Про строительство и ремонт. Электрика. Окна и двери. Кровля и крыша

Зачем строить Парогазовые ТЭЦ? В чем преимущества парогазовых установок. Парогазовая установка Классификация пгу по числу генерации пара

В зависимости от чего выбираются парогазовые циклы , какой выбор будет оптимальным, и как будет выглядеть технологическая схема ПГУ?

Как только становятся известны паритет капитала и конфигу­рация в отношении расположения валов, можно приступить к пред­варительному выбору цикла.

Диапазон простирается от очень про­стых “циклов одного давления” до чрезвычайно сложных “циклов тройного давления с промежуточным перегревом”. Коэффициент полезного действия цикла с увеличением комплексности повы­шается, однако капитальные затраты также возрастают. Ключом выбора правильного цикла является определение такого цикла давления, который лучше всего подходит для заданного коэф­фициента полезного действия и заданных показателей затрат.

Парогазовая установка с циклом одного давления

Этот цикл часто используется для более благоприятного в цене топ­лива ухудшенного качества, как например, сырая нефть и тяже­лое нефтяное топливо с высоким содержанием серы.

По сравнению со сложными циклами инвестиции в ПГУ про­стых циклов незначительны.

На схеме изображена ПГУ с дополнительным змеевиком-испарителем на холодном конце кот­ла-утилизатора. Этот испаритель отбирает у отработавших газов дополнительное тепло и отдает пар деаэратору с целью использо­вания его для подогрева питательной воды.

Благодаря этому отпа­дает необходимость в отборе пара для деаэратора из паровой тур­бины. Результатом по сравнению с простейшей схемой одного давления является улучшение коэффициента полезного действия, однако соответственно повышаются капитальные вложения.

ПГУ с циклом двух давлений

Большинство находящихся в эксплуатации комбинирован­ных установок имеют циклы двойного давления. Вода подается двумя отдельными питательными насосами в экономайзер двой­ного давления.

Читайте также: Как выбрать газотурбинную установку для станции с ПГУ

Вода низкого давления поступает затем в первый змеевик испарителя, а вода высокого давления нагревается в эко­номайзере, прежде чем она испарится и перегреется в горячей части котла-утилизатора. Отбор из барабана низкого давления снабжает паром деаэратор и паровую турбину.

Коэффициент полезного действия цикла двойного давления, как показано на Т-S-диаграмме на рисунке, выше, чем КПД цикла одного давления, из-за более полного использования энер­гии отработавших газов газовой турбины (дополнительная пло­щадь СС"Д"Д).

Однако при этом увеличиваются капитальные вложения на дополнительное оборудование, например, на питательные на­сосы, экономайзеры двойного давления, испарители, низкона­порные трубопроводы и два паропровода НД к паровой турбине. Поэтому рассматриваемый цикл применяют только при высо­ком паритете капитала.

ПГУ с циклом тройного давления

Это одна из наиболее сложных схем, которые находят применение в настоящее время. Она применяется в случаях очень высокого паритета капитала, при этом высокий коэффициент полезно­го действия может быть получен только с высокими затратами.

К котлу-утилизатору добавляется третья ступень, которая до­полнительно использует теплоту отработавших газов. Насос высокого давления подает питательную воду в трехступенча­тый экономайзер высокого давления и далее в барабан - се­паратор высокого давления. Питательный насос среднего дав­ления подает воду в барабан - сепаратор среднего давления.

Часть питательной воды от насоса среднего давления через дрос­сельное устройство поступает в барабан - сепаратор низкого давления. Пар из барабана высокого давления поступает в паро­перегреватель и затем в часть высокого давления паровой турби­ны. Отработавший в части высокого давления (ЧВД) пар сме­шивается с паром, поступившим из барабана среднего давления, перегревается и поступает на вход части низкого давления (ЧНД) паровой турбины.

Читайте также: Зачем строить Парогазовые ТЭЦ? В чем преимущества парогазовых установок.

Коэффициент полезного действия может быть дополнитель­но повышен за счет подогрева топлива водой высо­кого давления перед его поступлением в газовую турбину.

Диаграмма выбора цикла

Типы циклов, начиная с цикла одного давления и кончая цик­лом тройного давления с промежуточным перегревом, представле­ны как функции паритета напитала.

Цикл выбирается путем опре­деления, какие из циклов соответствуют данному показателю паритета капитала для конкретного случая применения. Если, на­пример, паритет капитала составляет 1800 дол. США/кВт, то выбирается цикл двойного или тройного давления.

В первом при­ближении решение принимается в пользу цикла тройного давле­ния, так как при неизменном паритете капитала коэффициент полезного действия и мощность выше. Однако при более точном рассмотрении параметров может оказаться, что для удовлетво­рения других требований более целесообразным является выбор цикла двойного давления.

