления генератора и колеса можно взять от автомобиля, а обрезки уголка и металла найдутся в любом хозяйстве. Кроме этого, понадобится кусок медного провода, фанера, смола полистироловая и неодимовые магниты.Последовательность работ:

  1. Делается колесо из 11 дюймовых дисков. Из стальной трубы изготавливаются лопасти (режем трубу вдоль на 4 части). Потребуется 16 лопастей. Диски стягиваются болтами, зазор между ними 10 дюймов. Лопасти привариваются сваркой.
  2. Изготавливается сопло по ширине колеса. Его делают из обрезка металла, выгнув по размеру и соединив сваркой. Сопло настраивают по высоте. Это позволит отрегулировать водяной поток.
  3. Сваривается ось.
  4. Устанавливается колесо на ось.
  5. Делается обмотка, заливаются смолой катушки – статор готов. Собираем генератор. Из фанеры изготавливается шаблон. Устанавливают магниты.
  6. Генератор защищают металлическим крылом от водяных брызг.
  7. Колесо, ось и крепежи с соплом покрывают краской для защиты металла от коррозии и эстетического удовольствия.
  8. Регулировкой сопла добиваются наибольшей мощности.

Самодельные устройства не требуют больших капиталовложений и производят энергию бесплатно. Если совместить несколько видов альтернативных источников, то такой шаг ощутимо снизит расходы на электроэнергию. Для сбора агрегата понадобятся только умелые руки и ясная голова.

Похожие публикации