Существуют случаи, для которых диаграмма выбора цикла неприменима. Наиболее часто встречающимся примером подоб­ного случая является ситуация, когда заказчик хочет иметь в рас­поряжении электрическую мощность как можно скорее и оптимизация для него менее важна, чем короткие сроки поставки.

В зависимости от обстоятельств может оказаться целесообразным циклу с несколькими давлениями предпочесть цикл с одним давлением, так как затраты времени меньше. Для этой цели можно разработать серию стандартизированных циклов с заданными па­раметрами, которые с успехом находят применение в подобных случаях.

(Visited 2 642 times, 1 visits today)

Как и в любом другом автомобиле, на котором используется похожее устройство, главная задача сцепления, это облегчение жизни водителю, а если конкретней, то пневмогидравлический усилитель делает так, что водителю приходится тратить меньше усилий при выжимании педали сцепления. И для большегрузных автомобилей подобное облегчение очень кстати.

Рассмотрим на примере, устройство сцепления и других моделей МАЗ. Принцип работы выглядит следующим образом - нажатие педали вызывает повышение давления на гидравлический поршень, и такое же давление испытывает поршень следящего устройства. Как только это происходит, включается автоматика следящего устройства и меняет уровень давления в силовом пневматическом цилиндре. Крепится само устройство на фланце картера.

Вариантов усилителей достаточно много, но если говорить конкретно по минским грузовикам, то большинство из них объединяет одна не слишком приятная особенность – часто так случается, что в процессе эксплуатации из ПГУ начинает подтекать жидкость. Естественно, что первая приходящая мысль - это может быть признаком поломки, случившейся из-за перегрузок, причем серьезной.

Если же подобных перегрузок после установки (замены) усилителя не было, сразу возникает другая версия – подсунули бракованный! А что, сегодня подделывают все, хоть отдельные или 238, хоть Brabus SV12 в сборе к «мерину» шестисотому. Не подделывают, наверное, только комплектующие к русской «калине» и украинской «таврии» - материал дороже получается.


Но шутки в сторону, тем более что вытекание жидкости из пневмогидравлического усилителя симптом серьезный. На самом деле все не так трагично, дело в том, что это может быть свидетельством не поломки, а всего лишь неправильной регулировки. «Всего лишь», потому что ремонт ПГУ МАЗ сцепления, не сложен и при определенных навыках не займет много времени.




Самое главное, это определить рабочих ход для штока усилителя. Чтобы это сделать, потребуется сам шток оттянуть от рычага, отводя его при этом в сторону, так чтобы он полностью вышел из корпуса. После рычаг сцепления необходимо повернуть по направлению от штока, выбирая все возможные зазоры. Затем измеряется расстояние между поверхностью рычага и концом штока.

Если это расстояние меньше 50 мм, то это означает, что в работе плунжер штока будет выходить до упора, тем самым, открывая выход жидкости. Все что требуется, это переставить рычаг на один шлиц ближе к усилителю. Если же расстояние больше, то причина подтекания в другом, и лучше провести более детальную проверку в автосервисе. Впрочем, повторимся, но чаще всего регулировки будет предостаточно.

Устройство, схема ПГУ МАЗ



1 6430-1609205 Корпус цилиндра
2 6430-1609324 Манжета
3 6430-1609310 Кольцо
4 6430-1609306 Шайба
5 6430-1609321 Манжета
6 6430-1609304 Втулка
7 Кольцо 033-036-19-2-2 Кольцо 033-036-19-2-2
8 6430-1609325 Манжета
9 Кольцо 018-022-25-2-2 Кольцо 018-022-25-2-2
10 6430-1609214 Поршень следящий
11 Кольцо 025-029-25-2-2 Кольцо 025-029-25-2-2
12 6430-1609224 Пружина
13 Кольцо 027-03 0-19-2-2 Кольцо 027-03 0-19-2-2
14 6430-1609218 Седло
15 500-3515230-10 Клапан усилителя сцепления
16 842-8524120 Пружина
17 Кольцо 030-033-19-2-2 Кольцо 030-033-19-2-2
18 6430-1609233 Опора
19 6430-1609202 Цилиндр
20 373165 Шпилька М10х40
21 6430-1609203 Гильза
22 375458 Шайба 8 ОТ
23 201458 Болт М8-6gх25
24 6430-1609242 Пружина
25 6430-1609322 Манжета
26 6430-1609207 Поршень
27 6430-1609302 Кольцо
28 Кольцо 020-025-30-2-2 Кольцо 020-025-30-2-2
29 6430-1609236 Вал
30 6430-1609517 Уплотнитель
31 6430-1609241 Шток
32 6430-1609237 Крышка
33 6430-1609216 Пластина цилиндра
34 220050 Винт М4-6gх8
34 220050 Винт М4-6gх8
35 64221-1602718 Колпак защитный
36 378941 Заглушка М14х1,5
37 101-1609114 Клапан перепускной
38 12-3501049 Колпачок клапана
39 378942 Заглушка М16х1,5
40 6430-1609225 Сапун
41 252002 Шайба 4
42 252132 Шайба 14
43 262541 Пробка кг 1/8"
43 262541 Пробка кг 1/8"
44 Кольцо 008-012-25-2-2 Кольцо 008-012-25-2-2
45 6430-1609320 Трубка
46 6430-1609323 Уплотнитель
Ссылка на эту страницу: http://www..php?typeauto=2&mark=11&model=293&group=54

Узел ПГУ на МАЗ предназначен для уменьшения усилия, необходимого для выключения сцепления. На машинах встречаются агрегаты собственной разработки, а также импортные изделия Wabco. Принцип действия устройств одинаковый.

Устройство и принцип работы

Пневмогидравлические усилители (ПГУ) выпускаются в нескольких модификациях, отличающихся местом расположения магистралей и конструкцией рабочего штока и защитного чехла.

В устройство ПГУ входят следующие детали:

  • гидравлический цилиндр, установленный под педалью сцепления, совместно с поршнем и обратной пружиной;
  • пневматическая часть, включающая в себя поршень, общий для пневматики и гидравлики, шток и возвратную пружину;
  • контролирующий механизм, оборудованный диафрагмой с выпускным клапаном и пружиной обратного хода;
  • клапанный механизм (для впуска и выпуска) с общим штоком и упругий элемент для возврата деталей в нейтральное положение;
  • индикаторный шток износа накладок.


Для устранения зазоров в конструкции имеются поджимные пружины. В соединениях с вилкой управления сцеплением люфты отсутствуют, что позволяет отслеживать степень износа фрикционных накладок. По мере уменьшения толщины материала происходит утапливание поршня в глубину корпуса усилителя. Поршень воздействует на специальный индикатор, информирующий водителя об остаточном ресурсе сцепления. Замена ведомого диска или накладок требуется при достижении индикаторным стержнем длины 23 мм.

Усилитель сцепления оснащен штуцером для подключения к штатной пневматической системе грузового автомобиля. Нормальная работа узла возможна при давлении в воздушных магистралях не менее 8 кгс/см². Для крепления ПГУ к раме грузовика имеются 4 отверстия под шпильки М8.

Принцип работы устройства:

  1. При нажатии на педаль сцепления происходит передача усилия на поршень гидравлического цилиндра. Одновременно нагрузка подается на поршневую группу следящего штока.
  2. Следящее устройство автоматически начинает изменять положение поршня в пневматической силовой секции. Поршень воздействует на управляющий клапан следящего устройства, открывая подачу воздуха в полость пневматического цилиндра.
  3. Давление газа обеспечивает силовое воздействие на вилку управления сцеплением через отдельный шток. Следящий контур обеспечивает автоматическую корректировку давления в зависимости от усилия нажатия ногой на педаль сцепления.
  4. После отпускания педали происходит сброс давления жидкости, а затем закрытие клапана подачи воздуха. Поршень пневматической секции уходит в исходную позицию.

Смотрите » Устройство и эксплуатация кабины МАЗа


Неисправности

К неисправностям ПГУ на грузовиках МАЗ относят следующее:

  1. Заедание привода из-за набухания уплотнительных манжет.
  2. Поздняя реакция исполнительного механизма по причине густой жидкости или заедания поршня следящего компонента привода.
  3. Увеличение усилия на педали. Причиной неисправности может стать выход из строя впускного клапана для сжатого воздуха. При сильном разбухании уплотнительных элементов заклинивает следящий механизм, что вызывает снижение эффективности устройства.
  4. Сцепление выключается не до конца. Дефект возникает из-за неправильной регулировки свободного хода.
  5. Падение уровня жидкости в бачке из-за трещин или затвердевания уплотнительной манжеты.

Как заменить

Замена ПГУ МАЗ предусматривает установку новых шлангов и магистралей. Все узлы должны иметь внутренний диаметр не менее 8 мм.


Процедура замены состоит из шагов:

  1. Отсоединить магистрали от старого узла и открутить точки крепления.
  2. Демонтировать узел с автомобиля.
  3. Установить на штатное место новый агрегат, произвести замену поврежденных магистралей.
  4. Затянуть точки крепления с необходимым моментом. Изношенные или ржавые метизные изделия рекомендуется заменить новыми.
  5. После установки ПГУ требуется проверить перекос рабочих штоков, который не должен превышать 3 мм.

Как отрегулировать

Под регулировкой подразумевается изменение свободного хода муфты отключения сцепления. Проверка зазора выполняется смещением рычага вилки от сферической поверхности гайки толкателя усилителя. Операция проводится вручную, для уменьшения усилия требуется демонтировать пружину рычага. Нормальным является ход в пределах 5-6 мм (замеренный на радиусе 90 мм). Если измеренное значение находится в пределах 3 мм, то его следует довести до нормы вращением сферической гайки.


После регулировки требуется проверить полный ход толкателя, который должен составлять не менее 25 мм. Тест производится путем полного утапливания педали сцепления.

При меньших значениях усилитель не обеспечивает полного разведения дисков сцепления.

Дополнительно настраивается свободный ход педали, соответствующий началу работы главного цилиндра. Величина зависит от зазора между поршнем и толкателем. Нормальным считается ход 6-12 мм, измеренный по средней части педали. Настройка зазора между поршнем и толкателем выполняется поворотом эксцентрикового пальца. Регулировка выполняется при полностью отпущенной педали сцепления (до контакта об резиновый упор). Палец вращается до момента получения требуемого свободного хода. Затем затягивается гайка на регуляторе и устанавливается страховочный шплинт.

Смотрите » Технические характеристики и инструкция по ремонту МАЗа сельхозника

Как прокачать

Прокачка ПГУ на МАЗе производится следующим образом:

  1. Изготовить самодельный нагнетательный прибор из пластиковой бутылки емкостью 0,5-1,0 л. В крышке и донной части сверлятся отверстия, в которые затем устанавливаются ниппели от бескамерных шин.
  2. Из детали, смонтированной в донце емкости, требуется удалить золотниковый клапан.
  3. Заполнить бутылку свежей тормозной жидкостью на 60-70%. При заливке следует закрыть отверстие в клапане.
  4. Соединить емкость шлангом со штуцером, установленным на усилителе. Для подключения используется клапан без золотника. Перед установкой магистрали требуется снять защитный элемент и ослабить штуцер, повернув на 1-2 оборота.
  5. Подать сжатый воздух в бутылку через клапан, установленный в крышке. Источником газа может служить компрессор с пистолетом для подкачки шин. Установленный на узле манометр позволяет контролировать давление в емкости, которое должно находиться в пределах 3-4 кгс/см².
  6. Под воздействием давления воздуха жидкость поступает в полости усилителя и вытесняет имеющийся внутри воздух.
  7. Процедура продолжается до момента исчезновения пузырьков воздуха в расширительном бачке.
  8. После заполнения магистралей необходимо закрутить штуцер и довести уровень жидкости в бачке до требуемого значения. Нормальным считается уровень, расположенный на 10-15 мм ниже кромки заливной горловины.

Допускается обратная методика прокачки, когда жидкость подается под давлением в бачок. Заливка продолжается до момента прекращения выхода пузырьков газа из штуцера (предварительно открученного на 1-2 оборота). После заправки клапан затягивается и закрывается сверху защитным резиновым элементом.

Парогазовыми называются энергетические установки (ПГУ) , в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле.

На рис. 4.10 показана принципиальная схема простейшей парогазовой установки, так называемого утилизационного типа. Уходящие газы ГТУ поступают в котёл-утилизатор - теплообменник противоточного типа, в котором за счет тепла горячих газов получают пар высоких параметров, направляемый в паровую турбину.

Рисунок 4.10. Принципиальная схема простейшей парогазовой установки

Котёл-утилизатор представляет собой шахту прямоугольного сечения , в которой размещены поверхности нагрева, образованные сребрёнными трубами, внутрь которых подаётся рабочее тело паротурбинной установки (вода или пар). В простейшем случае поверхности нагрева котла-утилизатора состоят из трёх элементов: экономайзера 3, испарителя 2 и пароперегревателя 1. Центральным элементом является испаритель , состоящий из барабана 4 (длинного цилиндра, заполняемого наполовину водой), нескольких опускных труб 7 и достаточно плотно установленных вертикальных труб собственно испарителя 8. Испаритель работает на принципе естественной конвекции . Испарительные трубы находятся в зоне более высоких температур, чем опускные. Поэтому в них вода нагревается, частично испаряется и поэтому становится легче и поднимается вверх в барабан. Освобождающееся место заполняется более холодной водой по опускным трубам из барабана. Насыщенный пар собирается в верхней части барабана и направляется в трубы пароперегревателя 1. Расход пара из барабана 4 компенсируется подводом воды из экономайзера 3. При этом поступающая вода, прежде чем испариться полностью, многократно пройдет через испарительные трубы. Поэтому описанный котёл-утилизатор называется котлом с естественной циркуляцией .

В экономайзере происходит нагрев поступающей питательной воды практически до температуры кипения . Из барабана сухой насыщенный пар поступает в пароперегреватель, где перегревается сверх температуры насыщения. Температура получаемого перегретого пара t 0 всегда, конечно, меньше, чем температура газов q Г , поступающих из газовой турбины (обычно на 25 - 30 °С).

Под схемой котла-утилизатора на рис. 4.10 показано изменение температур газов и рабочего тела при их движении навстречу друг другу. Температура газов плавно уменьшается от значения q Г на входе до значения q ух температуры уходящих газов. Движущаяся навстречу питательная вода повышает в экономайзере свою температуру до температуры кипения (точка а ). С этой температурой (на грани кипения) вода поступает в испаритель. В нём происходит испарение воды. При этом её температура не изменяется (процесс a - b ). В точке b рабочее тело находится в виде сухого насыщенного пара. Далее в пароперегревателе происходит его перегрев до значения t 0 .

Образующийся на выходе из пароперегревателя пар направляется в паровую турбину, где, расширяясь, совершает работу. Из турбины отработанный пар поступает в конденсатор, конденсируется и с помощью питательного насоса 6 , повышающего давление питательной воды, направляется снова в котёл-утилизатор.

Таким образом, принципиальное отличие паросиловой установки (ПСУ) ПГУ от обычной ПСУ ТЭС состоит только в том, что топливо в котле-утилизаторе не сжигается, а необходимая для работы ПСУ ПГУ теплота берётся от уходящих газов ГТУ. Общий вид котла – утилизатора приведен на рис.4.11.

Рисунок 4.11. Общий вид котла – утилизатора

Электростанция с ПГУ показана на рис. 4.12, на котором изображена ТЭС с тремя энергоблоками. Каждый энергоблок состоит из двух рядом стоящих ГТУ 4 типа V94.2 фирмы Siemens , каждая из которых свои уходящие газы высокой температуры направляет в свой котёл-утилизатор 8 . Пар, генерируемый этими котлами, направляется в одну паровую турбину 10 с электрогенератором 9 и конденсатором, расположенным в конденсационном помещении под турбиной. Каждый такой энергоблок имеет суммарную мощность 450 МВт (каждая ГТУ и паровая турбина имеют мощность примерно 150 МВт). Между выходным диффузором 5 и котлом-утилизатором 8 установлена байпасная (обводная) дымовая труба 12 и газоплотный шибер 6 .

Рисунок 4.12. Электростанция с ПГУ

Основные преимущества ПГУ.

1. Парогазовая установка - в настоящее время самый экономичный двигатель, используемый для получения электроэнергии.

2. Парогазовая установка - самый экологически чистый двигатель. В первую очередь это объясняется высоким КПД - ведь вся та теплота, содержащаяся в топливе, которую не удалось преобразовать в электроэнергию, выбрасывается в окружающую среду и происходит её тепловое загрязнение. Поэтому уменьшение тепловых выбросов ПГУ по сравнению с паросиловой примерно соответствует уменьшению расхода топлива на производство электроэнергии.

3. Парогазовая установка - очень маневренный двигатель, с которым в маневренности может сравниться только автономная ГТУ. Потенциально высокая маневренность ПТУ обеспечивается наличием в её схеме ГТУ, изменение нагрузки которой происходит в течение нескольких минут.

4. При одинаковой мощности паросиловой и парогазовой ТЭС потребление охлаждающей воды ПГУ примерно втрое меньше. Это определяется тем, что мощность паросиловой части ПГУ составляет 1/3 от общей мощности, а ГТУ охлаждающей воды практически не требует.

5. ПГУ имеет более низкую стоимость установленной единицы мощности, что связано с меньшим объёмом строительной части, с отсутствием сложного энергетического котла, дорогой дымовой трубы, системы регенеративного подогрева питательной воды, использованием более простых паровой турбины и системы технического водоснабжения.

ЗАКЛЮЧЕНИЕ

Главным недостатком всех тепловых электростанций является то, что все виды применяемого топлива являются невосполнимыми природными ресурсами, которые постепенно заканчиваются. Кроме того, ТЭС потребляют значительное количество топлива (ежедневно одна ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля) и являются самыми экологически «грязными» источниками электроэнергии, особенно если они работают на высокозольных сернистых топливах. Именно поэтому в настоящее время, наряду с использованием атомных и гидравлических электростанций, ведутся разработки электрических станций, использующих восполняемые или другие альтернативные источники энергии. Однако, несмотря ни на что ТЭС являются основными производителями электроэнергии в большинстве стран мира и останутся таковыми, как минимум в ближайшие 50 лет.

КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИИ 4

1. Тепловая схема ТЭЦ – 3 балла.

2. Технологический процесс производства электроэнергии на ТЭС – 3 балла.

3. Компоновка современных ТЭС – 3 балла.

4. Особенности ГТУ. Структурная схема ГТУ. КПД ГТУ – 3 балла.

5. Тепловая схема ГТУ – 3 балла.

6. Особенности ПГУ. Структурная схема ПГУУ. КПД ПГУ – 3 балла.

7. Тепловая схема ПГУ – 3 балла.


ЛЕКЦИЯ 5

АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ. ТОПЛИВО ДЛЯ АЭС. ПРИНЦИП РАБОТЫ ЯДЕРНОГО РЕАКТОРА. ПРОИЗВОДСТВО ЭЛЕКТРОЭНЕРГИИ НА АЭС С ТЕПЛОВЫМИ РЕАКТОРАМИ. РЕАКТОРЫ НА БЫСТРЫХ НЕЙТРОНАХ. ДОСТОИНСТВА И НЕДОСТАТКИ СОВРЕМЕННЫХ АЭС

Основные понятия

Атомная электростанция (АЭС) это электростанция, вырабатывающая электрическую энергию путём преобразования тепловой энергии, выделяющейся в ядерном реакторе (реакторах) в результате управляемой цепной реакции деления (расщепления) ядер атомов урана. Принципиальное отличие АЭС от ТЭС только в том, что вместо парогенератора используется ядерный реактор - устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

Радиоактивные свойства у урана впервые обнаружил французский физик Антуан Беккерель в 1896 году. Английский физик Эрнест Резерфорд впервые осуществил искусственную ядерную реакцию под действием – частиц в 1919 году. Немецкие физики Отто Ган и Фриц Штрасман открыли в 1938 году, чтоделение тяжёлых ядер уранапри бомбардировке нейтронами сопровождается выделением энергии. Реальное использование этой энергии стало делом времени.

Первый ядерный реактор построен в декабре 1942 года в США группой физиков Чикагского университета под руководством итальянского физика Энрико Ферми . Впервые была реализована незатухающая реакция деления ядер урана. Ядерный реактор, названный СР-1, состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235 U , замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых (медленных) нейтронах; в таких реакторах замедлителя значительно больше чем урана.

В Европе первый ядерный реактор Ф-1 был изготовлен и запущен в декабре 1946 года в Москве группой физиков и инженеров во главе с академиком Игорем Васильевичем Курчатовым . Реактор Ф-1 был набран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м в отверстиях графитовых блоков были размещены урановые стержни. Реактор Ф-1, как и СР-1, не имел системы охлаждения, поэтому работал на малых уровнях мощности: от долей до единиц ватта.

Результаты исследований на реакторе Ф-1 послужили основой проектов для промышленных реакторов. В 1948 году под руководством И. В. Курчатова начались работы по практическому применению энергии атома для получения электроэнергии.

Первая в мире промышленная атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 года в г. Обнинске Калужской области . В 1958 г. была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт (полная проектная мощность 600 МВт). В том же году развернулось строительство Белоярской промышленной АЭС, а в апреле 1964 г. генератор 1-й очереди дал электроэнергию потребителям. В сентябре 1964 года был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969 года. В 1973 году запущена Ленинградская АЭС.

В Великобритании первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 году в Колдер-Холле. Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами по производству ядерной электроэнергии являются:США (788,6 млрд. кВт ч/год), Франция (426,8 млрд. кВт ч/год), Япония (273,8 млрд. кВт ч/год), Германия (158,4 млрд. кВт ч/год) и Россия (154,7 млрд. кВт ч/год). На начало 2004 года в мире действовал 441 энергетический ядерный реактор, российское ОАО «ТВЭЛ» поставляет топливо для 75 из них.

Крупнейшая АЭС в Европе - Запорожская АЭС г. Энергодар (Украина) - 6 атомных реакторов суммарной мощностью 6 ГВт. Крупнейшая в мире АЭС - Касивадзаки-Карива (Япония) - пять кипящих ядерных реакторов (BWR ) и два продвинутых кипящих ядерных реактора (ABWR ), суммарная мощность которых составляет 8,2 ГВт.

В настоящее время в России работают АЭС: Балаковская, Белоярская, Билибинская, Ростовская, Калининская, Кольская, Курская, Ленинградская, Нововоронежская, Смоленская.

В разработках проекта Энергетической стратегии России на период до 2030 года предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

Атомные электростанции классифицируются в соответствии с установленными на них реакторами:

l реакторы на тепловых нейтронах , использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива;

l реакторы на быстрых нейтронах .

По виду отпускаемой энергии атомные станции делятся на:

l атомные электростанции (АЭС), предназначенные для выработки только электроэнергии;

l атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию.

В настоящее только в России рассматриваются варианты строительства атомных станций теплоснабжения.

АЭС не использует воздух для окисления топлива, не даёт выбросов золы, оксидов серы, углерода и т.д. в атмосферу, имеет радиоактивный фон ниже, чем на ТЭС, но, как и ТЭС, потребляет огромное количество воды для охлаждения конденсаторов.

Топливо для АЭС

Главное отличие АЭС от ТЭС состоит в использовании ядерного горючего вместо органического топлива . Ядерное горючее получают из природного урана, который добывают либо в шахтах (Нигер, Франция, ЮАР), либо в открытых карьерах (Австралия, Намибия), либо способом подземного выщелачивания (Канада, Россия, США). Уран широко распространён в природе, но богатых по содержанию залежей урановых руд нет. Уран содержится в различных горных породах и воде в рассеянном состоянии. Природный уран это смесь в основном неделящегося изотопа урана 238 U (более 99%) и делящегося изотопа 235 U (примерно 0,71%) , который и представляет собой ядерное горючее (1 кг 235 U выделяет энергию равную теплоте сгорания примерно 3000 т каменного угля).

Для работы реакторов АЭС требуется обогащение урана . Для этого природный уран направляется на обогатительный завод, после переработки, на котором 90% природного обеднённого урана направляется на хранение, а 10% обогащается до 3,3 - 4,4 %.

Из обогащённого урана (точнее диоксида урана UO 2 или окиси-закиси урана U 2 O 2 ) изготавливают тепловыделяющие элементы - ТВЭЛы - цилиндрические таблетки диаметром 9 мм и высотой 15-30 мм. Эти таблетки помещают в герметические циркониевые (поглощение нейтронов цирконием в 32,5 раза меньше чем сталью) тонкостенные трубки длиной около 4 м. ТВЭЛы собирают в тепловыделяющие сборки (ТВС) по несколько сотен штук.

Все дальнейшие процессы расщепления ядер 235 U с образованием осколков деления, радиоактивных газов и т.д. происходят внутри герметичных трубок ТВЭЛов .

После постепенного расщепления 235 U и уменьшения его концентрации до 1,26%, когда мощность реактора существенно уменьшается, ТВС извлекают из реактора , некоторое время хранят в бассейне выдержки, а затем направляют на радиохимический завод для переработки.

Таким образом, в отличие от ТЭС, где топливо стремятся сжигать полностью, на АЭС невозможно расщепить ядерное топливо на 100%. Поэтому на АЭС нельзя рассчитать КПД по удельному расходу условного топлива. Для оценки эффективности работы энергоблока АЭС используется КПД нетто

,

где - выработанная энергия, - выделившееся в реакторе тепло заодно и тоже время.

Подсчитанный таким образом КПД АЭС составляет 30 - 32 %, но сравнивать его с КПД ТЭС, составляющим 37 - 40 %, не вполне правомочно.

Кроме изотопа урана 235 в качестве ядерного топлива также используются:

  • изотоп урана 233 ( 233 U ) ;
  • изотоп плутония 239 ( 239 Pu );
  • изотоп тория 232 ( 232 Th ) (посредством преобразования в 233 U ).

Парогазовые электростанции представляют собой сочетание паровых и газовых турбин. Такое объединение позволяет снизить потери отработавшей теплоты газовых турбин или теплоты уходящих газов паровых котлов, что обеспечивает повышение КПД парогазовых установок (ПГУ) по сравнению с отдельно взятыми паротурбинными и газотурбинными установками.

В настоящее время различают парогазовые установки двух типов:

а) с высоконапорными котлами и со сбросом отработавших газов турбины в топочную камеру обычного котла;

б) с использованием теплоты отработавших газов турбины в котле.

Принципиальные схемы ПГУ этих двух типов представлены на рис. 2.7 и 2.8.

На рис. 2.7 представлена принципиальная схема ПГУ с высоконапорным паровым котлом (ВПГ) 1 , в который подается вода и топливо, как и на обычной тепловой станции для производства пара. Пар высокого давления поступает в конденсационную турбину 5 , на одном валу с которой находится генератор 8 . Отработавший в турбине пар поступает сначала в конденсатор 6 , а затем с помощью насоса 7 направляется снова в котел 1 .

Рис 2.7. Принципиальная схема пгу с впг

В то же время образующиеся при сгорании топлива в котле газы, имеющие высокую температуру и давление, направляются в газовую турбину 2 . На одном валу с ней находятся компрессор 3 , как в обычной ГТУ, и другой электрический генератор 4 . Компрессор предназначен для нагнетания воздуха в топочную камеру котла. Выхлопные газы турбины 2 подогревают также питательную воду котла.

Такая схема ПГУ обладает тем преимуществом, что в ней не требуется дымососа для удаления отходящих газов котла. Следует заметить, что функцию дутьевого вентилятора выполняет компрессор 3 . КПД такой ПГУ может достигать 43 %.

На рис. 2.8 показана принципиальная схема другого типа ПГУ. В отличие от ПГУ, представленной на рис. 2.7, газ в турбину 2 поступает из камеры сгорания 9 , а не из котла 1 . Далее отработавшие в турбине 2 газы, насыщенные до 16―18 % кислородом благодаря наличию компрессора, поступают в котел 1 .

Такая схема (рис. 2.8) обладает преимуществом перед рассмотренной выше ПГУ (рис. 2.7), так как в ней используется котел обычной конструкции с возможностью использования любого вида топлива, в том числе и твердого. В камере сгорания 3 при этом сжигается значительно меньше, чем в схеме ПГУ с высоконапорным паровым котлом, дорогостоящего в настоящее время газа или жидкого топлива.

Рис 2.8. Принципиальная схема пгу (сбросная схема)

Такое объединение двух установок (паровой и газовой) в общий парогазовый блок создает возможность получить также и более высокие маневренные качества по сравнению с обычной тепловой станцией.

Принципиальная схема атомных электростанций

По назначению и технологическому принципу действия атомные станции практически не отличаются от традиционных тепловых станций. Их существенное различие заключается, во-первых, в том, что на АЭС в отличие от ТЭС пар образуется не в котле, а в активной зоне реактора, а во-вторых, в том, что на АЭС используется ядерное топливо, в состав которого входят изотопы урана-235 (U-235) и урана-238 (U-238).

Особенностью технологического процесса на АЭС является также образование значительных количеств радиоактивных продуктов деления, в связи с чем атомные станции технически более сложны по сравнению с тепловыми станциями.

Схема АЭС может быть одноконтурной, двухконтурной и трехконтурной (рис. 2.9).

Рис. 2.9. Принципиальные схемы АЭС

Одноконтурная схема (рис. 2.9,а) наиболее проста. Выделившееся в ядерном реакторе 1 вследствие цепной реакции деления ядер тяжелых элементов тепло переносится теплоносителем. Часто в качестве теплоносителя служит пар, который далее используется как на обычных паротурбинных электростанциях. Однако образующийся в реакторе пар радиоактивен. Поэтому для защиты персонала АЭС и окружающей среды большая часть оборудования должна иметь защиту от излучения.

По двух- и трехконтурной схемам (рис. 2.9,б и 2.9,в) отвод тепла из реактора осуществляется теплоносителем, который затем передает это тепло рабочей среде непосредственно (например, как в двухконтурной схеме через парогенератор 3 ) или через теплоноситель промежуточного контура (например, как в трехконтурной схеме между промежуточным теплообменником 2 и парогенератором 3 ). На рис. 2.9 цифрами 5 , 6 и 7 обозначены конденсатор и насосы, выполняющие те же функции, что и на обычной ТЭС.

Ядерный реактор часто называют «сердцем» атомной электростанции. В настоящее время существует довольно много видов реакторов.

В зависимости от энергетического уровня нейтронов, под воздействием которых происходит деление ядерного топлива, АЭС можно разделить на две группы:

    АЭС с реакторами на тепловых нейтронах ;

    АЭС с реакторами на быстрых нейтронах .

Под воздействием тепловых нейтронов способны делиться лишь изотопы урана-235, содержание которых в природном уране составляет всего 0,7 %, остальные 99,3 % ― это изотопы урана-238. Под воздействием нейтронного потока более высокого энергетического уровня (быстрых нейтронов) из урана-238 образуется искусственное ядерное топливо плутоний-239, которое используется в реакторах на быстрых нейтронах. Подавляющее большинство эксплуатируемых в настоящее время энергетических реакторов относится к первому типу.

Принципиальная схема атомного энергетического реактора, используемого в двухконтурной схеме АЭС, представлена на рис. 2.10.

Ядерный реактор состоит из активной зоны, отражателя, системы охлаждения, системы управления, регулирования и контроля, корпуса и биологической защиты.

Активная зона реактора - область, где поддерживается цепная реакция деления. Она слагается из делящегося вещества, замедлителя и отражателя нейтронов теплоносителя, регулирующих стержней и конструкционных материалов. Основными элементами активной зоны реактора, обеспечивающими энерговыделение и самоподдерживающими реакцию, являются делящееся вещество и замедлитель. Активная зона отдалена от внешних устройств и работы персонала зоной защиты.

Похожие публикации